

Lecture Notes in Computer Science 3553
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Timo D. Hämäläinen Andy D. Pimentel
Jarmo Takala Stamatis Vassiliadis (Eds.)

Embedded Computer
Systems: Architectures,
Modeling, and Simulation

5th International Workshop, SAMOS 2005
Samos, Greece, July 18-20, 2005
Proceedings

13

Volume Editors

Timo D. Hämäläinen
Jarmo Takala
Tampere University of Technology
Institute of Digital and Computer Systems
Korkeakoulunkatu 1, 33720 Tampere, Finland
E-mail:{timo.d.hamalainen/jarmo.takala}@tut.fi

Andy D. Pimentel
University of Amsterdam
Department of Computer Science
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
E-mail: andy@science.uva.nl

Stamatis Vassiliadis
T.U. Delft, Computer Engineering
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: s.vassiliadis@ewi.tudelft.nl

Library of Congress Control Number: 2005928160

CR Subject Classification (1998): C, B

ISSN 0302-9743
ISBN-10 3-540-26969-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26969-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11512622 06/3142 5 4 3 2 1 0

Preface

The SAMOS workshop is an international gathering of highly qualified researchers
from academia and industry, sharing in a 3-day lively discussion on the quiet and in-
spiring northern mountainside of the Mediterranean island of Samos. As a tradition, the
workshop features workshop presentations in the morning, while after lunch all kinds
of informal discussions and nut-cracking gatherings take place. The workshop is unique
in the sense that not only solved research problems are presented and discussed but also
(partly) unsolved problems and in-depth topical reviews can be unleashed in the scien-
tific arena. Consequently, the workshop provides the participants with an environment
where collaboration rather than competition is fostered.

The earlier workshops, SAMOS I–IV (2001–2004), were composed only of invited
presentations. Due to increasing expressions of interest in the workshop, the Program
Committee of SAMOS V decided to open the workshop for all submissions. As a result
the SAMOS workshop gained an immediate popularity; a total of 114 submitted papers
were received for evaluation. The papers came from 24 countries and regions: Austria
(1), Belgium (2), Brazil (5), Canada (4), China (12), Cyprus (2), Czech Republic (1),
Finland (15), France (6), Germany (8), Greece (5), Hong Kong (2), India (2), Iran (1),
Korea (24), The Netherlands (7), Pakistan (1), Poland (2), Spain (2), Sweden (2), Tai-
wan (1), Turkey (2), UK (2), and USA (5). We are grateful to all of the authors who
submitted papers to the workshop.

All the papers went through a rigorous reviewing process and, on average, each pa-
per received three individual reviews. Due to time constraints in the workshop program
and the high quality of the submitted papers, the selection process was very competi-
tive and many qualified papers could not be accepted. Finally, the Program Committee
selected 47 papers (corresponding to 41% of the submitted papers) for the workshop
and the fifth edition of the SAMOS workshop developed into a highly interesting event.
The program consisted of 32 plenary presentations (28% of the submitted papers), 15
poster presentations (13% of the submitted papers), and a keynote speech by Dr. Bob
Iannucci from Nokia Research Center.

A workshop like this cannot be organized without the help of many other people.
Therefore we want to thank the members of the Steering and Program Committees
and the external referees for their dedication and diligence in selecting the technical
presentations. The investment of their time and insight is very much appreciated. We
would like to express our sincere gratitude to Timo D. Hämäläinen and Heikki Orsila
for preparing the workshop proceedings, Stephen Wong for a successful publicity cam-
paign, Elena Moscu Panainte and Iosif Antochi for maintaining the Web site and paper
submission system, and Lidwina Tromp for her support in organizing the workshop.

We hope that the attendees enjoyed the SAMOS V workshop in all its aspects, in-
cluding many informal discussions and gatherings.

June 2005 Andy Pimentel
Stamatis Vassiliadis

Jarmo Takala

Organization

The SAMOS V workshop took place during July 18–20, 2005 at the Research and
Teaching Institute of East Aegean (INEAG) in Agios Konstantinos on the island of
Samos, Greece.

General Chair

Andy Pimentel University of Amsterdam, The Netherlands

Program Chair

Jarmo Takala Tampere University of Technology, Finland

Proceedings Chair

Timo D. Hämäläinen Tampere University of Technology, Finland

Publicity Chair

Stephen Wong Delft University of Technology, The Netherlands

Steering Committee

Shuvra Bhattacharyya University of Maryland, USA
Ed Deprettere Leiden University, The Netherlands
Patrice Quinton IRISA, France
Stamatis Vassiliadis Delft University of Technology, The Netherlands
Jürgen Teich University of Erlangen-Nuremberg, Germany

Program Committee

Koen Bertels Delft University of Technology, The Netherlands
Luigi Carro Universidade Federal do Rio Grande do Sul, Brazil
Nikitas Dimopoulos University of Victoria, Canada
Pedro Diniz University of Southern California, USA

VIII Organization

Gerhard Fettweis Technische Universität Dresden, Germany
Georgi Gaydadjiev Delft University of Technology, The Netherlands
John Glossner Sandbridge Technologies, USA
David Guevorkian Nokia Research Center, Finland
Wayne Luk Imperial College London, UK
Bernard Pottier Université de Bretagne Occidentale, France
Tanguy Risset IRISA/INRIA, France
Michael Schulte University of Wisconsin-Madison, USA
Dirk Stroobandt Ghent University, Belgium
Jarmo Takala Tampere University of Technology, Finland
Serge Vernalde IMEC, Belgium
Jens Peter Wittenburg Thomson Corporate Research, Germany

Local Organizers

Lidwina Tromp Delft University of Technology, The Netherlands
Yiasmin Kioulafa Research and Training Institute of East Aegean, Greece

Referees

Antochi, I.
Bhattacharyya, S.
Bertels, K.
Bertels, P.
Blem, E.
Brune, T.
Calderon, H.
Carro, L.
Chang, Z.
Cheung, R.
Christiaens, M.
Crisu, D.
de Langen, P.
Devos, H.
Dimond, R.
Dimopoulos, N.
Diniz, P.
Duarte, F.
Erbas, C.
Faes, P.
Fettweis, G.
Fidjeland, A.
Gaedke, K.

Galuzzi, C.
Gaydadjiev, G.
Gehrke, W.
Glossner, J.
Guevorkian, D.
Guzma, V.
Han, X.
Hannig, F.
Heikkinen, J.
Heirman, W.
Hur, J.Y.
Hämäläinen, P.
Hämäläinen, T.
Iancu, D.
Jackowski, E.
Janes, D.
Jinturkar, S.
Järvinen, T.
Kachris, C.
Kangas, T.
Keinert, J.
Koch, D.
Kropp, H.

Kuorilehto, M.
Kuzmanov, G.
Langemeyer, S.
Langerwerf, J.M.
Lee, D.U.
Lehtoranta, O.
Li, B.
Li, S.
Luk, W.
Mamidi, S.
Martin, B.
Matus, E.
Mhamdi, L.
Molnos, A.
Moscu Panainte, E.
Moudgill, M.
Nacer, G.
Narkhede, P.
Orsila, H.
Pieper, S.
Pimentel, A.
Polstra, S.
Pottier, B.

Organization IX

Pourebrahimi, B.
Punkka, K.
Putzke-Röming, W.
Quinton, P.
Reuter, C.
Rissa, T.
Robelly, P.
Salmela, P.
Salminen, E.
Schulte, M.
Sedcole, P.

Senthilvelan, M.
Silvén, O.
Sima, M.
Smailbegovic, F.
Sourdis, I.
Stanek, Z.
Streichert, T.
Stroobandt, D.
Strydis, C.
Takala, J.
Teich, J.

Tsen, C.
Wang, L.-K.
Vassiliadis, S.
Vayá, G.P.
Winter, M.
Wittenburg, J.
Yli-Pietilä, T.
Yusuf, S.
Yuwono, I.

Table of Contents

Keynote

Platform Thinking in Embedded Systems
Bob Iannucci . 1

Reconfigurable System Design and Implementations

Interprocedural Optimization for Dynamic Hardware Configurations
Elena Moscu Panainte, Koen Bertels, Stamatis Vassiliadis 2

Reconfigurable Embedded Systems: An Application-Oriented Perspective on
Architectures and Design Techniques

M. Glesner, H. Hinkelmann, T. Hollstein, L.S. Indrusiak, T. Murgan,
A.M. Obeid, M. Petrov, T. Pionteck, P. Zipf . 12

Reconfigurable Multiple Operation Array
Humberto Calderon, Stamatis Vassiliadis . 22

RAPANUI: Rapid Prototyping for Media Processor Architecture Exploration
Guillermo Payá Vayá, Javier Martı́n Langerwerf, Peter Pirsch 32

Data-Driven Regular Reconfigurable Arrays: Design Space Exploration and
Mapping

Ricardo Ferreira, João M.P. Cardoso, Andre Toledo, Horácio C. Neto 41

Automatic FIR Filter Generation for FPGAs
Holger Ruckdeschel, Hritam Dutta, Frank Hannig, Jürgen Teich 51

Two-Dimensional Fast Cosine Transform for Vector-STA Architectures
J.P. Robelly, A. Lehmann, G. Fettweis . 62

Configurable Computing for High-Security/High-Performance Ambient
Systems

Guy Gogniat, Wayne Burleson, Lilian Bossuet . 72

FPL-3E: Towards Language Support for Reconfigurable Packet Processing
Mihai Lucian Cristea, Claudiu Zissulescu, Ed Deprettere, Herbert Bos 82

XII Table of Contents

Processor Architectures, Design and Simulation

Flux Caches: What Are They and Are They Useful?
Georgi N. Gaydadjiev, Stamatis Vassiliadis . 93

First-Level Instruction Cache Design for Reducing Dynamic Energy
Consumption

Cheol Hong Kim, Sunghoon Shim, Jong Wook Kwak, Sung Woo Chung,
Chu Shik Jhon . 103

A Novel JAVA Processor for Embedded Devices
Yiyu Tan, Chihang Yau, Kaiman Lo, Paklun Mok, Anthony S. Fong 112

Formal Specification of a Protocol Processor
Tomi Westerlund, Juha Plosila . 122

Tuning a Protocol Processor Architecture Towards DSP Operations
Jani Paakkulainen, Seppo Virtanen, Jouni Isoaho . 132

Observations on Power-Efficiency Trends in Mobile Communication Devices
Olli Silvén, Kari Jyrkkä . 142

CORDIC-Augmented Sandbridge Processor for Channel Equalization
Mihai Sima, John Glossner, Daniel Iancu, Hua Ye, Andrei Iancu,
A. Joseph Hoane . 152

Power-Aware Branch Logic: A Hardware Based Technique for Filtering
Access to Branch Logic

Sunghoon Shim, Jong Wook Kwak, Cheol Hong Kim, Sung Tae Jhang,
Chu Shik Jhon . 162

Exploiting Intra-function Correlation with the Global History Stack
Fei Gao, Suleyman Sair . 172

Power Efficient Instruction Caches for Embedded Systems
Dinesh C. Suresh, Walid A. Najjar, Jun Yang . 182

Micro-architecture Performance Estimation by Formula
Lucanus J. Simonson, Lei He . 192

Offline Phase Analysis and Optimization for Multi-configuration Processors
Frederik Vandeputte, Lieven Eeckhout, Koen De Bosschere 202

Hardware Cost Estimation for Application-Specific Processor Design
Teemu Pitkänen, Tommi Rantanen, Andrea Cilio, Jarmo Takala 212

.

Table of Contents XIII

Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined
Architectures

Stefan Farfeleder, Andreas Krall, Nigel Horspool . 222

Generating Stream Based Code from Plain C
Marcel Beemster, Hans van Someren, Liam Fitzpatrick, Ruben van Royen . . 232

Fast Real-Time Job Selection with Resource Constraints Under Earliest
Deadline First

Sangchul Han, Moonju Park, Yookun Cho . 242

A Programming Model for an Embedded Media Processing Architecture
Dan Zhang, Zeng-Zhi Li, Hong Song, Long Liu . 251

Automatic ADL-Based Assembler Generation for ASIP Programming Support
Leonardo Taglietti, Jose O. Carlomagno Filho, Daniel C. Casarotto,
Olinto J.V. Furtado, Luiz C.V. dos Santos . 262

Sandbridge Software Tools
John Glossner, Sean Dorward, Sanjay Jinturkar, Mayan Moudgill,
Erdem Hokenek, Michael Schulte, Stamatis Vassiliadis 269

Architectures and Implementations

A Hardware Accelerator for Controlling Access to Multiple-Unit Resources
in Safety/Time-Critical Systems

Philippe Marchand, Purnendu Sinha . 279

Pattern Matching Acceleration for Network Intrusion Detection Systems
Sunil Kim . 289

Real-Time Stereo Vision on a Reconfigurable System
SungHwan Lee, Jongsu Yi, JunSeong Kim . 299

Application of Very Fast Simulated Reannealing (VFSR) to Low Power Design
Ali Manzak, Huseyin Goksu . 308

Compressed Swapping for NAND Flash Memory Based Embedded Systems
Sangduck Park, Hyunjin Lim, Hoseok Chang, Wonyong Sung 314

A Radix-8 Multiplier Design and Its Extension for Efficient Implementation
of Imaging Algorithms

David Guevorkian, Petri Liuha, Aki Launiainen, Konsta Punkka,
Ville Lappalainen . 324

XIV Table of Contents

A Scalable Embedded JPEG2000 Architecture
Chunhui Zhang, Yun Long, Fadi Kurdahi . 334

A Routing Paradigm with Novel Resources Estimation and Routability
Models for X-Architecture Based Physical Design

Yu Hu, Tong Jing, Xianlong Hong, Xiaodong Hu, Guiying Yan 344

Benchmarking Mesh and Hierarchical Bus Networks in System-on-Chip
Context

Erno Salminen, Tero Kangas, Jouni Riihimäki, Vesa Lahtinen,
Kimmo Kuusilinna, Timo D. Hämäläinen . 354

DDM-CMP: Data-Driven Multithreading on a Chip Multiprocessor
Kyriakos Stavrou, Paraskevas Evripidou, Pedro Trancoso 364

System Level Design, Modeling and Simulation

Modeling NoC Architectures by Means of Deterministic and Stochastic Petri
Nets

H. Blume, T. von Sydow, D. Becker, T.G. Noll . 374

High Abstraction Level Design and Implementation Framework for Wireless
Sensor Networks

Mauri Kuorilehto, Mikko Kohvakka, Marko Hännikäinen,
Timo D. Hämäläinen . 384

The ODYSSEY Tool-Set for System-Level Synthesis of Object-Oriented
Models

Maziar Goudarzi, Shaahin Hessabi . 394

Design and Implementation of a WLAN Terminal Using UML 2.0 Based
Design Flow

Petri Kukkala, Marko Hännikäinen, Timo D. Hämäläinen 404

Rapid Implementation and Optimisation of DSP Systems on SoPC
Heterogeneous Platforms

J. McAllister, R. Woods, D. Reilly, S. Fischaber, R. Hasson 414

DVB-DSNG Modem High Level Synthesis in an Optimized Latency
Insensitive System Context

P. Bomel, N. Abdelli, E. Martin, A.-M. Fouilliart, E. Boutillon, P. Kajfasz . . 424

SystemQ: A Queuing-Based Approach to Architecture Performance
Evaluation with SystemC

Sören Sonntag, Matthias Gries, Christian Sauer . 434

Table of Contents XV

Moving Up to the Modeling Level for the Transformation of Data Structures
in Embedded Multimedia Applications

Marijn Temmerman, Edgar G. Daylight, Francky Catthoor,
Serge Demeyer, Tom Dhaene . 445

A Case for Visualization-Integrated System-Level Design Space Exploration
Andy D. Pimentel . 455

Mixed Virtual/Real Prototypes for Incremental System Design – A Proof of
Concept

Stefan Eilers, C. Müller-Schloer . 465

Author Index . 475

Platform Thinking in Embedded Systems

Bob Iannucci

Nokia Research Center,
Itämerenkatu 11-13, 00180 Helsinki, Finland

Abstract. Modern embedded systems are built from microprocessors, domain-
specific hardware blocks, communication means, application-specific sensor/ac-
tuators and as simple as possible user interface, which hides the embedded com-
plexity. The design of embedded systems is typically done in an integrated way
with strong dependencies between these building block elements and between
different parts of the system. This talk focuses on how platform thinking and en-
gineering can be applied to increasingly complex embedded systems and what
impacts that will have on the design and architectures. Platform engineering in
embedded systems may sound contradictory, but in practice will introduce mod-
ularity and stable interfaces. New system-level architectures for hardware, mid-
dleware architectures, and certifiable operating system micro-kernels are needed
to raise the abstraction level and productivity of design. As an example I will go
through the definitions of some modules in a mobile device and the requirements
for their interfaces. I will describe the additional design steps, new formal meth-
ods and system-level tasks that are needed in the platform approach. Finally, I
will review the Advanced Research and Technology for Embedded and Intelli-
gent Systems (ARTEMIS) technology platform in EU 7th Framework Program,
which is bringing together industrial and academic groups to create coherent and
integrated European research in the domain of embedded systems.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, p. 1, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Interprocedural Optimization for Dynamic
Hardware Configurations

Elena Moscu Panainte, Koen Bertels, and Stamatis Vassiliadis

Computer Engineering Lab,
Delft University of Technology, The Netherlands

{E.Panainte, K.Bertels, S.Vassiliadis}@et.tudelft.nl

Abstract. Little research in compiler optimizations has been undertaken to elim-
inate or diminish the negative influence on performance of the huge reconfigura-
tion latency of the available FPGA platforms. In this paper, we propose an in-
terprocedural optimization that minimizes the number of executed hardware con-
figuration instructions taking into account constraints such as the ”FPGA-area
placement conflicts” between the available hardware configurations. The pro-
posed algorithm allows the anticipation of hardware configuration instructions
up to the application’s main procedure. The presented results show that our opti-
mization produces a reduction of up to 3 - 5 order of magnitude of the number of
executed hardware configuration instructions.

1 Introduction

The combination of a general purpose processor (GPP) and a Field Programmable Gate
Array (FPGA) is becoming increasingly popular (e.g. [1], [2], [3], [4], [5] and [6]). Re-
configurable computing (RC) is a new style of computer architecture which allows the
designer to combine the advantages of both hardware (speed) and software (flexibil-
ity). However, an important drawback of the RC paradigm is the huge reconfiguration
latency of the actual FPGA platforms. As presented in [7], the potential speedup of
the kernel hardware executions can be completely wasted by the repetitive hardware
configurations that produce a performance decrease of up to 2 order of magnitude.

When targeting reconfigurable architectures, the compiler should be aware of the
competition for the reconfigurable hardware resources (FPGA area) between multiple
hardware operations during the application execution time. A new type of conflict -
called in this paper ”FPGA area placement conflict” - emerges between two hardware
configurations that cannot coexist together on the target FPGA.

In this paper, we propose an interprocedural optimization that anticipates hardware
configuration instructions up to the application’s main procedure. The optimization
takes into account constraints such as the ”FPGA-area placement conflicts” between
the available hardware configurations. The presented results show that a reduction of
up to 3 - 5 order of magnitude of the number of executed hardware configuration in-
structions is expected for MPEG2 and M-JPEG multimedia applications.

This paper is organized as follows. Section 2 presents background information and
related work for compiler optimizations targeting dynamic hardware configuration in-

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 2–11, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Interprocedural Optimization for Dynamic Hardware Configurations 3

structions, followed by a motivational example in Section 3. The proposed interproce-
dural optimization algorithm is introduced in Section 4. Experimental results for two
multimedia applications are provided in Section 5, and Section 6 presents the conclud-
ing remarks.

2 Background and Related Work

In this paper, we assume the Molen programming paradigm ([8], [9])which is a sequen-
tial consistency paradigm for programming Field-Programmable Custom Computing
Machines(FCCMs) possibly including a general purpose computational engine(s). The
paradigm allows for parallel and concurrent hardware execution and is intended (cur-
rently) for single program execution. It requires only a one time architectural extension
of few instructions to provide a large user reconfigurable operation space. The added
instructions include SET < address > for reconfigurable hardware configuration and
EXECUTE < address > for controlling the executions of the operations on the recon-
figurable hardware. In addition, two MOVE instructions for passing values to and from
the GPP register file and the reconfigurable hardware are required.

In order to achieve significant performance improvement for real applications, more
operations are usually executed on the reconfigurable hardware. As the available area of
the reconfigurable platforms is limited, the coexistence of all hardware configurations
on the FPGA for all application execution time may be restricted, resulting in ”FPGA-
area placement conflicts”. Two hardware operations have an ”FPGA-area placement
conflict” (or just conflict in the rest of the paper) if i) their combined reconfigurable
hardware area is larger than the total FPGA area or ii) the intersection of their hardware
areas is not empty.

Several aproaches have been proposed for reducing the impact of the reconfigura-
tion latency on performance. A compiler approach that considers the restricted case
of two consecutive and non-conflicting hardware operations is presented in [10]. In
this approach, the hardware execution of the first operation is scheduled in parallel
with the hardware configuration of the second operation. Our approach is more general
as it performs scheduling for any number of hardware operations at procedural level
and not only for two consecutive hardware operations. The performance gain produced
by our scheduling algorithm results from reducing the number of performed hardware
configurations. In [11], the reconfiguration overhead is reduced by using manual inter-
procedural optimizations such as localizing memory accesses, partial hardware reuse
and pipeling. Our approach is different as the optimization is automatically applied in
the compilation phase and it minimizes the number of performed hardware configura-
tions without specific information about the target FPGA and hardware operations. The
instruction scheduling approach presented in [12] uses data-flow analyses and profile
information for reducing the number of executed hardware configurations. In this paper,
we extend this approach at interprocedural level, taking into account all procedures of
the target applications. As a consequence, the impact of the proposed optimization is
significantly increased as presented in Section 5.

4 E.M. Panainte, K. Bertels, and S. Vassiliadis

3 Motivation and Contribution

In order to illustrate the goals and the main features of the proposed interprocedural op-
timization, we present in Fig. 1 a motivational real example. The presented subgraph is
included in the call graph of the MPEG2 encoder multimedia benchmark where an edge
< pi, p j > represents a call from procedure pi to procedure p j. We consider that the
procedures SAD, DCT and IDCT are executed on the reconfigurable hardware and that
initially the hardware configuration (a SET instruction) is performed before each hard-
ware execution (an EXEC instruction). One first observation is that the configuration
for the SAD operation can be safely anticipated in the motion estimation procedure.
This anticipation will significantly reduce the number of performed hardware configu-
rations as it will not be performed for each macroblock but only for each frame of the
input sequence. This observation also holds for the DCT configuration in transform
and the IDCT configuration in itransform. Moreover, the SAD configuration from mo-
tion estimation can be moved upwards in the putseq procedure, immediately preced-
ing the call site of motion estimation in putseq. Additionally, it can be noticed that the
propagation of the SAD configuration from putseq to the main procedure depends on
the FPGA area allocation for SAD, DCT and IDCT. When the SAD operation does not
have any FPGA-area placement conflict with the other two hardware operations DCT
and IDCT, its configuration can be safely performed only once, at the entry point in the
main procedure.

The contribution of this paper includes the following. The optimization proposed
in this paper allows to anticipate the hardware configurations at interprocedural level,
while prior work was limited to optimizations at procedural level (intraprocedural).

field_estimate frame_estimate

motion_estimation transform itransform

dist1

sad

main

putseq

full_search

field_ME frame_ME dct idct

//for each macroblock

// for each frame

Fig. 1. Motivational example for MPEG2 encoder

Interprocedural Optimization for Dynamic Hardware Configurations 5

Secondly, although the interprocedural optimizations are considered to provide little
benefit and significantly increase the compiler complexity, we show that our optimiza-
tion significantly reduces the number of hardware configurations (a major drawback of
the current FPGAs).

4 Interprocedural Optimization for Dynamic Hardware
Configurations

The main goal of the proposed interprocedural optimization presented in this section is
to anticipate the dynamic hardware configuration instructions taking into account the
hardware conflicts between the available hardware operations. As such hardware con-
figuration does not cause an exception, a speculative algorithm is used for anticipating
the hardware configuration instructions. The interprocedural optimization consists of
three steps. In the first step, the program’s call graph is constructed based on an inter-
procedural control-flow analysis. Next, the set of live hardware configurations for each
procedure is determined using an interprocedural data-flow analysis. Finally, the hard-
ware configuration instructions are anticipated in the call graph taking into account the
available conflicting operations.

4.1 Step 1: Interprocedural Control-Flow Analysis for Dynamic Hardware
Configurations

Starting point of the proposed optimization is the construction of the program’s call
graph. Given a program P consisting of a set of procedures < p1, p2, ..., pn >, the pro-
gram’s call graph of P is the graph G =< N,E,r > with the node set N = {p1, p2, ..., pn},
the set E ⊆N x N, where < pi, p j >∈ E denotes a call site in pi from which p j is called,
and the distinguished entry node r ∈ N representing the main entry procedure of the
program . An example of a real call (sub)graph is presented in Fig. 1.

The construction of the call graph for a program written in C is straightforward as
there are no higher-order procedures in the C programming language. For this purpose,
we used the sbrowser cg library included in the suifbrowser package available in the
SUIF environment. The constructed call graph is the input of the optimization algo-
rithm presented in Table 1. As explained in the next subsection, the constructed graph
is required to be a DAG (Directed Acyclic Graph) (see Table 1, step 1).

4.2 Step 2: Interprocedural Data-Flow Analysis for Dynamic Hardware
Configurations

The goal of the interprocedural data-flow analysis is to determine what hardware oper-
ation can modify the FPGA configuration as a side effect of a procedure call. We define
LRMOD(p) (Local Reconfigurable hardware MODification) as the set of hardware op-
erations associated with a procedure p. In order to simplify this discussion, we assume
that there is at most one hardware operation that can be associated with a procedure.
More specifically, op1 ∈ LRMOD(p) if there is a pragma annotation that indicates that
procedure p is executed on the reconfigurable hardware and its associated hardware op-
eration is named op1. RMOD(p), Reconfigurable hardware MODification, represents

6 E.M. Panainte, K. Bertels, and S. Vassiliadis

Table 1. The interprocedural optimization algorithm for hardware configuration instructions

Interprocedural Optimization Algorithm

INPUT: Call graph G =< N,S,r >, hardware conflicts f : HWxHW−> {0,1}
OUTPUT: Insertion edges L

1. //Verify assumptions for G
check if G is DAG

2. //RMOD computation
traverse G in reverse topological order

compute for each procedure p
RMOD(p) = LRMOD(p)

⋃
s∈Succ(p)

RMOD(s)

//Compute CF
for each procedure p

CF(p) = {op1 ∈ RMOD(p)|∃op2 ∈ RMOD(p),op1 � op2}
3. //Compute the insertion edges

L = /0
for each edge < pi, p j >

for each op ∈ [RMOD(p j)−CF(p j)]∩CF(pi)
L = L∪< pi, p j,op >

for each op ∈ [RMOD(r)−CF(r)]
L = L∪< r,r,op >

the set of all hardware operations that may be executed by an invocation of procedure
p and it can be computed using the following data-flow equation:

RMOD(p) = LRMOD(p)
⋃

s∈Succ(p)

RMOD(s) (1)

A hardware operation op may be performed by calling procedure p if op is associ-
ated with procedure p (i.e. op ∈ LRMOD(p)) or if it can be performed by a procedure
that is called from procedure p. For an efficient computation, the RMOD values should
be computed in reverse topological order (i.e. reverse invocation order) when the call
graph does not contain cycles (see step 2 from Table 1). The RMOD values for the
example presented in Fig. 1 are shown in Fig. 2. For the basic blocks where LRMOD
values are missing, they are implicitly assumed as /0. We notice that by calling putseq
procedures, all three hardware operations sad,dct and idct may be executed on the
reconfigurable hardware.

Due to the increasing complexity of the interprocedural data-flow analysis, this step
is performed only when the call graph G satisfies the following criteria. We assume that
there are no indirect procedure calls (using pointer to functions). These limitations can
be eliminated by considering all candidate set of functions that have the same prototype.
Another limitation concerns the data-flow equations for procedures with recursive pro-
cedure calls (when the call graph contains cycles). In this case, the strongly connected

Interprocedural Optimization for Dynamic Hardware Configurations 7

motion_estimation transform itransform

field_estimate frame_estimate

field_ME

dist1

sad

main

putseq

full_search

frame_ME dct idct

//for each macroblock

// for each frame

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {dct}

RMOD = {dct}

RMOD = {idct}

RMOD = {idct}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad, dct, idct}

RMOD = {sad, dct, idct}

LRMOD = {sad}

LRMOD = {dct} LRMOD = {idct}

Fig. 2. Interprocedural data-flow analysis for MPEG2 encoder

components (scc) should be computed and the data-flow equations should be collapsed
for each scc into a single equation. The proposed optimization is applied only when the
call graph is a DAG.

4.3 Step 3: Interprocedural Scheduling for Dynamic Hardware Configuration
Instructions

In this step, the hardware configuration instructions are anticipated in the call graph
taking into account the possible hardware conflicts discovered in the previous step. In
the first phase, the set of conflicting operations CF(p) is computed for each procedure
included in the call graph based on the RMOD values as follows:

CF(p) = {op1 ∈ RMOD(p)|∃op2 ∈ RMOD(p),op1 � op2} (2)

Next, for each edge of the call graph < pi, p j >, if there is an hardware operation
op which does not have conflicts in p j (op �∈ CF(p j)) but it has conflicts in the call-
ing function pi (op ∈ CF(pi)), then a SET op instruction is inserted at all call sites
of p j from pi. Finally, for all non-conflicting operations of the entry node of the call
graph G (i.e. RMOD(r)−CF(r)), the corresponding SET instructions are inserted at
the beginning of the r procedure (see step 3 from Table 1).

The CF values for the example presented in Fig. 1 are shown in Fig. 3, for the case
where all considered hardware operations conflict with each other. For the basic blocks
where CF values are missing they are implicitly assumed as /0. It can be noticed that
the hardware configuration instructions cannot simultaneously propagate upwards of
putseq procedure due to the considered hardware conflicts.

8 E.M. Panainte, K. Bertels, and S. Vassiliadis

motion_estimation transform itransform

field_estimate frame_estimate

field_ME

sad dct

sad idct

dct idct

dist1

sad

main

putseq

full_search

frame_ME dct idct

//for each macroblock

// for each frame

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {dct}

RMOD = {dct}

RMOD = {idct}

RMOD = {idct}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad, dct, idct}

RMOD = {sad, dct, idct}

LRMOD = {sad}

LRMOD = {dct} LRMOD = {idct}

CF = {sad, dct, idct}

CF = {sad, dct, idct}

Fig. 3. Interprocedural optimization for MPEG2 encoder

5 Results

In order to present the results of our algorithm with respect to the number of performed
hardware configurations, we first describe the experimental setup, including the target
architecture and applications. Next, we concentrate on the impact of the optimization
on the number of hardware configurations. Finally we present several important ob-
servations about the presented results and possible improvements of the optimization
algorithm.

5.1 Experimental Setup

The application domain of these experiments is video data compressing. We consider
two real-life applications namely Motion JPEG (M-JPEG) encoder which compresses
sequences of video frames applying JPEG compression for each frame and the MPEG2
encoder multimedia benchmark. The input test sequence for M-JPEG contains 30 color
frames from ”tennis” in YUV format with a resolution of 256x256 pixels. For MPEG2
encoder, we used the standard test frames included in the benchmark. The operations
considered for execution on the FPGA for the M-JPEG applications are DCT (2-D
Discrete Cosine Transform), Quantization and VLC (Variable Length Coding), while
for MPEG2 the candidates are SAD (Sum of Absolute-Difference), DCT and IDCT
(inverse DCT).

The described optimization algorithm has been implemented in the Molen com-
piler, more specifically in the SUIF compiler frontend. We used the link suif pass that
combines all input SUIF files, making their global symbol tables consistent and the
sbrowser cg library included in the suifbrowser package available in the SUIF environ-

Interprocedural Optimization for Dynamic Hardware Configurations 9

ment for the construction of the interprocedural call graph. The call graph for the M-
JPEG encoder includes 47 nodes (i.e. the applications contains 47 procedures), while
the call graph for MPEG2 encoder (a subgraph is presented in Fig. 1) has 111 nodes.

5.2 Interprocedural Optimization Results

The aim of the proposed optimization is to significantly reduce the number of the
executed SET instructions for each hardware operation. In the results presented in
the rest of this section, we compare the number of executed hardware configurations
with and without our optimization (denoted as SET OPT and respectively NO SET OP
cases).

M-JPEG Encoder Results. Table 2 shows the number of hardware configurations re-
quired in the M-JPEG encoder multimedia application for the SET OPT (columns 3-7)
and NO SET OPT (column 2) cases. When measuring the effects of the proposed opti-
mization (Table 2, columns 3-7), we consider different possible conflicts between DCT,
Quant and VLC; in the best case there is no conflict (column 3), while in the worst case
all hardware operations are in conflict with each other (column 7). The first observa-
tion is that, for the no conflict case, our optimization algorithm eliminates all hardware
configurations and introduces at the application entry point only one hardware con-
figuration for each hardware operation; thus, all the hardware configurations but one
from the initial application (Table 2, column 2) are redundant. A second observation
is that our optimization reduces the number of DCT hardware configurations with at
least 75 % for all conflict cases. Finally, we notice that even for the worst case (Table 2,
columns 7), the proposed optimization reduces the number of executed SET instruc-
tions for DCT configuration by 4x. This reduction is due to the anticipation of DCT
hardware configuration at the macroblock level, while the configurations for Quant and
VLC are already performed at this level and cannot be anticipated upwards due to the
hardware conflicts.

MPEG2 Encoder Results. The number of hardware configurations for the considered
functions in the MPEG2 encoder benchmark is presented in Table 5.2. One important
observation is the 3-5 order of magnitude decrease of the number of hardware configu-
rations produced by our optimization algorithm for all conflict cases. The main cause of
this decrease is the particular features of the MPEG2 algorithm where the SAD, DCT

Table 2. The impact of the interprocedural optimization on the number of required hardware
configurations in M-JPEG encoder

Initial With interprocedural SET optimization
HW op [# SETs] No DCT Quant DCT VLC Quant VLC DCT Quant VLC

conflict conflict conflict conflict conflict

DCT 61440 1 15360 15360 1 15360
Quant 15360 1 15360 1 15360 15360
VLC 15360 1 1 15360 15360 15360

10 E.M. Panainte, K. Bertels, and S. Vassiliadis

Table 3. The impact of the interprocedural optimization on the number of required hardware
configurations in MPEG2 encoder

Initial With interprocedural SET optimization
HW op [# SETs] No SAD DCT SAD IDCT DCT IDCT SAD DCT IDCT

conflict conflict conflict conflict conflict

SAD 117084 1 3 3 1 3
DCT 1152 1 3 1 3 3
IDCT 1152 1 1 3 3 3

and IDCT hardware configurations can be anticipated out to the frame level rather than
macroblock level (see Fig. 3). In consequence, due to our optimization algorithm, the
hardware configuration is transformed from a major bottleneck in a negligible factor on
performance.

In order to conclude this section, four points should be noticed regarding the pre-
sented results and optimization. Firstly, the reduction of the number of hardware con-
figurations depends on the characteristics of the target applications. As previously pre-
sented, the impact of our optimizations for MPEG2 encoder is substantial, while for
other applications (e.g. M-JPEG) it depends on the possible hardware conflicts between
operations. Second, it should be mentioned that this optimization can also increase
the number of hardware configurations, e.g. when the considered procedure associated
to the hardware operations have multiple call sites and conflicting operations. Flow-
sensitive data-flow analysis and profile information can be used to prevent this situation.
Nevertheless, taking into account that the hardware configuration can be performed in
parallel with the execution of other instructions on the GPP, the reconfiguration latency
may be (partially) hidden. The final major point is that a significant reduction of the
number of executed hardware configurations is directly reflected in a significant reduc-
tion in power consumption, as the FPGA reconfigurations is a main source of power
consumption.

6 Conclusions

In this paper, we have proposed an interprocedural optimization algorithm for hardware
configuration instructions. This algorithm takes into account specific features of the
target applications and of the reconfigurable hardware such as the ”FPGA area place-
ment conflicts”. It allows the anticipation of hardware configuration instructions up
to the application’s main procedure. The presented results show that our optimization
produces a reduction of up to 3 - 5 order of magnitude of the number of executed
hardware configuration instructions for the MPEG2 and M-JPEG multimedia bench-
marks.

Future research will focus on compiler optimizations to allow for concurrent execu-
tion. We also intend to extend the compiler to provide information for an efficient FPGA
area allocation of the different hardware operations in order to eliminate the FPGA-area
placement conflicts.

Interprocedural Optimization for Dynamic Hardware Configurations 11

References

1. Campi, F., Cappelli, A., Guerrieri, R., Lodi, A., Toma, M., Rosa, A.L., Lavagno, L.,
Passerone, C.: A reconfigurable processor architecture and software development environ-
ment for embedded systems. In: Proceedings of Parallel and Distributed Processing Sympo-
sium, Nice, France (2003) 171–178

2. Sima, M., Vassiliadis, S., S.Cotofana, van Eijndhoven, J., Vissers, K.: Field-Programmable
Custom Computing Machines - A Taxonomy. In: 12th International Conference on Field
Programmable Logic and Applications (FPL). Volume 2438., Montpellier, France, Springer-
Verlag Lecture Notes in Computer Science (LNCS) (2002) 79–88

3. Becker, J.: Configurable Systems-on-Chip : Commercial and Academic Approaches. In:
Proc. of 9th IEEE Int. Conf. on Electronic Circuits and Systems - ICECS 2002, Dubrovnik,
Croatia (2002) 809–812

4. Gokhale, M.B., Stone, J.M.: Napa C: Compiling for a Hybrid RISC/FPGA Architecture. In:
Proceedings of FCCM’98, Napa Valley, CA (1998) 126–137

5. Rosa, A.L., Lavagno, L., Passerone, C.: Hardware/Software Design Space Exploration for a
Reconfigurable Processor. In: Proc. of DATE 2003, Munich, Germany (2003) 570–575

6. Ye, Z.A., Shenoy, N., Banerjee, P.: A C Compiler for a Processor with a Reconfigurable
Functional Unit. In: ACM/SIGDA Symposium on FPGAs, Monterey, California, USA
(2000) 95–100

7. Moscu Panainte, E., Bertels, K., Vassiliadis, S.: Dynamic hardware reconfigurations: Per-
formance impact on mpeg2. In: Proceedings of SAMOS. Volume 3133., Samos, Greece,
Springer-Verlag Lecture Notes in Computer Science (LNCS) (2004) 284–292

8. Vassiliadis, S., Gaydadjiev, G., Bertels, K., Moscu Panainte, E.: The Molen Programming
Paradigm. In: Proceedings of the Third International Workshop on Systems, Architectures,
Modeling, and Simulation, Samos, Greece (2003) 1–7

9. Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Moscu Panainte, E.:
The Molen Polymorphic Processor. IEEE Transactions on Computers 53(11) (2004) 1363–
1375

10. Tang, X., Aalsma, M., Jou, R.: A Compiler Directed Approach to Hiding Confguration
Latency in Chameleon Processors. In: FPL. Volume 1896., Villach, Austria, Springer-Verlag
Lecture Notes in Computer Science (LNCS) (2000) 29–38

11. Mei, B., Vernalde, S., De Man, H., Lauwereins, R.: Design and Optimization of Dynami-
cally Reconfigurable Embedded Systems. In: Proceedings of Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, Nevada, USA (2001) 78–84

12. Moscu Panainte, E., Bertels, K., Vassiliadis, S.: Instruction Scheduling for Dynamic Hard-
ware Configurations. In: Proceedings of Design, Automation and Test in Europe 2005 (DATE
05), Munich, Germany (2005) 100–105

Reconfigurable Embedded Systems:
An Application-Oriented Perspective on

Architectures and Design Techniques

M. Glesner, H. Hinkelmann, T. Hollstein, L.S. Indrusiak, T. Murgan,
A.M. Obeid, M. Petrov, T. Pionteck, and P. Zipf

Institute of Microelectronic Systems, Darmstadt University of Technology,
D-64283 Karlstr. 15, Darmstadt, Germany

glesner@mes.tu-darmstadt.de

Abstract. Reconfiguration emerged as a key concept to cope with constraints
regarding performance, power consumption, design time and costs posed by the
growing diversity of application domains. This work gives an overview of several
relevant reconfigurable architectures and design techniques developed by the au-
thors in different projects and emphasizes the effective role of reconfigurability
in embedded system design.

1 Introduction

Embedded systems have specific requirements and perform tasks, which must run gen-
erally with power consumption and real-time operation constraints while keeping de-
sign and maintenance costs low. By utilizing run-time adaptable hardware, reconfig-
urable architectures offer a trade-off between the performance of ASICs and the flexi-
bility of less power efficient general purpose processor.

Reconfigurability offers several key advantages. Functionality on demand: hard-
ware functionality can be changed or optimized after system deployment. Accelera-
tion on demand: certain applications can be accelerated by customizing data-paths and
operators on a massive parallel scale. Shorter time-to-market: hardware configuration
and software can be developed in parallel, which implies great flexibility to late design
changes and bug fixes. Extended product life-cycles: as flexibility is preserved, manu-
factured devices can be adapted to standard or customer specifications not considered at
design time. Low design & maintenance costs: functionality adaptation (specialization,
upgrade, acceleration), reduced development time and extended life-cycle imply low
design and maintenance costs, the most salient feature of reconfigurable architectures.

Based on a set of industry and academia relevant applications, this paper gives an
overview of reconfigurable architectures for embedded systems and the design thereof.
The paper tries by no means to be exhaustive as the main focus lies on architectures and
methodologies developed by the authors in different projects. The paper is organized as
follows: section 2 presents three case studies applying reconfigurable architectures for
multi-functional support, dynamic power-performance management, and DSP-specific
architectural optimization. Section 3 discusses system integration issues for reconfig-
urable systems at different abstraction levels. Section 4 describes methodologies for re-
configurable systemsdesignandvalidation.Thepaperconcludeswith somefinal remarks.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 12–21, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reconfigurable Embedded Systems 13

2 Applications and Architectures

Functional Optimization and Multi-functional Support. Reconfigurable platforms
allow embedded devices to be upgraded, optimized or modified after deployment to fi-
nal protocol standards or to architectural and algorithmic solutions which were not even
considered at design time. In order to reduce design costs and risks, designers aiming
for an early presence on the market focus more and more on flexible architectural so-
lutions. A typical application scenario where the standardization process spans a long
period of time are optical transport networks (OTN). In order to reduce re-spin costs,
we proposed a multiple-core adaptive extension for overhead processing to a multi-rate
forward error correction code device developed by Lucent Technologies [1].

As represented in Fig. 1, a node processing block is built around the isolated Integer
Unit (IU) of the Leon2 processor. Incoming data blocks are sent to each node through
the Source Bus and a Dual-Port RAM. Similarly, after the data is processed, the nodes
send the resulting data packets through the Sink Bus. A run-time functional modifica-
tion is realized by using the double program memory of each Boot Bus Bridge (BBB),
as processor cores can switch between the two program memories. A system update im-
plies that modified code is loaded into the boot memory and afterwards into the BBB.
Multi-standard support can be implemented in a similar fashion. Additionally, the nodes
can also communicate via a Shared Memory and the isolated IUs can be extended with
dedicated or reconfigurable logic for performance improvement [1].

Dynamic Power-Performance Management.Architecture optimization for low-power
can be either static, assuming a worst case scenario at design-time, or dynamic, when
the architecture needs to be extended to support run-time reconfigurability. In our re-
search, we have chosen the Viterbi decoder as a case study, as it accounts for a signif-
icant percentage of the power consumption in digital receivers. The main contributor
is the survivor management block, whose power consumption increases linearly with
the length, which is a parameter of the design and directly affects the performance. By
dynamically adjusting this length according to the run-time variations in the channel
quality, significant power savings can be achieved.

Within the scope of our research we have developed an architecture for the trace-
back unit that allows its length to be adjusted dynamically [2], thus saving power by

Source Bus

Sink Bus

...
DMI

Leon PC

IMI

DPR

DPR

LDM

...
DMI

Leon PC

IMI

DPR

DPR

LDM

Reconfiguration
Signal

SMB

Shared
Memory

Shared Memory Bus
SMB

Boot Bus

BBBBBB

Boot
Memory

Reconfig.
Controller

Fig. 1. Multiple-Core Architecture for Overhead Processing

14 M. Glesner et al.

Branch
Metric
Unit

ACS 0

ACS 1

ACS 2

ACS 3

ACS 4

ACS 5

ACS 6

ACS 7

T
B

 S
ta

ge
 0

ACS Unit Adjustable Trace-Back Unit

T
B

 S
ta

ge
 0

T
B

 S
ta

ge
 0

T
B

 S
ta

ge
 1

5

Fig. 2. Viterbi Decoder with Adjustable Trace-Back

keeping only the active part on, together with an algorithm for determining the optimal
trace-back window length which ensures a target bit error rate of the decoded output. In
order to determine the BER experimentally as a function of different factors, a highly
parameterizable simulation chain has been created using SystemC. It allows a sweep
analysis of the BER as a function of two variables: trace-back window length and the
SNR of the channel. The architecture consisting out of Branch Metric Unit (BMU),
Add-Compare-Select (ACS), and Trace-Back (TB) Unit is depicted in Fig. 2, where the
trace-back has been pipelined into 16 stages [3]. When lower performance is required,
the unused stages are disabled, thus saving power. Determining the optimum length for
a given SNR and puncturing pattern is done externally by an embedded processor. We
applied the principle of dynamic power reduction to a state-parallel Viterbi decoder for
the IEEE 802.11a standard implemented in a 0.13um CMOS library and demonstrated
power savings of up to 62% [3].

Architectural Optimization for Specific DSP Applications. One of the main prob-
lems with reconfigurable solutions is the overhead area and power consumed by recon-
figuration resources. Reconfiguring vectors rather than bits and thus achieving notable
area savings, Coarse-Grained Reconfigurable Architectures (CGRA) have attracted lots
of attention in both research and industry communities. In order to achieve further sav-
ings in reconfiguration resources a pragmatic solution is to focus on the DSP algorithms
to be realized by the CGRA. By studying the data-flow graphs of these algorithms, com-
mon features can be extracted and specific design decisions can be taken, tailoring the
CGRA to the DSP applications of interest.

In the context of our research, we have studied several DSP algorithms including
filtering, FFT, DCT, and Viterbi decoding. We started out by studying their data flow
graphs, and their reported VLSI implementations. Thereafter, parameterizable VHDL
models were developed and tested [4, 5]. This paved the way for realizing a CGRA that
can efficiently solve these DSP algorithms.

Our approach (simplified in Fig. 3) is to use a Hybrid CGRA of processing elements
(PEs) of different types. Spreading the functionality on different types of PEs helps in
realizing a more area-efficient reconfigurable array, yet maintaining the required func-
tionality. Two types of logic and arithmetic PEs along with memory manipulations PE
are used. A configuration and operation controller orchestrates the operation and recon-
figurations of the Hybrid CGRA Block.

The issue of dynamic reconfiguration is an important one to address not only be-
cause of the advantages and opportunities that can be visited by having such a capability,

Reconfigurable Embedded Systems 15

Fig. 3. Hybrid Reconfigurable DSP Architecture

but moreover to facilitate the implementation of some techniques that require dynamic
reconfiguration of the data path on the fly, take the Radix 2 Single Delay Feedback ar-
chitecture (R2SDF) as an example [6]. To address this problem we propose to solve the
dynamic reconfiguration problem in two parts: locally and globally. Locally: all PEs
as well as interconnection resources are placed in sockets having a set of configuration
bits stored in local registers. Globally: the operation controller selects the configuration
of the PE from the set stored in the socket and the configuration controller updates the
local configuration bits in the sockets.

3 System Integration

Processor Integration of Reconfigurable Architectures. In a typical embedded sys-
tems scenario, a regular processor takes control over the system and the application,
while reconfigurable hardware is applied to accelerate certain computation-intensive
tasks. In such systems the question is how to couple processors and reconfigurable ar-
chitectures. A common classification is to distinguish between the direct integration of
a reconfigurable architecture into the data-path of a processor (i.e. as a reconfigurable
functional unit = RFU), its connection as a coprocessor or its attachment as a peripheral
device via an I/O bus. A description of advantages and disadvantages of each class can
be found in [7], as well as various references to architecture examples. RFUs represent
the tightest form of coupling and therefore reduce communication costs with the pro-
cessor to a minimum, making it possible to map efficiently even smallest tasks to the
RFU. However, as pointed out in [8], several drawbacks and severe integration prob-
lems have to be considered, e.g. the lack of a separate memory interface for the RFU
or pipeline conflicts that have to be solved at run-time. Contrary to this, coprocessors
and peripherals are easier to integrate and require less processor control, but communi-
cation costs are higher. Thus, they are better suited to execute larger tasks that can run
independently from the processor.

In [7] and [8] we propose a solution for integrating an RFU into a complex RISC
processor that combines advantages of all three integration possibilities and is shortly
presented in the following. The respective reconfigurable architecture has been devel-
oped during our research on reconfigurable computing systems for the MAC layer of

Operation controller

controller
Configuration

Configuration
memory

Sockets

Data busses

Processing Elements

16 M. Glesner et al.

+1

0 tbr
jmpa

call/branch
address

addressdata

Instruction-
cache

Fetch

f pc

d pcf inst

rs1 op2

ALU/
shift

result

mul/div

ytmp

wres

imm, tbr, wim,
psr

e pc

Y

regfile
res1

res2

m pc

w pc

e inst

m inst

w inst

Decode

Execute

Memory

Write
tbr, wim, psr

RFU

Configuration
Tables

Run/Configuration
Control

Configuration
Memory

Data
Memory

ex pc

jmpl address

address/data out
data in

Fig. 4. Pipeline of the LEON2 processor with integrated RFU

WLANs and is capable to perform error detection/correction and cryptographic oper-
ations. It has been integrated as an RFU into the 5-stage instruction pipeline of the
LEON2 processor, which had to be modified appropriately as shown in Fig. 4. To avoid
pipeline conflicts, additional hold signals have been inserted that enable the RFU and
the processor to coordinate and to stall each other on demand [8]. The instruction set
of the LEON2 has been extended by three RFU specific instructions: two for initiating
RFU operations (lasting one or multiple cycles) and one for reconfiguring the RFU.
Inside the RFU, these instructions are decoded and processed by a novel configuration
and run control unit [7]. It controls reconfiguration and data processing operations inde-
pendently from the processor, thus significantly reducing the related overhead. With the
help of several interacting configuration tables and a dedicated configuration memory,
it is possible to dynamically reconfigure the device every clock cycle. The RFU has
also been extended with a memory interface and dedicated control circuitry, allowing it
to efficiently process large data blocks while the processor can work in parallel on dif-
ferent tasks. Simulation and synthesis results prove our concept and show a significant
performance gain [8].

Reconfigurable Embedded Systems 17

NoC-Enabled System-Level Reconfiguration. System-on-Chip (SoC) integration of
multiple components, which are reconfigurable at IP block level (embedded FPGA or
processor cores), poses new challenges concerning system reconfigurability. In this con-
text, several scenarios can be assumed: reconfigurable SoC platforms used for customiz-
ing different product derivatives based on the same underlying SoC hardware (static
configuration, firmware updates reconfiguration); flexible hardware platforms perform-
ing several tasks in parallel with dynamic resource allocation (dynamic reconfiguration,
time-dependent task assignments). System-level reconfiguration can be understood as
the reconfiguration of the implemented functionality of one or multiple SoC IP cores
(FPGAs, processors). In many cases such a reconfiguration will end up in a modified
communication profile within the overall SoC on-chip communication. In order to be
able to provide the required communication flexibility, the on-chip interconnection ar-
chitecture must provide a dynamic backbone, which can provide the required com-
munication modes and sufficient bandwidth. Networks-on-Chip (NoCs) provide a new
interconnection paradigm: abstraction of the real communication architecture as NoC-
attached components can communicate by using virtual addresses. Several proposals
for SoC architectures have been presented:[9] (Philips), NOSTRUM [10], SOCBUS,
PROTEO, SPIN, HiNoC [11], to cite only a few.

Increased difficulties for clock distribution in large SoCs, imply the requirement
of asynchronous communication at the top level, which leads to the so-called Globally
Asynchronous and Locally Synchronous (GALS) design style.The proposed HiNoC[12]
system for on-chip communication supports those designs and offers support for dy-
namic system-level reconfiguration. Moreover, it provides both packet-based (best-effort)
and stream-based (with guaranteed Quality-of-Service) communication services.

In contrast to other approaches, HiNoC provides a top-level mesh-based topology
and on the second level within synchronous domains a fast FAT-tree based network
(two-level topology). An essential property, which makes HiNoC unique is the inherent
support of heterogenous topologies. By combining static and dynamic routing, dynam-
ically changing architectures can be realized.

Figure 5 illustrates two operational scenarios in one NoC-based system. In the first
scenario, processes P1 to P5 are running. In contrast to that, P4 and P5 are not running
in the second scenario. This could be because the task requiring those two processes has
finished. Since the associated hardware resources are unused, the network can be partly
shut down if the remaining links can fulfill the communication requirements of the sys-
tem in the new configuration. The right part of Fig. 5 depicts the architectural changes
to the system. The HiNoC Communication Architecture provides a time-division mul-
tiplex access scheme which is combined with a wormhole routing method (possibility

P1

P2

P3 P5

P4

P1

P2

P3

P6

P1

P2

P3

P6

Scenario 1 Scenario 2 with optional power save mode

Fig. 5. HiNoC: Operational Scenarios

18 M. Glesner et al.

of folding packets and streams). Connections with guaranteed bandwidth (QoS) are set
up by a connection request packet.

The main problem of data transfers between truly independent clock domains is the
possibility of metastability in the receiving flip-flops. To avoid metastability in such
asynchronous communication fast and robust synchronization techniques must be em-
ployed. In a conventional synchronous design, each bit of transferred data is assumed
to become stable long enough before the next clock edge. Data transfers can thus be
implemented by directly connecting the output of the sending module to the input reg-
isters of the receiving module. After the incoming data became stable, it is written into
the registers with the rising edge of the clock signal. In a globally asynchronous system,
there is no dependency of the clocking of an individual module on another. Because of
this missing dependency, no assumption can be made on the time difference between
the transition of an incoming data or control signal and the next local clock edge. If
both transitions appear at the receiving flip-flop within a time-frame small enough (in
terms of its setup and hold times), then the flip-flop can become metastable.

Several approaches for synchronization have been proposed which can be applied
to NoC switch communication, including FIFO buffers [13], self-synchronization [14],
or adaptations of clock stretching [15]. Our own experiments with NoC switch designs
indicate that it is possible to obtain save and efficient implementations [16] for the
asynchronous switch communication.

4 Methodologies for System Design and Validation

Reconfigurable systems inherit most of the design complexity of regular hardware/soft-
ware systems. Thus, the design methodologies for reconfigurable systems are also based
on model refinement across several abstraction layers. The added complexity of de-
signing and validating reconfiguration mechanisms is currently addressed in the lower
abstraction layers. For FPGA based systems, a common approach is the Modular De-
sign Flow, which advocates that different configurations should be designed separately
at RTL after an initial floor-plan budgeting [17]. While such low-level methods for re-
configuration are necessary, we advocate here a system-level view in order to actually
validate the benefits of reconfigurability within an application scenario. Such scenar-
ios are usually modeled as complex testbenches that are unpractical in RTL, and the
accurate modeling of their dynamic nature is particularly critical in the case of run-
time reconfiguration. Thus, designers must first design the system and its testbench
in a high abstraction level, in order to allow for design space exploration, and in a
second step the system must be designed in lower levels - logic or RTL - so that its
implementation-specific features can be defined. In order to validate the low-level im-
plementation model, its co-simulation with the high-level testbench (or at least part of
it) should be possible.

The approach presented here to cope with such demands is strongly based on the
actor-oriented design methodology presented by Lee et al [18]. We explore the concept
of actors to model both the reconfigurable systems and the application scenarios where
they are inserted, allowing for a well defined strategy for system modularization. Once
the actors are well defined, it is possible to refine each one of them individually towards

Reconfigurable Embedded Systems 19

implementation models in logical or RTL level. It is also possible to devise mechanisms
to allow the simulation of the implementation models with the remaining actors by
encapsulating them (together with their respective simulators, when possible) as actors.

As a case study, we applied such approach on the design of a self-reconfigurable
receiver for WCDMA down-link UMTS standard. This receiver can self-adapt to the
conditions of the transmission channel due to multi-path [19], combining the conven-
tional Rake receiver with maximal ratio combining (MRC) and a linear minimum mean
squared error (LMMSE) equalizer. We first explored the actor-oriented modeling capa-
bilities of Ptolemy II [20] by creating models of both the receiver and its usage scenario
including user mobility patterns and transmission channel conditions. The accurate de-
scription of the application scenario increases significantly the complexity of the model,
therefore it is implemented in a high level of abstraction using floating point arithmetic.
Figure 6 shows PtolemyII GUI displaying the top-level model of the communication
system. The composite actors RakeReceiver and Equalizer are also shown in a lower
hierarchical level as those are the ones to be implemented in hardware. By simulating
the system in PtolemyII, designers can navigate over the design space by parameteriz-
ing the receiver and analyzing the bit error rate (BER) under different channel models.
The implemented case study used the channel described in [20].

After the analysis and profiling of the system model, the hardware implementation
of the receiver was started: Rake receiver, MRC and the MMSE linear equalizer. We
used JHDL [21] to create lower abstraction models of the subsystems that should be
implemented in hardware. JHDL is a HDL based in Java and was chosen for the sim-
plicity of integration with PtolemyII, as shown in [22], but there is no restriction on
this point and the methodology would be the same if other HDL such as SystemC or
VHDL were used. While some early conceptual work is shown in [18], no automated
path from PtolemyII models to JHDL descriptions are available, thus the implemen-
tation is based on iterative refinement. In order to validate the refinement steps, every
module written in JHDL should be encapsulated within an actor, integrated into Ptole-

Fig. 6. Top-level system view in PtolemyII

20 M. Glesner et al.

0 1 2 3 4 5 6 7 8 9 10
10-4

10-3

10-2

10-1

100

B
E

R

Correlator
Rake MRC
LMMSE

5 10 15 20 25 30 35 40
10-6

10-5

10-4

10-3

10-2

10-1

100

Number of Users

B
E

R

Co r re la to r
Rake MRC
LMMSE

Fig. 7. a) BER versus SNR for receiver in a vehicular channel with 120Km/h, spreading factor 64,
and 15 users; b) BER versus number of users for a receiver in a vehicular channel with 60Km/h,
spreading factor 64 and SNR 10dB

myII and co-simulated together with the whole model, allowing designers to evaluate
the performance of the implemented subsystem under the constraints and conditions
modeled within the testbench. The results of such simulations are shown in Fig. 7. A
single correlator receiver is also shown just to give an idea about the performance of the
other receivers. The JHDL toolset provides facilities to export EDIF netlist which al-
lowed for mapping the implemented system in FPGA. The whole receiver was mapped
in a Xilinx XCV800 FPGA using 4793 out of 9408 slices and operating at 15.672 MHz,
which is more than enough for the WCDMA standard. Current research aims to address
the verification of the final implementation in FPGA with the testbench implemented
within PtolemyII. Such co-simulation platform will reuse the reconfigurable hardware
encapsulation approach presented in [23].

5 Final Remarks

Reconfigurability plays a key role in the design of embedded systems as it helps to over-
come the traditional trade-off between the performance of ASICs and the flexibility of
general purpose processors. Based on a selected set of relevant applications, this paper
presented various functional and architectural optimization strategies, system integra-
tion concepts and design-and-validation methodologies, proving thus the effectiveness
of employing reconfigurable platforms for the development of embedded systems in
terms of functionality, performance, time-to-market, life-cycle improvement, and de-
sign and maintenance costs.

References

1. Murgan, T., Petrov, M., Majer, M., Zipf, P., Glesner, M., Heinkel, U., Pleickhardt, J., Bleis-
teiner, B.: Adaptive architectures for an OTN processor: Reducing design costs through
reconfigurability and multiprocessing. In: ACM Computing Frontiers Conf. (2004) 408–414

2. Petrov, M., Obeid, A.M., Murgan, T., Zipf, P., Brakensiek, J., Oelkrug, B., Glesner, M.: An
adaptive trace-back solution for state-parallel Viterbi decoders. In: IFIP Intl. Conf. VLSI,
Darmstadt, Germany (2003) 167–172

Reconfigurable Embedded Systems 21

3. Petrov, M., Murgan, T., Obeid, A.M., Chiţu, C., Zipf, P., Brakensiek, J., Glesner, M.: Dy-
namic power optimization of the trace-back process for the Viterbi algorithm. In: IEEE Intl.
Symp. Circuits and Syst., Vancouver, Canada (2004) 721–724

4. Obeid, A.M., Garcı́a, A., Glesner, M.: A constraint length and throughput parameterizable
architecture for Viterbi decoders. In: IEEE Int. Conf. Microelectronics. (2004)

5. Obeid, A.M., Garcı́a, A., Petrov, M., Glesner, M.: A multi-path high speed Viterbi decoder.
In: IEEE Int. Conf. Electronics, Circuits and Syst. (2003)

6. He, S., Torkelson, M.: Design and implementation of a 1024-point pipeline FFT processor.
In: IEEE Custom Integrated Circuits Conf. (1998) 131 –134

7. Pionteck, T., Stiefmeier, T., Staake, T., Kabulepa, L., Glesner, M.: Integration dynamisch
rekonfigurierbarer funktionseinheiten in prozessoren. In: Int. Conf. Architecture of Comput-
ing Systems. (2004)

8. Hinkelmann, H., Pionteck, T., Kleine, O., Glesner, M.: Prozessorintegration und speicher-
anbindung dynamisch rekonfigurierbarer funktionseinheiten. In: Int. Conf. Architecture of
Computing Systems. (2004)

9. Rijpkema, E., Goossens, K., Rădulescu, A., Dielissen, J., van Meerbergen, J., Wielage, P.,
Wateralnder, E.: Trade-offs in the design of a router with both guaranteed and best-effort
services for networks on chip. IEE Proc. Comput. Digital Techniques 150 (2003) 294–302

10. Kumar, S., Jantsch, A., Soininen, J.P., Forsell, M., Millberg, M., Öberg, J., Tiensyrjä, K.,
Hemani, A.: A network on chip architecture and design methodology. In: Proc. VLSI Ann.
Symp. (2002) 105–112

11. Hollstein, T., Ludewig, R., Mager, C., Zipf, P., Glesner, M.: A hierarchical generic approach
for on-chip communication, testing and debugging of SoCs. In: Proc. of VLSI-SoC. (2003)

12. Hollstein, T., Zimmer, H., Hohenstern, S., Glesner, M.: HiNoC: A flexible multi-mode trans-
mission network-on-chip platform. In: Proc. Baltic Electronics Conf. (2004)

13. Chelcea, T., Nowick, S.M.: Robust interfaces for mixed-timing systems with application to
latency-insensitive protocols. In: Proc. Design Automation Conf., Las Vegas, CA (2001)

14. Mu, F., Svensson, C.: A 750Mb/s 0.6μm CMOS two-phase input port using self-tested
self-synchronization. In: IEEE Int. Conf. Solid-State Circuits. (1999)

15. Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley (1980)
16. Zipf, P., Hinkelmann, H., Ashraf, A., Glesner, M.: A switch architecture and signal synchro-

nization for GALS system-on-chips. In: Proc. Symp. Integrated Circuits and Syst. Design,
Porto de Galinhas, Pernambuco, Brazil (2004) 210–215

17. Xilinx Inc. http://toolbox.xilinx.com/docsan/xilinx6/books/docs/dev/dev.pdf: Development
System Reference Guide. (2003)

18. Lee, E.A.., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded hardware
and software systems. Journal of Circuits, Systems, and Computers 12 (2003) 231–260

19. Hooli, K.: Equalization in WCDMA Terminals. PhD thesis, Oulu University Press (2003)
20. Harada, H., Prasad, R.: Simulation and Software Radio for Mobile Communication. Artech

House Publishers (2002)
21. Bellows, P., Hutchings, B.L.: JHDL - an HDL for reconfigurable systems. In: Proc.

FCCM98, Napa Valley, CA (1998)
22. Wirthlin, M.: Integration of JHDL and PtolemyII. Available at http://www.ee.byu.edu/

faculty/wirthlin/projects/ptjhdl.htm (2005)
23. Indrusiak, L.S., Lubitz, F., Reis, R., Glesner, M.: Ubiquitous access to reconfigurable hard-

ware: Application scenarios and implementation issues. In: Proc. DATE. (2003) 940–945

Reconfigurable Multiple Operation Array

Humberto Calderon and Stamatis Vassiliadis

Computer Engineering Laboratory,
Electrical Engineering Dept., EEMCS, TU Delft, The Netherlands

{H.Calderon, S.Vassiliadis}@ewi.tudelft.nl
http://ce.et.tudelft.nl

Abstract. In this paper, we investigate the collapsing of eight multi-operand ad-
dition related operations into a single and common (3:2) counter array. We con-
sider for this unit multiplication in integer and fractional representations, the Sum
of Absolute Differences (SAD) in unsigned, signed magnitude and two’s comple-
ment notation. Furthermore, the unit also incorporates a Multiply-Accumulation
unit (MAC) for two’s complement notation. The proposed multiple operation unit
was constructed around 10 element arrays that can be reduced using well known
counter techniques, which are feed with the necessary data to perform the pro-
posed eight operations. It is estimated that 6/8 of the basic (3:2) counter array is
shared by the operations. The obtained results of the presented unit indicates that
is capable of processing a 4x4 SAD macro-block in 36.35 ns and takes 30.43 ns
to process the rest of the operations using a VIRTEX II PRO xc2vp100-7ff1696
FPGA device.

1 Introduction: The Need for Reconfigurability

The need of multimedia Instruction Set Architectures (ISA) extensions with high per-
formance processing and flexibility characteristics are potentially met with the use of
reconfigurable technologies[1]. The new emerging capabilities in Reconfigurable Com-
puting (RC) are letting us to dynamically reconfigure a portion of a FPGA. Reconfig-
urable fabrics can be used to support a common and basic logic blocks intended to be
used in several operand addition related operations. The common blocks can be config-
ured in advance; therefore, the hardware differences needed for performing a particular
operation will be reconfigured partially based on the hardware differences between the
common basic array and the new needed functionalities, instead of programming to-
tally the new entire desired operation [2]. This work presents the collapsing of eight
multi-operand addition related operations into the common hardware suitable to be im-
plemented into a VLSI as a run time configurable unit and also over a reconfigurable
technology as a reconfigurable run time unit. The multiple operation array has the fol-
lowing embedded units and features:

– A 16 x 16 bit multiplier for integer and fractional representations with universal
notations 1.

– A 4 x 4 picture elements concurrent SAD macro-block in universal notation.

1 Universal notation, in the context of this article, assumes operands and results to be in un-
signed, sign magnitude and two’s complement notations.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 22–31, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Reconfigurable Multiple Operation Array 23

– The Multiply-Accumulation Unit (MAC) for two’s complement notation.
– A performance of 35.6 ns for 4x4 SAD macro-block and 30.43 ns for the rest of 7

operations.

The paper is organized as follows. Section 2 outlines the Reconfigurable Multiple
Operation Array organization. Section 3 presents the experimental results of the mapped
unit, as well as other comparison units in terms of area used and time delay. Finally, the
article is concluded in section 4.

2 Reconfigurable Multiple Operation Array

This section begins presenting a background and relevant work; consequently, a general
array description of the Reconfigurable Multiple Operation Array is described. Finally,
a complete description of the equations set for the construction and reproduction of the
proposed unit are shown.

2.1 Background and Related Work

Motion estimation techniques divide an image frame for its processing in macro-blocks
of n ∗ n picture elements (pels). The processing establishes if there is a difference be-
tween two image blocks using the Sum of Absolute Differences (SAD) operation, estab-
lishing the pels differences between two chosen frames. Equation (1) states the metric
to evaluate the searched block.

16

∑
j=1

16

∑
i=1
|IN1(x+ i,y+ j)− IN2((x+ r)+ i,(y+ s)+ j)| (1)

where, the duple (x,y) represents the position of the current block, and the pair (r,s)
denotes the displacement of IN2, relative to reference block IN1. Different investiga-
tions including a previous author’s work have been proposed to speed up the critical
SAD kernel [3],[4],[5]. The processing requires that SAD input terms received by the
multiple operation array have to be ordered previously, in order to compute correctly
the operation; therefore, the absolute operation | IN1− IN2 | can be substituted, with
IN1− IN2 or IN2− IN1 depending whether IN1 or IN2 is the smallest and thus obtain-
ing a positive result. As is suggested in [5] we can make this operation inverting one of
the operands and computing the carry out of the addition of both operands as stated by
the following equations:

IN1+ IN2≥ 2i−1 (2)

therefore
IN2 > IN1 (3)

means checking whether the addition of the bit inverted IN1 and the operand IN2 pro-
duces a carry out. The outcome determines which one is the smallest, depending on
the existence or not of the carry output. Consequently, a simple logic can be used to
correct the terms and feed the array. Regarding universal units capable to work with
universal notations, the reader is referred to view the predecessor unit in [6] and a re-
cent reintroduction in [7]. An extra row of (3:2)counter for MAC operation is used

24 H. Calderon and S. Vassiliadis

into the Reconfigurable Multiple Operation Array as a technique for accelerating the
processing, a detailed description of this kind of approach units can be seen in [8].

2.2 The Array Description

The proposed unit has been constructed around a rectangular array that can be reduced
using (3:2) counters; all ten operational fields of the array presented in Fig. 1(a), called
sections in the paper, receive the integer numbers X(i) and Y (i), the fractional numbers
A(i) and B(i), (all represented with 16 bits), the W (i) summand represented with 32 bits
for MAC operation as well as the 32 SAD terms depicted in (4) for the computation of
a 4x4 macro-block:

I(j,i) = I(j,15)I(j,14) · · · · · I(j,1)I(j,0) ∀ 1≤ j ≤ 32 (4)

where the index j states the 32 inputs; and i is used to denote the positional weight of
the data bits in each input. The multiplication related operations of the proposed unit
requires the partial product creation as stated by the following equations: ∀ 0 ≤ j ≤ 15
while ∀ 0 ≤ i≤ 15

Z(j,i) = X(i) ·Y(j) (5)

F(j,i) = A(i) ·B(j) (6)

All these data, feeds the (3:2) counters through 3 inputs I1(j)(i), I2(j)(i) and I3(j)(i);
and produces two outputs S(j)(i) and C(j)(i). The basic layout topology of the (3:2)
counter is presented on Fig. 1(b) and this detail is replicated in all sections of the array;
nevertheless, in the limit of both sides, left and right, the carry input I3(j)(i) uses an
additional multiplexor which is in charge of propagating or inhibiting the carry out of
the (3:2) counters of the right side, and introduces a Hot One (HO) or a zero for SAD
processing. The multiplexor presented in the aforementioned Fig. 1(b), represented by
the bar, has a signal e to control the data related operations and reconfiguring in this
way the operation being computed by the array. Furthermore has to be noticed that the
first row of both sides, the left and the right uses three multiplexors instead of one as is
described further (see equations, section 2.3).

+
...

e

...
e

...

...

S(j)(i+1) S(j)(i)

S(j+1)(i)S(j+1)(i+1) C(j+1)(i+1)

C(j)(i+1) C(j)(i)

C(j+1)(i)

S(j+2)(i+1) S(j+2)(i)

C(j+2)(i+1)C(j+2)(i+2)

1

9
W(31) W(30) ... 10 ... W(1) W(0)

5

2 3 6 7

4 8

+

+

+

I1 I1

I1I1 I2 I3

I2 I2

I2 I3

I3I3Left Side Right Side

(a) (b)

X x Y, A x B, X x Y + W, or SAD outcomes

A(j)(i), B(j)(i), or I(j)(i) X(j)(i), Y(j)(i), or I(j)(i)

e

e

C(j+1)(i+2)

Fig. 1. The Reconfigurable Multiple Operation Array Scheme

Reconfigurable Multiple Operation Array 25

Table 1. Sections of the Reconfigurable Multiple Operation Array

SAD Unsigned Signed Two’s MAC Unsigned Signed Two’s

Integer Integer Integer Two’s Fractional Fractional Fractional

Section 1 I(j,i) 0 0 Z(j,15) Z(j,15) F(j,i) F(j,i) F(j,i)

Section 2 I(j,i) 0 0 Z(j,15) Z(j,15) 0 0 F(j,15)

Section 3 I(j,i) Z(j,i) Z(j,i) Z(j,i) Z(j,i) F(j,i) F(j,i) F(j,i)

Section 4 I(j,i) 0 0 Z(j,15) Z(j,15) 0 0 F(j,15)

Section 5 I(j,i) Z(j,i) Z(j,i) Z(j,i) Z(j,i) 0 0 0

Section 6 I(j,i) Z(j,i) Z(j,i) Z(j,i) Z(j,i) F(j,i) F(j,i) F(j,i)

Section 7 I(j,i) 0 0 0 0 0 0 0

Section 8 I(j,i) 0 0 0 0 F(j,i) F(j,i) F(j,i)

Section 9 0 Z(15,i) Z(15,i) Z(15,i) Z(15,i) 0 0 0

Section 10 0 0 0 0 W(i) 0 0 0

Regarding the use of these sections, depicted in Fig. 1(a), (3:2) counters of sections
5, 6, 3 and 4 process the integer partial products described by (5). Fractional processing
is achieved with sections 1, 3, 6 and 8; furthermore, sections 1 and 2 as well as 2 and 4
process the sign extensions, and zeros given the universal characteristic to the multiplier
processing for integers and fractional numbers respectively. Concerning SAD process-
ing, two main sections of the array are been used, the left and right side. The left side
utilizes the sections 1, 2, 3 and 4 and the right side uses section 5, 6, 7, 8. Additionally,
section 9 as part of the multiplier array, is used to add the last partial products; and sec-
tion 10 receives the W(i) addend for MAC processing. Table 1 summarizes the terms
received by I1 in each one of the main sections through the 8 to 1 multiplexor. From the
table is evident that we process numbers of two complement representation with sign
extension, and signed magnitude numbers are processed like positive numbers, making
the sign bit zero and updating the result with the XOR of multiplicand and multiplier
signs.

2.3 The Array Construction Equations Description

The multiple operation array is conformed by 32 columns and 16 rows of (3:2) coun-
ters, giving a total of (3:2)counters, see Fig. 2. It can be mentioned that Fig. 2
contains all the details from Fig. 1(a). The notation used for representing (3:2) coun-
ters gives us information of the different kind of data received by these core logic
blocks. The first columns of sections 3 and 7 (columns 0 and 16, see Fig. 1(a) and
2) from row 1 to 8, are used to introduce the Hot One (HO), the rest of the column
introduces zero, this data is necessary for SAD calculation due to A−B = A + B + 1,
also column 16 inhibits the carry propagation from the right side. It should also be
noted that the last row of this figure, symbolized with a plus sign + represents the final
adder used to calculate outcome values of the (3:2) counter array. The remainder of
the section describes in a detailed way the equations for the 10 element arrays of (3:2)
counter subsections, detailing for all cases the input I1 and also the other equations
for inputs I2 and I3 when the application is different to the functionality presented in
Fig. 1(b).

512

26 H. Calderon and S. Vassiliadis

051015202531

0

5

10

13

Fig. 2. The Reconfigurable Multiple Operation Array Organization

Section 1. The section is divided into four subsections; the first three are embedded
into the first row.

� : I1(0,16) = I(1,0) · e0 +Z(1,15) · e1 +Z(1,15) · e2 +Z(1,15) · e3 +Z(1,15) · e4 +F(15,1) · e5+

F(15,1) · e6 +F(15,1) · e7

I2(0,16) = I(2,0) ·e0 +0 ·e1 +0 ·e2 +Z(0,15) ·e3 +Z(0,15) ·e4 +F(14,2) ·e5 +F(14,2) ·e6 +F(14,2) ·e7

I3(0,16) = I(3,0) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

� : ∀ 1 ≤ i≤ 13

I1(0,i+16) = I(1,i) · e0 +0 · e1 +0 · e2 +Z(0,15) · e3 +Z(0,15) · e4 +F(15,i+1) · e5 +F(15,i+1) · e6+

F(15,i+1) · e7

I2(0,i+16) = I(2,i) · e0 +0 · e1 +0 · e2 +Z(1,15) · e3 +Z(1,15) · e4 +F(14,i+2) · e5 +F(14,i+2) · e6+

F(14,i+2) · e7

I3(0,i+16) = I(3,i)e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

� : I1(0,30) = I(1,14) · e0 +0 · e1 +0 · e2 +Z(1,15) · e3 +Z(1,15) · e4 +F(15,1) · e5 +F(15,1) · e6

+F(15,1) · e7

I2(0,30) = I(2,14) · e0 +0 · e1 +0 · e2 +Z(0,15) · e3 +Z(0,15) · e4 +0 · e5 +0 · e6 +F(14,15) · e7

I3(0,30) = I(3,14) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

� : I1(0,31) = I(1,15) · e0 +0 · e1 +0 · e2 +Z(1,15) · e3 +Z(1,15) · e4 +0 · e5 +0 · e6 +F(15,1) · e7

I2(0,31) = I(2,15) · e0 +0 · e1 +0 · e2 +Z(0,15) · e3 +Z(0,15) · e4 +0 · e5 +0 · e6 +F(14,15) · e7

I3(0,31) = I(3,15) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

Reconfigurable Multiple Operation Array 27

� : Let n = 2 , m = 12; ∀ 1 ≤ j ≤ 6 and; ∀ n ≤ i≤ m ,with m = m−1; and ;n = n+1;
for each column

I1(j,i+16) = I(j+3,i) · e0 +0 · e1 +0 · e2 +Z(j+1,15) · e3 +Z(j+1,15) · e4 +F(14− j,i+3) · e5+

F(14− j,i+3) · e6 +F(14− j,i+3) · e7

Section 2. The section has the two representative equations:
• : Let n = 13; ∀ 1 ≤ j ≤ 6 and ∀ n ≤ i≤ 15 , with n = n−1

I1(j,i+16) = I(j+3,i) · e0 +0 · e1 +0 · e2 +Z(j+1,15) · e3 +Z(j+1,15) · e4 +0 · e5 +0 · e6+

F(14− j,15) · e7

• : Let n = 8; ∀ 7 ≤ j ≤ 13 and ∀ n ≤ i≤ 15, with n = n+1
I1(j,i+16) = I(j+3,i) ·e0 +0 ·e1 +0 ·e2 +Z(j+1,15) ·e3 +Z(j+1,15) ·e4 +0 ·e5 +0 ·e6 +F(14− j,15) ·e7

Section 3. The section is subdivided into four main parts:
� : ∀ 1 ≤ j ≤ 8

I1(j,16) = I(j+3,0) · e0 +Z(j+1,15− j) · e1 +Z(j+1,15− j) · e2 ++Z(j,16− j) · e3 +Z(j,16− j) · e4+

F(14− j, j+2) · e5 +F(14− j, j+2) · e6 +F(14− j, j+2) · e7

I3(j,16) = 1 · e0 +C(j−1,i+15) · e1 +C(j,i+16) · e2 +C(j,i+16) · e3 +C(j,i+16) · e4 +C(j,i+16) · e5

+C(j,i+16) · e6 +C(j,i+16) · e7

� : ∀ 9 ≤ j ≤ 13

I1(j,16) = I(j+3,0) · e0 +Z(j+1,15− j) · e1 +Z(j+1,15− j) · e2 +Z(j,15− j) · e3 +Z(j,15− j) · e4+

F(14− j, j+2) · e5 +F(14− j, j+2) · e6 +F(14− j, j+2) · e7

I3(j,16) = I3(j,16) = 1 · e0 +C(j,i+16) · e1 +C(j,i+16) · e2 +C(j,i+16) · e3 +C(j,i+16) · e4+

C(j,i+16) · e5 +C(j,i+16) · e6 +C(j,i+16) · e7

First part ◦ : Let m = 1; ∀ 1 ≤ j ≤ 6 and ∀ 1 ≤ i≤ m, with m = m+1

I1(j,i+16) = I(j+3,i) · e0 +Z(j+1,i+14) · e1 +Z(j+1,i+14) · e2 +Z(j+1,i+14) · e3 +Z(j+1,i+14) · e4+

F(14− j,i+3) · e5 +F(14− j,i+3) · e6 +F(14− j,i+3) · e7

Second part ◦ : Let m = 6 ; ∀ 7 ≤ j ≤ 12 and ∀ 1 ≤ i≤ m, with m = m−1

I1(j,i+16) = I(j+3,i) · e0 +Z(j+1,i+15− j) · e1 +Z(j+1,i+15− j) · e2 +Z(j+1,i+15− j) · e3+

Z(j+1,i+15− j) · e4 +F(14− j,i+ j+2) · e5 +F(14− j,i+ j+2) · e6 +F(14− j,i+ j+2) · e7

Section 4. � : Let n = 7 , m = 7; ∀ 7 ≤ j ≤ 13 and ∀ n ≤ i ≤ m; with n = n− 1 and
m = m+1

IN1(j,i+16) = I(j+3,i) · e0 +Z(j+1,15− j+i) · e1 +Z(j+1,15− j+i) · e2 +Z(j+1,15− j+i) · e3+

Z(j+16,15− j+i) · e4 +0 · e5 +0 · e6 +F(14− j,15) · e7

28 H. Calderon and S. Vassiliadis

Section 5. It is divided into four subsections; the first three are embedded in the first
row.
� : I1(0,0) = I(17,0) · e0 +Z(0,0) · e1 +Z(0,0) · e2 +Z(0,0) · e3 +Z(0,0) · e4 +0 · e5 +0 · e6 +0 · e7

I2(0,0) = I(18,0) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7
I3(0,0) = I(19,0) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

� : ∀ 1 ≤ i≤ 13 :
I1(0,i) = I(17,i) · e0 +Z(0,i) · e1 +Z(0,i) · e2 +Z(0,i) · e3 +Z(0,i) · e4 +0 · e5 +0 · e6 +0 · e7

I2(0,i) = I(18,i) ·e0 +Z(1,i−1) ·e1 +Z(1,i−1) ·e2 +Z(1,i−1) ·e3 +Z(1,i−1) ·e4 +0 ·e5 +0 ·e6 +0 ·e7
I3(0,i) = I(19,i)e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

	 : I1(0,14) = I(17,14) · e0 +Z(0,14) · e1 +Z(0,14) · e2 +Z(0,14) · e3 +Z(0,14) · e4 +F(14,0) · e5+

F(14,0) · e6 +F(14,0) · e7

I2(0,14) = I(18,14) · e0 +Z(1,13) · e1 +Z(1,13) · e2 +Z(1,13) · e3 +Z(1,13) · e4 +0 · e5 +0 · e6 +0 · e7
I3(0,14) = I(19,14) · e0 +0e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

� : I1(0,15) = I(17,15) · e0 +Z(0,15) · e1 +Z(0,15) · e2 +Z(0,15) · e3 +Z(0,15) · e4 +F(15,0) · e5+

F(15,0) · e6 +F(15,0) · e7

I2(0,15) = I(18,15) · e0 +Z(1,14) · e1 +Z(1,14) · e2 +Z(1,14) · e3 +Z(1,14) · e4 +F(14,1) · e5+

F(14,1) · e6 +F(14,1) · e7

I3(0,15) = I(19,15) · e0 +0 · e1 +0 · e2 +HO · e3 +HO · e4 +0 · e5 +0 · e6 +HO · e7

� : Let n = 2 , m = 12; ∀ 1 ≤ j ≤ 6 and ∀ n ≤ i≤ m,with m = m−1; and n = n+1;

I1(j,i+16) = I(j+19,i) · e0 +Z(j+1,i− j−1) · e1 +Z(j+1,i− j−1) · e2Z(j+1,i− j−1) · e3 +Z(j+1,i− j−1) · e4+

0 · e5 +0 · e6 +0 · e7

Section 6. The section has the two representative equations:
• : Let n = 13; ∀ 1 ≤ j ≤ 6 and ∀ n ≤ i≤ 15, with n = n−1

I1(j,i) = I(j+19,i) · e0 +Z(j+1,i− j−1) · e1 +Z(j+1,i− j−1) · e2 +Z(j+1,i− j−1) · e3+

Z(j+1,i− j−1) · e4 +F(14− j,i−14+ j) · e5 +F(14− j,i−14+ j) · e6 +F(14− j,i−14+ j) · e7

• : Let n = 8; ∀ 7 ≤ j ≤ 13 and ∀ n ≤ i≤ 15, with n = n−1

I1(j,i) = I(j+19,i) · e0 +Z(j+1,i+ j−1) · e1 +Z(j+1,i+ j−1) · e2 +Z(j+1,i+ j−1) · e3+

Z(j+1,i+ j−1) · e4 +F(14− j,i−14+ j) · e5 +F(14− j,i−14+ j) · e6 +F(14− j,i−14+ j) · e7

Section 7. The section is conformed by three subsections:

 : ∀ 1 ≤ j ≤ 8,
I1(j,0) = I(j+19,i) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7
I3(j,0) = 1 · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

� :Let n = 1 , m = 6, ∀ 9 ≤ j ≤ 13, with m = m−1
I1(j,0) = I(j+19,i) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7; I3(0,i) = 0
♦ :Let m = 1; ∀ 1 ≤ j ≤ 7 and ∀ 1 ≤ i≤ m, with m = m+1

Reconfigurable Multiple Operation Array 29

I1(j,i+16) = I(j+19,i) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7
♦ : Let m = 6; ∀ 8 ≤ j ≤ 12 and ∀ 1 ≤ i≤ m, with m = m−1
I1(j,i) = I(j+19,i) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +0 · e5 +0 · e6 +0 · e7

Section 8. : Let n = 7 , m = 8; ∀ 9 ≤ j ≤ 13 and ∀ n ≤ i ≤ m, with n = n− 1 while
m = m+1

I1(j,i) = I(j+17,i) · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +F(16− j,16− j−i) · e5 +F(16− j,16− j−i) · e6+

F(16− j,16− j−i) · e7

Section 9. The section is divided into six subsections.

� : I1(14,0) = 0 · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +F(0,0) · e5 +F(0,0) · e6 +F(0,0) · e7

� : ∀ 1 ≤ i≤ 14,

I1(14,i) = 0 · e0 +0 · e1 +0 · e2 +0 · e3 +0 · e4 +F(0,i) · e5 +F(0,i) · e6 +F(0,i) · e7

� : I1(14,15) = 0 · e0 +Z(15,0) · e1 +Z(15,0) · e2 +Z(15,0) · e3 +Z(15,0) · e4 +F(0,15) · e5+

F(0,15) · e6 +F(0,15) · e7

⊗ : I1(14,16) = 0 · e0 +Z(15,1) · e1 +Z(15,1) · e2 +Z(15,1) · e3 +Z(15,1) · e4 +F(0,15) · e5+

F(0,15) · e6 +F(0,15) · e7

� : ∀ 1 ≤ i≤ 14

I1(14,i+16) = 0 · e0 +Z(15,i+1) · e1 +Z(15,i+1) · e2 +Z(15,i+1) · e3 +Z(15,i+1) · e4 +0 · e5+

0 · e6 +F(0,15) · e7

� : I1(14,31) = 0 · e0 +0 · e1 +0 · e2 +Z(15,15) · e3 +Z(15,15) · e4 +0 · e5 +0 · e6 +F(0,15) · e7

Section 10. ∀ 0 ≤ i≤ 31; with n = n−1 while m = m+1
I1(j,i) = 0 · e0 +0 · e1 +0 · e2 +0 · e3 +W (i) · e4 +0 · e5 +0 · e6 +0 · e7

3 Experimental Results and Analysis

The Reconfigurable Multiple Operation Array with all necessary control logic and the
Carry Unit were described using VHDL, synthesized and proved with ISE 5.2i Xilinx
environment [9], for the VIRTEX II PRO xc2vp100-7ff1696 FPGA device. Addition-
ally, all operations such us: unsigned multiplier, signed magnitude multiplier, two’s
complement multiplier, rectangular SAD unit (half of the rectangular array), and MAC
unit were implemented individually without the overhead logic. Furthermore, previ-
ous presented units like the Universal SAD-Multiplier array (U-SAD-M) [7] for integer
numbers and Baugh and Wooley (B&W) signed multiplier [10] were synthesized with
the same tool in order to have more comparison parameters with our new proposal.
Table 2 summarizes the performance in terms of time delay of those structures.

30 H. Calderon and S. Vassiliadis

The additional logic introduced into the core array reduces the performance of the
functionalities, as can be seen in table 2. The extra delay in terms of time is between
12 % for a 16 bits MAC operand in the proposed unit, and up to 50 % for a 32 bits
MAC over the previous single functionality units like Baugh-Wooley or a simple inte-
ger U-SAD-M unit. This extra time delay diminishes to 27 % when the fast carry logic
provided into the FPGAs Xilinx is used [11] in the final adder. The additional extra
delays of the proposed unit compared with the previous ones are due two principal fac-
tors: the first one is related to the multiplexor used to feed the data into the input I1,
which presents a constant delay for all the logic blocks, and the extra multiplexor in-
troduced in the array to separate logically the right and left sides, given the possibility
of propagating or inhibiting the carry and also force a Hot One or a zero for SAD pro-
cessing. An acceleration into the processing can be achieved using a parallel reduction
tree. Instead of using a regular array, a Wallace tree [12] can be implemented in order
to accelerate the performance of the operations. Considering that n(h) = �3n(h−1)/2�
quantifies the number of necessary levels h of (3:2) counters for the reduction of n input
bits, we estimate that a logic delay has been reduced in 3.22 ns and cut 4.65 ns off in
routing delay, accelerating the processing in 7.87ns. This amount of time represents an
improvement of a 25.87 % in the total array delay.

Table 2. Multiple Operation Array Unit and related units (RCA final adder: ‡ : LUT based ; ∗ :
Based on Xilinx Fast Carry Logic [11])

Time delay Hardware use

Unit Logic Delay (ns) Wire Delay (ns) Total Delay (ns) Slices LUTs IOBs

SAD ‡ 13.184 12.006 25.191 242 421 272

Unsigned Multiplier ‡ 14.589 14.639 29.282 300 524 64

Two’s I ‡ 12.595 15.564 28.159 294 511 64

Two’s F ‡ 15.153 16.825 31.978 443 770 64

Baugh&Wooley ‡ 15.555 15.826 31.381 330 574 65

U-SAD-M ‡ 15.877 15.741 31.618 686 1198 322

U-SAD-M ∗ 14.311 9.568 23.879 658 1170 322

MAC ‡ 15.062 19.064 34.662 358 622 96

Our Proposal ‡ 21.351 26.040 47.391 1373 2492 643

Our Proposal-16 MAC ‡ 16.521 19.065 35.586 1360 2465 643

Our Proposal ∗ 15.311 15.127 30.438 1354 2458 643

Carry Unit 2.576 3.338 5.914 35 61 64

Concerning the silicon used by the Reconfigurable Multiple Operation Unit and
the other structures, depicted on Table 2, the overhead in terms of hardware of the
presented unit is considerable and is the paid price for its multi-functional characteristic.
Nevertheless, if the eight units are implemented separately we will need two times the
hardware resources and we will have one third of additional bandwidth needs in the
worst case scenario. We should also consider that 6/8 of the basic logic block array
are shared by the eight operations making this chosen operations a good candidates for
it’s implementation with partial reconfiguration paradigm, based on differences of the
functional units.

Reconfigurable Multiple Operation Array 31

4 Conclusions

We have presented a novel Reconfigurable Multiple Operation Array organization. The
proposed unit can be implemented on a VLSI intended to be used as a run time con-
figurable unit, and it can also be used in a reconfigurable technology as a run time
reconfigurable unit. The whole array is configured using multiplexors, which can be re-
placed with faster connections on a partially reconfigurable environment. Several units
are been coded and synthesized to have a wide comparison environment, furthermore, a
brief analysis of the obtained results in terms of area used and time delay are presented
given a maximum work frequency of 27.5 MHz for the calculus for a 4x4 SAD macro-
block and a 32.85 MHz for MAC and the other multiplier operations in a VIRTEX II
PRO device using a 3% of the available slices of the chosen FPGA.

References

1. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte, E.: The molen
polymorphic processor. IEEE Transactions on Computers (2004) 1363 – 1375

2. Xilinx: Two flows for partial reconfiguration: Module based or difference based. Application
Note:Virtex, Virtex-E, Virtex-II, Virtex II Pro Families,XAPP290 (2003) 1 – 28

3. Guevorkian, D., Launiainen, A., Liuha, P., Lappalainen, V.: Architectures for the sum of
absolute differences operation. IEEE Workshop on Signal Processing Systems (SPIS’02)
(2002)

4. Kuhn, P.: Fast mpeg-4 motion estimation: Processor based and flexible vlsi implementations.
Journal of VLSI Signal Processing (1999) 67–92

5. Vassiliadis, S., Hakkennes, E., Wong, S., Pechanek., G.: The sum-absolute-difference motion
estimation accelerator. Proceedings of Euromicro Conference, 24th (1998) 559–566

6. Vassiliadis, S., Schwarz, E., Putrino, M.: Quasi-universal vlsi multiplier with signed digit
arithmetic. Proceedings of the 1987 IEEE,Southern Tier Technical Conference (1987) 1–10

7. Calderon, H., Vassilidis, S.: Reconfigurable universal sad-multiplier array. Accepted for
publication in: Proccedings of ACM international conference - Computer Frontiers (2005)

8. Yaday, N., Schulte, M., Glossner, J.: Parallel saturating fractional arithmetic units. Procced-
ings of the Ninth great lakes Symposium on VLSI (1999)

9. Xilinx: The xilinx software manuals, xilinx 5.2i. http://www.xilinx.com/support/
sw manuals/xilinx5/index.htm (2003)

10. Baugh, C., Wooley, B.: A two’s complement parallel array multiplication algorithm. IEEE,
Transactions on Computers (1973) 1045–1047

11. Xilinx: Virtex ii pro platform fpga handbook. (2002)
12. Wallace, C.S.: A suggestion for a fast multiplier. IEEE, Transactions on Electronic Comput-

ers (1964) 14 – 17

RAPANUI: Rapid Prototyping for Media Processor
Architecture Exploration

Guillermo Payá Vayá, Javier Martı́n Langerwerf, and Peter Pirsch

Institute of Microelectronic Systems, University of Hannover,
Appelstr.4, 30167 Hannover, Germany

{guipava, jamarlan, pirsch}@ims.uni-hannover.de

Abstract. This paper describes a new rapid prototyping-based design framework
for exploring and validating complex multiprocessor architectures for multime-
dia applications. The new methodology combines a typical ASIC flow with an
FPGA flow focused on rapid prototyping. In order to make an exhaustive verifi-
cation of the system architecture, a reference model that specifies the hardware
implementation is used for validating both, HDL description and emulated sys-
tem. Functional coverage in addition to traditional code coverage is used to test
100% of data, control and structural hazards of the system architecture. The ref-
erence model is also part of a stand-alone simulation environment. This allows
hardware and application development be supported by a unique system model.

1 Introduction

Nowadays, emerging high-density field-programmable gate arrays (FPGA) allow to
prototype complex VLSI designs (with approximately million system gates). This tre-
mendous progress in FPGA technology provides the possibility of integrating rapid
prototyping into a new methodology for exploring and evaluating multimedia processor
systems. The use of a prototyping based framework has several advantages:

– Architecture exploration and evaluation. Software architecture simulators cannot
provide enough information about the impact of new architectural modifications
on the final full-scale implementation. Otherwise, developing a prototype easily
resolves questions about design complexity and technical feasibility [1, 2]. By using
FPGA emulation systems, VLSI designers can test their preliminary ideas obtaining
immediate hardware metrics and studying their feasibility. Moreover, an interactive
design approach can be done until the expected specifications are reached.

– Hardware architecture simulator. Because software simulation takes usually much
too long, hours or days for simulating a few minutes of a video application se-
quence, a flexible real-time prototyping of the full architecture is mandatory. More-
over, early in the design cycle, by using an efficient graphical environment that
interacts with the emulation system, application designers could start programming
real applications.

– Architecture validation. Conceptual problems can be detected by simulating the
whole system. In case of a multiprocessor system, communications between the

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 32–40, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

RAPANUI: Rapid Prototyping for Media Processor Architecture Exploration 33

different processors can be validated. Moreover, measures like maximum opera-
tions per second or memory bandwidth for real world applications can be obtained.

The RAPANUI project proposes a new prototyping-based methodology for media
processor architecture exploration, where in addition of testing the performance and
correctness of the design, we can run a specific media application under ”real-time”
conditions for reduced image resolution using the emulated hardware. The goal of our
methodology is to obtain an exhaustively verified HDL description of our processor
or multiprocessor system that will finally be implemented as an ASIC. Therefore, a
common source is used for both, the ASIC and FPGA implementation, respectively.
Only few target-specific modules will be used for an efficient FPGA synthesis.

This paper is organized as follows. Section 2 introduces some current approaches
for architecture exploration. Section 3 presents the RAPANUI methodology, placing
emphasis on the different steps of our design flow. After that, some comments refer-
ring to the prototyping technology used are given. Finally, conclusions are discussed in
Section 4.

2 Related Work

In the last years, a large number of simulators have been used to investigate micropro-
cessor design issues. Functional and performance simulators have been created in order
to study topics ranging from low power to high performance memory communication
architectures. Although in recent years simulator environments, like SimpleScalar [3],
SimOS [4] or SimICS [5] can be used to describe complex architectures, a software
simulator cannot provide enough information about the impact on the implementation
of new architectural modifications.

Due to the increasing complexity and capacity of programmable logic devices,
FPGA-based prototypes are recently used in ASIC development to enable early val-
idation of whole system architectures. The prototyping technologies allow an accel-
eration of processor development. The new hardware emulation systems [6] provide
prototyping of systems ranging from simple microprocessor [2, 7, 8, 9] to complex mi-
croprocessor designs [10].

Prototype technologies should be used as a part of an ASIC flow using a common
source code. Developing low-level synthesis models would cost too much time and
effort.

3 Methodology Overview

In this section, we describe our methodology for processor development acceleration
based on a rapid prototyping framework. In the following subsections the proposed
design flow is introduced in more detail. After that, the rapid prototyping system we
have used is presented.

34 G. P Vayá, J. M Langerwerf, and P. Pirsch

3.1 Design Flow

The proposed methodology is divided in five successive steps (see Fig. 1). In order to
develop a system that works efficiently with a specific application (or a group of similar
applications), it is necessary to make an architecture-independent performance analy-
sis. The results of this analysis support architecture design decisions made in step 2.
Step 3 represents the core of our methodology and is divided in two branches, both
describing the architecture to be designed, but from two different points of view: an
HDL description and a reference model architecture. This reference model can be seen
as an executable specification and is used to perform an IP verification of our archi-
tecture and to create a stand-alone simulator for application development. Step 4 in
the diagram represents a necessary step before being able to run an application on the
emulated system. On the one hand, the HDL description has to be augmented with em-
ulation target-specific primitives. On the other hand, the programming environment is
used for developing an application. Moreover, semi automatically generated programs
[7] to verify the emulated system assure a 100% functional coverage.

Architecture-independent
Performance Analysis

Architecture-dependent
Performance Analysis

SFU

HW

VLSI

Application System
Assembler Program

Programming
Enviroment

Media Processor
Rapid Prototyping

FPGA-System
Enviroment

Application-specific
System Emulation

(Real-Time)

Application

Application-specific
ISA-Extensions

Model

SFU

SW

IP
VERIFICATION

S
te

p
 1

S
te

p
 2

S
te

p
 3

S
te

p
 4

S
te

p
 5

Fig. 1. Step diagram of the RAPANUI methodology

Our design flow includes the necessary feedback (dot lines) to eventually modify
architecture parameters that improve the results obtained in the performance analysis
until specifications established in Step 1 are reached.

Step 1. Application Analysis. System Level Design
In order to estimate the processing demands of a streaming media application, a platform-
independent performance analysis has to be performed [11, 12]. From the analysis we
derive a complexity profile which is characteristic for a specific application. These re-
sults allow us to identify optimization potential and hence will be used to guide the
implementation process.

artı́nayá

RAPANUI: Rapid Prototyping for Media Processor Architecture Exploration 35

However, design issues at the system level have to be analyzed in this step. These
issues include different types of parallelism at thread or process level [13] and memory
bandwidth requirements [14]. They have a strong influence on latter performance anal-
ysis results. Therefore, system level design decisions have to be taken before designing
the system or each processing element.

In case of implementing a multiprocessor system, the specific application has to be
split up in different tasks to be spread among the different processors. Steps 2 and 3 will
be independent for every single processor in order to validate their correct execution
(single processor validation). Steps 4 and 5 will be performed on the complete system,
which includes all verified elements.

Step 2. Application-Specific ISA-Extensions. Architecture Level Design
The architecture-independent complexity profile for a specific task in the main appli-
cation gives also an important clue for defining the instruction-set architecture of the
processor to be designed. In this step, different architecture alternatives of special func-
tion units (SFU) within the processor are discussed and analyzed [15]. What we aim
at is to specify the processor on its architecture level, also considering instruction-level
and data-level parallelism [16].

A complete specification of the processor to design will be done. The complete
pipeline will be defined, to design later in Step 3 the verification strategy. Also, a com-
plete list of the data, control and structural hazards and their respective solutions will be
examined [17] and specified. Structural hazards might appear in a multiple issue pro-
cessor [18]. All this specifications will appear in the reference model which validates,
in an early phase, the functionality of the proposed processor architecture.

Step 3. Media Processor Design and Functional Verification. Register-Transfer
Level Design
At this level, as we can see in Fig. 1, the design flow splits up into two branches:
A register-transfer level HDL description, and the development of a software model
of the architecture. This architecture reference model is written in an object-oriented
programming language called OpenVera [19] and standard C. This reference model is
used not only to perform an IP verification of the hardware description, but also to
build a stand-alone simulator for application development. The Vera language is used
because of the features it provides to facilitate testbench creation and structured RTL
interfacing. Moreover, Vera simplifies the random stimulus generation and supports a
functional coverage system. This system is able to monitor all states and state transitions
created by the user in order to measure the ”functional” coverage [20]. This feature
and the ability of verify the status of the hardware implementation via the software
model, make it possible to test 100% of the processor functionality, as shown in Fig. 2.
Additionally traditional code coverage should also be made.

– HDL Processor Description. An HDL description of the processor architecture is
done, creating a library with different SFUs that can be reused in other proces-
sors (see Fig. 1). In order to reuse code, a common source for ASIC and FPGA
implementations is used. The main focus is to achieve good synthesis results for
ASIC implementation. Nevertheless, due to the different special resources of a spe-
cific FPGA target, synthesis efficiency is influenced significantly by matching the

36

resources inferred by the HDL description. Therefore, some specific source code
modifications for efficient FPGA synthesis have to be performed [21].

– Architecture Reference Model. A cycle- and bit-true architecture description is made
using an object-oriented language (OpenVera) and standard C. The reference model
has the same pipeline structure as the processor architecture under verification, and
allows the validation of the proposed architecture in an early phase.

Verification of the HDL description is done by comparing the contents of all pipeline
registers, different special registers and the whole register file for every cycle. In other to
test the correct execution our processor in all conflictive possible situations, functional
verification is used. Functional verification consists on creating different sample states
and sample transitions, that abstract each status the processor could have and the dy-
namic behavior. Several counters are assigned to each sample and incremented during
the simulation execution every time a state is active or a transition happened. By using
semi automatically generated programs, all possible hazard situations can be checked.

Verification BlockSingle Processor Architecture

IF ID RA EX WB

Instruction
Memory

Data
Memory

Debug
Mode

HDL Description

Interface Comunication

Stimulus (Instruction) Generator

 Architecture
Reference

Model

Processor Checker
Task

Functional Measures

Vera Program

Fig. 2. Simulation scheme in Step 3

Step 4. FPGA Prototyping and Application Developing
In this Step, the HDL code of the media processor is synthesized and implemented
semi-automatically on the emulation system. By using ProDesign’s HDL Bridge [22],
the HDL code is implemented on the CHIPit emulation Platform [6] and connects them
through ProDesign’s UMRBus to a simulator software (Modelsim) running on the host
computer. A typical flow will consist of implementing the Design Under Test (DUT)
on the CHIPit Platform and using the HDL Bridge interface and the UMRBus to verify
the DUT with a ”software” testbench (see Fig. 3).

The CHIPit Platform supports the Signal Tracker hardware debugger solution from
Xilinx which allows readback functionality of Virtex and Virtex-II FPGAs [23]. Thus,
internal register output signals of the DUT will be visible in the simulator.

G. P Vayá, J. M Langerwerf, and P. Pirschartı́nayá

RAPANUI: Rapid Prototyping for Media Processor Architecture Exploration 37

Two possible verification strategies could be used in this Step.

– Signal Tracker. Modelsim simulator can be used with Vera and HDL Bridge. So
using the signal tracker solution, the same verification strategy as in Step 3 could
be used in a new co-emulated environment.

– Debug mode. An interface to control the ”debug mode” of our processor is used
(see Fig. 4) together with the architecture reference model from Step 3 to validate
the processor. Using this debug mode, the hardware implemented on the FPGA
is close to the hardware implemented on the ASIC, so the possible modifications
when not using the debug mode do not affect the system validation.

In this Step, a full multiprocessor system validation can be done. Instead of using
the ”debug mode”, system communication overhead can be reduced by interacting with
or simulating the system controller, which controls the other processors.

Optionally, the architecture reference model can be used to run software versions of
different tasks of an application. This feature offers the possibility of using the reference
model not only as a verification instrument but also as a standalone simulator, which is
very useful to assist application development.

Design Under Test (DUT)C
H

IP
it

P
la

tf
o

rm

Testbench

P
C

 o
r

W
o

rk
st

at
io

n

HDL Bridge (Hardware)

HDL Bridge (Software)

UMRBus

Fig. 3. Typical verification flow using the CHIPit Platform

Step 5. Application-Specific System Emulation
The FPGA-System environment is used to run different applications under ”real-time”
conditions, i.e., with reduced image resolution or rescaling adequately the time exe-
cution results to a final ASIC implementation. An architecture-dependent performance
analysis checks whether the expected requirements for the selected tasks are reached or
not.

In case of not reaching the required performance results, several iterative improve-
ment steps are possible. New extensions can be added in Step 2 or new architectural

38

Single Processor Architecture

IF ID RA EX WB

Instruction
Memory

Data
Memory

Debug
Mode

C
H

IP
it

 P
la

tf
o

rm
Debug mode controller

P
C

 o
r

W
o

rk
st

at
io

n

HDL Bridge (Hardware)

User Interface

HDL Bridge (Software)

UMRBus

Fig. 4. Emulation scheme in Step 4 and Step 5

modifications to decrease critical paths can be done in Step 3 for any single processor.
Even adding an additional processor can be done quite easy, in order to improve the
overall system performance.

G. P Vayá, J. M Langerwerf, and P. Pirschartı́nayá

3.2 Prototyping Technology

The availability of high-density low-cost FPGAs has made rapid prototyping of com-
plex multiprocessor systems possible. In only a few years, many commercial prototyp-
ing boards have appeared. External SDRAMs, I/O interfaces with external audio and
video codecs, make prototyping boards suitable to emulate even multimedia systems.

Our prototype environment is based on a ProDesign emulation system. ProDesign
[6] presents a new FPGA based verification system that provides enough capacity to
prototype relatively complex media processor architectures. The CHIPit R© Platinum
Edition is the latest member of the CHIPit product family, containing a scalable number
of Xilinx XC2V6000 or 8000 Virtex-II FPGAs, which allows prototyping of systems
with up to 10M ASIC gates. Extensions, like memory boards, displays or interfaces,
enhance the emulation performance and connectivity of the system.

RAPANUI: Rapid Prototyping for Media Processor Architecture Exploration 39

4 Conclusions

The RAPANUI methodology is a new rapid prototyping-based design framework for
media processor architecture exploration and validation. RAPANUI describes a new
design flow to accelerate multimedia processor designs, generating intermediate feed-
backs to eventually modify architecture parameters that improve the overall system
performance.

The proposed methodology is divided into five steps which allow the designer to
explore and validate multiprocessor architectures during the design phase. These steps
comprise: 1. application analysis, 2. application-specific ISA-extensions, 3. media pro-
cessor design and functional verifications, 4. FPGA prototyping and applications devel-
oping, and 5. application-specific system emulation.

During the design flow, four important concepts are considered: performance anal-
ysis to evaluate the multimedia application and the multimedia processor, architecture
reference model to specify the processor system that can be used as a simulator as well,
functional coverage in addition to traditional code coverage to test 100% of data, con-
trol and structural hazards and FPGA prototyping to validate and emulate the processor
system in a hardware environment.

Finally, this new methodology augments a typical ASIC flow with an FPGA flow
focused on rapid prototyping.

The next step in our project will be the validation of our methodology by verifying
a full multiprocessor system. Emulation will be performed by interacting only with one
single processor, in order to reduce communication overhead. This processor, called
system controller, is in charge of managing the full multiprocessor system.

References

1. Ray, J., Hoe, J.: High-Level Modeling and FPGA Prototyping of Microprocessors. In:
Proceedings of Int. Symposium on Field Programmable Gate Arrays. (2003) 100–107

2. Brown, R., Hayes, J., Mudge, T.: Rapid Prototyping and Evaluation of High-Performance
Computers. In: Proceedings of the 1996 Conference on Experimental Research in Computer
Architectures. (1996) 159–168

Table 1. CHIPit R© Platinum Edition

Specifications FPGA System

FPGA type Xilinx Virtex-II
XC2V6000 or 8000

Approx. ASIC gates 3.3 M
FPGA system gates 48 M
Total number of block RAM 18 Mbits
Max. Speed on FPGA board about 200 MHz
Max. total system speed about 100 MHz
Max. number of external clocks 24
Max. number of High Speed clocks 8
Max. number of user I/Os 1920

40

3. Burger, D., Austin, T.: The SimpleScalar Tool Set, Version 2.0. Technical Report 1342
(1997)

4. Rosenblum, M., Herrod, S., Witchel, E., Gupta, A.: Complete Computer System Simulation:
The SimOS approach. IEEE Parallel and Distributed Technology: Systems and Applications
3 (1995) 34–43

5. Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F., Magnus-
son, P., Moestedt, A., Werner, B.: Simics: A Full System Simulation Platform. Computer 35
(2002) 50–58

6. ProDesign Electronic GmbH: (2005) http://www.prodesigncad.de/.
7. Martı́nez-Pérez, J., Ballester-Merelo, F., Herrero-Bosch, V., Gadea-Gironés, R.: Ariadna:

An FPGA-Oriented 32-bit Processor Core Using Synopsys Flow. In: Synopsys User Group
Workshop. (2003)

8. Gshwind, M., Salapura, V., Maurer, D.: FPGA Prototyping of a RISC Processor Core for
Embedded Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 9 (2001) 241–250

9. Kim, Y., Kim, T.: A Design and Tool Reuse Methodology for Rapid Prototyping of Appli-
cation Specific Instruction Set Processors. In: Proceedings of the 1999 IEEE Workshop on
Rapid System Prototyping. (1999) 46–51

10. Gateley, J., Greenley, D., Blatt, M., Chen, D., Cooke, S., Dasai, P., Doreswanny, M., Elgood,
M., Feierbach, G., Goldsbury, T.: UltraSPARC-I Emulation. In: Proceedings of the 32nd
ACM/IEEE Design Automation Conference. (1995) 13–18

11. Reuter, C., Martı́n, J., Stolberg, H.J., Pirsch, P.: Performance Estimation of Streaming Media
Applications for Reconfigurable Platforms. In: International Workshop on Systems, Archi-
tectures, Modeling, and Simulation. (2003) 42–45

12. Stolberg, H.J., Berekovic, M., Pirsch, P.: A Platform-Independent Methodology for Perfor-
mance Estimation of Streaming Media Applications. In: Proceedings 2002 IEEE Interna-
tional Conference on Multimedia and EXPO (ICME2002). (2002) CDROM.

13. Krashincky, R., Batten, C., Hampton, M., Gerding, S., Pharris, B., Casper, F., Asanovic, K.:
The Vector-Thread Architecture. IEEE Micro 24 (2002) 84–90

14. Rixner, S., et al.: A Bandwidth-Efficient Architecture for Media Processing. In: Proceedings
of 31st. Annual IEEE/ACM International Symposium on Microarchitectures MICRO-31.
(1998) 3–13

15. Omondi, A.R.: Computer Arithmetic Systems: Algorithms, Architecture and Implementa-
tions. Prentice Hall International Series in Computer Science. (1994)

16. Lee, R.: Efficiency of MicroSIMD Architectures and Index-mapped Data for Media Proces-
sors. In: Proceedings of Media Processors. (1999) 34–46

17. Hennessy, J., Patterson, D.: Computer Architecture. A Quantitative Approach. 3rd edn. Mor-
gan Kaufmann (2003)

18. Berekovic, M., Stolberg, H.J., Pirsch, P.: Multi-Core System-On-Chip Architecture for
MPEG-4 Streaming Video. IEEE Transactions on Circuits and Systems for Video Tech-
nology (CSVT) 12 (2002) 688–699

19. Haque, F., Khan, K., Michelson, J.: The Art of Verification with VERA. Verification Central
(2001)

20. Synopsys: Vera User Guide. (2003) version 6.0.
21. Gschwind, M., Salapura, V.: A VHDL Design Methodology for FPGAs. In: Field-

Programmable Logic and Applications (FPL95). Volume 975 of Springer-Verlag Lecture
Notes in Computer Science. (1995) 208–217

22. ProDesign Electronic GmbH: HDL Bridge and Signal Tracker. (2004)
23. Xilinx: Xilinx XAPP176 Configuration and Readback of the Spartan-II and Spartan-IIE

Families Application Note. (2002) version 2.7.

G. P Vayá, J. M Langerwerf, and P. Pirschartı́nayá

Data-Driven Regular Reconfigurable Arrays: Design
Space Exploration and Mapping

Ricardo Ferreira1,�, João M.P. Cardoso2,3, Andre Toledo1, and Horácio C. Neto3,4

1 Departamento de Informática,
Universidade Federal de Viçosa, Viçosa 36570 000, Brazil

cacau@dpi.ufv.br
2 Universidade do Algarve, Campus de Gambelas, 8000-117, Faro, Portugal

jmpc@acm.org
3 INESC-ID, 1000-029, Lisboa, Portugal

4 Instituto Superior Técnico, Lisboa, Portugal
hcn@inesc.pt

Abstract. This work presents further enhancements to an environment for ex-
ploring coarse grained reconfigurable data-driven array architectures suitable to
implement data-stream applications. The environment takes advantage of Java
and XML technologies to enable architectural trade-off analysis. The flexibility
of the approach to accommodate different topologies and interconnection patterns
is shown by a first mapping scheme. Three benchmarks from the DSP scenario,
mapped on hexagonal and grid architectures, are used to validate our approach
and to establish comparison results.

1 Introduction

Recently, array processor architectures have been proposed as extensions of micropro-
cessor based systems (see, e.g., [1], [2]). Their use to execute streaming applications
leads to acceleration and/or energy consumption savings, both important for today and
future embedded systems. Since many design decisions must be taken in order to imple-
ment an efficient architecture for a given set of applications, environments to efficiently
experiment with different architectural features are fundamental. Array architectures
may rely on different computational models. Architectures behaving in a static dataflow
fashion [3][4] are of special interest, as they naturally process data streams, and therefore
provide a very promising solution for stream-based computations, which are becoming
predominant in many application areas [5]. In addition, the control flow can be distributed
and can easily handle data-streams even in the presence of irregular latency times. In
the data-driven model, synchronization can be achieved by ready-acknowledge proto-
cols, the centralized control units are not needed, and the operations are dynamically
scheduled by data flow. Furthermore, array architectures are scalable due to the reg-
ular design and symmetric structure connections. Moreover, high parallelism, energy

� Ricardo Ferreira acknowledges the financial support from Ct-Energia/CNPq, CAPES and
FAPEMIG, Brazil.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 41–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

42 R. Ferreira et al.

consumption savings, circuit reliability and a short design cycle can be also reached
by adopting reconfigurable, regular, data-driven array architectures [6]. However, many
array architectures seem to be designed without strong evidences for the architectural
decisions taken. Remarkably the work presented in [7][8] has been one of the few excep-
tions which addressed the exploration of architectural features (in this case, a number
of KressArray [4] properties).

Our previous work presented a first step to build an environment to test and simulate
data-driven array architectures [9]. To validate the concept we have presented results ex-
ploiting the size of input/output FIFOs for a simple example. As shown, the simulations
are fast enough to allow the exploration of a significant number of design decisions.
Our work aims to support a broad range of data-driven based arrays, a significant set
of architecture parameters, and then evaluate its trade-offs using representative bench-
marks. The environment will help the designer to systematically investigate different
data-driven array architectures (topologies and connection patterns), as well as internal
PE parameters (existence of FIFOs in PE input/outputs and their size, number of in-
put/outputs of each PE, pipeline stages in each PE, etc.), and to conduct experiments
to evaluate a number of characteristics (e.g., protocol overhead, node activity, etc.). An
environment capable to exploit an important set of features is of great interest since it can
provide an important aid on the design of new data-driven array architectures suitable
to execute a set of kernels for specific application domains. The main contributions of
this paper are:

– the integration in the environment of a first mapping scheme;
– the attainment of mapping results on grid and hexagonal arrays for three DSP bench-

marks;

This paper is structured as follows. The following section briefly introduces the en-
vironment. Section 3 explains the mapping scheme. Section 4 shows examples and
experimental results. Finally, section 5 concludes the paper and discusses ongoing and
future work.

2 The Environment

A global view of our design exploration environment is shown in Fig. 1. The start point
is the dataflow specification1 which is written in XML. XML is also used to specify
the coarse-grained, data-driven, array architecture, and the placement and routing. Each
dataflow operator is directly implemented with a Functional Unit (FU). The environment
uses Java to specify each FU behavior and to perform the dataflow and array modeling,
simulation and mapping. For simulating either the array architecture or the specific
design, we use the Hades simulation tool [10], which has been extended with a data-
driven library. Note that we are interested on modeling and exploring data-driven array
architectures in which, for a specific implementation of an algorithm, the PE operations

1 A dataflow model can be automatically generated by a compiler from the input program in an
imperative programming language [18][17].

Data-Driven Regular Reconfigurable Arrays 43

DataflowDataflow

ArchitectureArchitecture

RoutingRouting

Compiler

Place and
Route

Dflow

Aflow

Dflow

Aflow

FU
Library

(XML)
(Java)

Hades
Simulator

EDA

Fig. 1. Environment for Exploration of Data-Driven Array Architectures (EDA). Note that the
Place and Route phase still needs further work and the front-end compiler is planned as future
work

and interconnections between them are statically defined2. Our environment supports
two simulation flows (Dflow and Aflow in Fig. 1):

– In Dflow, the dataflow representation is translated to a Hades Design and simulated.
Dflow provides an estimation of the optimal performance (e.g., achievable when
implementing an ASIC based architecture) provided that full balancing is used (i.e.,
FIFOs of enough size are used). It permits a useful comparison with implementations
in a reconfigurable data-driven array, since it represents the optimal achievable
performance using a specific set of FUs (akin to the FUs existent in each PE of the
array).

– In Aflow, the dataflow representation is mapped to a data-driven array architecture,
specified by a template, and is simulated with Hades. For design analysis, an user may
specify, in the dataflow and array architecture descriptions, which parameters should
be reported by the simulator engine. Those parameters can be the interconnect delay,
the handshake protocol overhead, the operator activity, etc. As some experimental
results show, the simulation and the mapping is fast enough to conduct a significant
number of experiments.

A typical FU integrates an ALU, a multiplier or divider, input/output FIFOs, and the
control unit to implement the handshake mechanism (see Fig. 2a). The FU is the main
component of each PE in the array architecture. A PE consists on an FU embedded on
an array cell, which has a regular neighbor pattern implemented by local interconnec-
tions (see Fig. 2b and Fig. 2c). A ready/acknowledge based protocol controls the data
transfer between FUs or PEs. An FU computes a new value when all required inputs
are available and previous results have been consumed. When an FU finishes computa-
tion, an acknowledge signal is sent back to all inputs and the next data tokens can be
received. Each FU, besides traditional data-driven operators [3], may also implement
the SE-PAR and PAR-SE operators introduced in [12] [13]. These operators resemble

2 TRIPS [11] is an example of an architecture with interconnections dynamically defined.

44 R. Ferreira et al.

(a)

FU

data

ready

ack

data

ready

ack data

ready

ack

FU

data

ready

ack

data

ready

ack data

ready

ack

(b)

FU

(c)

FU FU

FUMEM

Fig. 2. (a) Data-driven functional unit (FU) with two inputs and one output; (b) Hexagonal cell
with the FU; (c) Hexagonal array (FUs may have FIFOs in their input/output ports)

Fig. 3. A hexagonal array interactive simulation using Hades

mux and demux operators without external control. The canonical form of PAR-SE has
two inputs (A and B) and one output (X). It repeatedly outputs to X the input in either
A and B, in an alternating fashion. The canonical form of SE-PAR has one input (A)
and two outputs (X and Y). The operator repeatedly alternates data on the input to ei-
ther X or Y. Note, however, that PAR-SE and SE-PAR can have more than two inputs
and two outputs, respectively. They can be used to reduce array resources and to fully
decentralize the control structure needed. These operations provide an efficient way of
sharing resources whenever needed (e.g., interface to an input/output port, interface to
memory ports, etc.). SE-PAR and PAR-SE operations with more than two outputs and
two inputs, respectively, can be implemented by a tree of basic SE-PAR and PAR-SE.

Each FU may have input/output FIFOs, which can be efficient structures to handle
directly unbalanced paths. Parameters such as protocol delay, FIFO size, FU granularity
are global in the context of an array but can be local when a specific dataflow imple-
mentation is the goal. At this level, an FU behavior and the communication protocol
are completely independent of the array architecture. They are specified as Java classes,
which provide an easy way to write an incremental FU library and then to model and to
simulate a pure dataflow, as well as a novel architecture.

Data-Driven Regular Reconfigurable Arrays 45

The properties of the target architecture such as the array topology, the interconnec-
tion network, and the PE’s placement, are specified using XML-based languages, which
provide an efficient way to explore different array architectures.

We can use the graphical user interface of Hades to perform interactive simulation
at Dflow or Aflow. Fig. 3 shows a screenshot with a hexagonal array simulation and the
respective waveforms.

3 A Flexible Mapping Approach

An array processor can be defined as a set of PEs connected with different topolo-
gies. Our goal is to allow the exploration of data-driven architectures, which can have a
mesh, a hexagonal or any other interconnection network. Previous works [14][15] have
addressed the mapping of data-driven algorithms on regular array architectures. A map-
ping algorithm for a regular hexagonal array architecture has been proposed in [14], with
a fixed interconnection degree. On the other hand, most array architectures are based
on grid topology [15]. Our approach differs from the previous ones in two significant
ways: (a) it is currently able to compare hexagonal and grid topologies; (b) it presents
an object-oriented mapping scheme to model different patterns; (c) it is flexible enough
to accommodate other mapping algorithms.

Our object-oriented mapping scheme also takes advantages of Java and XML tech-
nologies to enable a portable and flexible implementation. The scheme provides an easy
way of modeling grid, hexagonal, octal, as well as others topologies. The implementa-
tion is based on three main classes: the Array, the PE, and the Edge. The Array class
implements the place and routing algorithm. The array and neighbor parameters (e.g.,
number and their positions) are specified using PE classes. Finally, the Border class
models the number and type of connections between neighbors. Examples of PE and
Edge classes are represented in Fig. 4. Each PE defines the number of borders with the
neighbors, with each border having the input/output connections defined by the Edge
class. At the moment the scheme does not accept different Edges.

A PE can be connected to N-hop neighbors (see Fig. 5a) and can have in, out and/or in-
out connections (see Fig. 5b). In a 0-hop pattern, each PE is connected to the immediate
neighbors. In a 1-hop pattern, each PE is connected to the immediate neighbors and
1-hop, i.e., the PEs that can be reached by traversing through one neighbor PE. For
instance, the nodes 1 and 3 are 1-hop neighbors in Fig. 5a.

(a) (b)

Fig. 4. Main classes of the mapping scheme: (a) PE classes, each one with different edges; (b)
Edge classes (three parameters are used: number of input, output, and input/output connections

Two versions of a first mapping algorithm have been developed (versions PR1 and
PR2). They are based on the greedy algorithm presented in [14]. Albeit simple, they
enabled us to explore different connection patterns and different topologies. The mapping

46 R. Ferreira et al.

Grid
0 hop, 1 in-
out

Grid
1 hop, 1 in-out
Grid
1 hop, 1 in-out

Hexagonal
0 hop, 1in, 1

out

Hexagonal
0 hop, 1in, 1

out

Hexagonal
0 hop, 2 in-out

(a) (b)

Fig. 5. Different topologies supported by the mapping phase: (a) 0-hop and 1-hop Grid Topology
(b) Uni-directional and Bi-directional Neighbor Connection

algorithm is divided in place and route steps. The algorithm starts by placing the nodes
of the dataflow graph (i.e., assign a PE for each node of the graph) based on layers and
then optimizes the placement based on the center mass forces. The PR1 version adds
NOP nodes in the input dataflow graph before starting the optimization phase. After
placement, the route step tries to connect the nodes using incremental routing (e.g., each
path of the original DFG is constructed by routing from one PE to one of its neighbors).

The infrastructure has been developed to easily integrate different mapping algo-
rithms. Future work will address a more advanced mapping algorithm. We plan to add
critical path sensibility and to include path balancing, which can be very important in
array architectures without or with small size FIFOs. A scheme to deal with heteroge-
neous array elements (e.g., only some PEs with support for multiplication) should also
be researched. Notice also that the arrays currently being explored do not permit the use
of a PE to implement more than one operation of the DFG. Arrays including this feature
require node compression schemes as has been used in [14] for hexagonal arrays.

4 Experimental Results

We have used the current prototype environment to perform some experiments. In the
examples presented, we have used 32-bit width FUs and a 4-phase asynchronous hand-
shake mechanism. All executions and simulations have been done in a Pentium 4 (at 1.8
GHz, 1 GB of RAM, with Linux).

4.1 Examples

As benchmarks we use three DSP algorithms: FIR, CPLX, and FDCT. FIR is a finite-
impulse response filter. CPLX is a FIR filter using complex arithmetic. FDCT is a fast
discrete cosine transform implementation. The last two benchmarks are based on the C
code available in [16]. For the experiments, we manually translated the input algorithms
to a dataflow representation. The translation has been done bearing in mind optimization
techniques that can be included in a compiler from a software programming language
(e.g., C) to data-driven representations (see, e.g., [17][18] for details about compilation
issues).

Data-Driven Regular Reconfigurable Arrays 47

Table 1. Properties related to the implementations of three DSP benchmarks

Ex #FU #copy #ALU #MULT #SE- #PAR- #I/O Average Average Max Max
PAR SE activity activity (ALU+MULT) ILP

(ALU+MULT) (all) (all)

FIR-2 7 1 2 2 0 0 2 1.00 1.00 4 7
FIR-4 13 3 4 4 0 0 2 1.00 1.00 8 13
FIR-8 25 7 8 8 0 0 2 1.00 1.00 16 25

FIR-16 49 15 16 16 0 0 2 1.00 1.00 32 49
CPLX4 22 5 8 2 4 1 2 0.70 0.86 8 18
CPLX8 46 13 18 4 8 1 2 0.68 0.82 16 38
FDCTa 92 26 36 14 7 7 2 0.12 0.18 10 23
FDCTb 102 26 46 14 7 7 2 0.12 0.16 12 25
FDCT 136 26 52 14 21 21 2 0.20 0.26 22 49

For the data-driven implementation of the FDCT example (see part of source code
in Fig. 6a) we used the SLP (self loop pipelining) technique with SE-PAR and PAR-
SE operators [13][12]. See the block diagram in Fig. 6b. An SE-PAR tree splits the
matrix input stream in 8 parallel elements. Then, the inner loop operations are performed
concurrently, and finally, a PAR-SE tree merges the results into a unique matrix output
stream. Notice that the SE-PAR and PAR-SE operators are also used here to share the
computational structures of the two loops of the FDCT.

4.2 Results

Table 1 shows the number of resources needed (number of FUs) and the results obtained
by simulating implementations of the FIR and CPLX filters, with different number of
taps, and two parts of the FDCT (FDCTa is related to the vertical traversal and FDCTb is
related to the horizontal traversal) and the complete FDCT. In these experiments FIFOs
(size between 1 and 3) in the inputs and outputs of each FU are used to achieve the
maximum throughput. The CPU time to perform each simulation has been between 1 to
4 seconds for 1,024 input data items.

Input Mem

Se-Par
Se-Par

Par-se
...

Par-se Par-se

Se-par

Shared Loop
body

Vert Horiz

Buffer 256
* +

>>+

Output Mem

...

8 stream terms

Cnt

8 8

1

Cnt

8

64

Cnt

N

Cnt

8 8

1

Cnt

81

CntCnt

8

64

Cnt

N64

CntCnt

N

1

Cnt

8*N1

CntCnt

8*N

1

Cnt

81

Cnt

81

CntCnt

8

rd

Cnt

8 8

1

Cnt

81

CntCnt

8

64

Cnt

N64

CntCnt

N

wr

1

Cnt

81

CntCnt

8

1

CntCnt

8*N

wr

I_1 = 0;
For (i=0; i < N; i++) { // vertical

For (j=0;j<8;j++) {
f0 = dct[0+i_1]; ... f7= dct[56+i_1];
g0 = f0+f7;
..../* loop body */
buf[0+i_1]=F0; buf[56+i_1]=F7;
i_1++;

}
i_1 += 56;

}
i_1 = 0;
For (i=0; i < 8*N; i++) { // horizontal

f0 = buf[0+i_1]; ... f7= buf[7+i_1];
g0 = f0+f7;
..../* loop body */
out[0+i_1]=F0; out[7+i_1]=F7;
i_1+= 8;

}

0

0(a) (b)

Fig. 6. FDCT: (a) source code based on the C code available in [16]; (b) possible FDCT imple-
mentation using the SLP technique and sharing the loop body resources between vertical and
horizontal traversal

48 R. Ferreira et al.

The average activity columns show the percentage of time in which an FU performs
an operation. The maximum activity (i.e., 1.00) is reached when the FU activity is
equal to the input stream rate. We present average activities taking into account only
ALU+MULT operations and all the operations. The maximum ILP (instruction level
parallelism) shows the maximum number of FUs executing at a certain time step. Once
again, we present ILP results for ALU+MULT and for all operations. As we can see
for FIR and CPLX the maximum ILP is approximately equal to the number of FUs,
which depicts that all the FUs are doing useful work almost all the time. With FDCT,
the maximum ILP is high (22 for ALU+MULT operations and 49 for all operations,
considering the complete example) but many FUs are used only small fractions of the
total execution time. We believe this can be improved by using SE-PAR and PAR-SE
operators with more outputs and inputs, respectively. For instance, in the hexagonal
array we may have implementations of these operators with 6 inputs or 6 outputs, which
significantly reduce the SE-PAR and PAR-SE trees. Fig. 7 shows a snapshot of the
execution of FDCT showing the operations activity.

The mapping algorithms presented in Section 3 have been implemented in Java.
Table 2 shows the mapping results for the three benchmarks on three different array
topologies (Grid, Grid 1-hop, and Hexagonal), each one with two different connection
structures (0,0,2 and 2,2,0 indicate 2 bidirectional connections, and 2 input and 2 output
connections in each Edge of a PE, respectively). Each example has been mapped in 200
to 400 ms of CPU time.

Column "N/E" specifies the number of nodes and edges for each dataflow graph.
Average path lengths (measured as the number of PEs that a connection needs to traverse
from the source to the sink PE) after mapping the examples onto three topologies are
shown in columns "P". Columns "M" represent the maximum path length for each
example when mapped in the correspondent array. Cells in Table 2 identified by "-"
represent cases unable to be placed and routed by the current version of our mapping
algorithm. Those cases happened with the FDCT examples on the Grid topology.

The results obtained, using the implemented mapping scheme, show that the simpler
Grid topology is the worst in terms of maximum and average path lengths. Hexagonal
and the Grid 1-hop perform distinctly according to the benchmark. The hexagonal seems

Fig. 7. Activity of the FUs during initial execution of the FDCT implementation shown in Fig.
6b. After 102 input samples the implementation starts outputting each result with maximum
throughput

Data-Driven Regular Reconfigurable Arrays 49

Table 2. Results of mapping the benchmarks on different array topologies and interconnection
patterns between PEs

EX N/E P&R Grid Grid 1-hop Hexagonal
0,0,2 2,2,0 2,2,0 0,0,2 2,2,0 0,0,2

P M P M P M P M P M P M

FIR2 7/7 PR1 1.28 2 1.28 2 1.28 2 1.28 2 1.28 2 1.28 2
PR2 1.28 2 1.28 2 1.28 2 1.28 2 1.14 2 1.14 2

FIR4 13/15 PR1 1.86 4 1.60 3 1.40 2 1.40 2 1.33 2 1.33 2
PR2 1.60 3 1.60 3 1.46 2 1.46 2 1.26 2 1.26 2

FIR8 25/31 PR1 1.96 6 2.03 5 1.58 3 1.58 3 1.54 4 1.54 4
PR2 1.83 5 1.83 5 1.54 3 1.54 3 1.51 4 1.51 4

FIR16 49/63 PR1 2.25 9 2.26 11 1.71 5 1.69 5 1.55 7 1.55 7
PR2 2.19 9 2.15 11 1.71 5 1.73 5 1.71 8 1.71 8

CPLX4 22/28 PR1 1.71 6 1.75 6 1.46 3 1.46 3 1.39 5 1.39 5
PR2 1.71 6 1.71 6 1.46 3 1.46 3 1.50 4 1.50 4

CPLX8 46/60 PR1 2.46 10 2.31 11 1.73 5 1.73 5 1.75 7 1.76 7
PR2 2.13 10 2.21 11 1.61 6 1.61 6 1.80 8 1.80 8

FDCTa 92/124 PR1 - - 2.49 14 1.83 6 2.09 7 2.08 8 2.32 9
PR2 - - 2.41 10 1.83 5 1.96 10 2.07 10 2.10 9

FDCTb 102/134 PR1 - - 2.32 14 1.75 6 1.94 7 2.01 10 2.24 9
PR2 - - 2.42 12 1.76 5 1.85 8 1.97 10 2.02 10

FDCT 136/186 PR1 - - - - 3.19 15 3.31 21 4.61 22 4.31 28
PR2 - - - - 2.91 13 3.01 16 3.71 20 4.04 21

to perform better for the FIR filters and is outperformed by the Grid 1-hop for the other
benchmarks (CPLX and FDCT). Values in bold in Table 2 highlight the best results. The
results confirm that the Grid 1-hop outperforms the Grid topology as been already shown
in [15]. Note however that the hexagonal topology was not evaluated in [15].

5 Conclusions

This paper presents further enhancements in an environment to simulate and explore
data-driven array architectures. Although in those architectures many features are worth
to be explored, developing an environment capable to exploit all the important features
is a tremendous task. In our case we have firstly selected a subset of properties to
be modeled: FIFO sizes, grid or hexagonal topologies, etc. Notice, however, that the
environment has been developed bearing in mind incremental enhancements, each one
contributing to a more powerful exploration.

A first version of a mapping approach developed to easily explore different array
configurations is presented and results achieved for hexagonal and grid topologies are
shown. This first version truly proves the flexibility of the scheme.

Ongoing work intends to add more advanced mapping schemes to enable a compari-
son between different array topologies independent from the mapping algorithm used to
conduct the experiments. Forms to deal with heterogeneous array elements distributed
through an array are also under focus.

Further work is also needed to allow the definition of the configuration format for
each PE of the architecture being evaluated, as well as, automatic VHDL generation
to prototype a certain array or data-driven solution in an FPGA. We have also long-
term plans to include a front-end compiler to continue studies of some data-driven array
features with complex benchmarks.

We really hope that further developments will contribute to an environment able to
evaluate new data-driven array architectures prior to fabrication.

50 R. Ferreira et al.

References

1. Hartenstein, R.: A Decade of Reconfigurable Computing: a Visionary Retrospective. In: Int’l
Conf. on Design, Automation and Test in Europe (DATE’01), Munich, Germany (2001) 642–
649.

2. Bossuet, L., Gogniat, G., Philippe, J.L.: Fast design space exploration method for recon-
figurable architectures. In: Int’l Conference on Engineering of Reconfigurable Systems and
Algorithm (ERSA’03), Las Vegas, Nevada (2003)

3. Veen, A.H.: Dataflow machine architecture. ACM Computing Surveys 18 (1986) 365–396
4. Hartenstein, R., Kress, R., Reinig, H.: A Dynamically Reconfigurable Wavefront Array Ar-

chitecture. In Proc. Int’l Conference on Application Specific Array Processors (ASAP’94)
(1994) 404–414

5. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming Applica-
tions. In: Proc. of the Int’l Conf. on Compiler Construction (CC’02) (2002)

6. Imlig, N., et al.: Programmable Dataflow Computing on PCA. IEICE Trans. Fundamentals
E83-A (2000) 2409–2416

7. Hartenstein, R., Herz, M., T. Hoffmann, T., Nageldinger, U.: Generation of Design Sug-
gestions for Coarse-Grain Reconfigurable Architectures. In: 10th Int’l Workshop on Field
Programmable Logic and Applications (FPL’00), Villach, Austria (2000)

8. R. Hartenstein, R., Herz, M., Hoffmann, T. Nageldinger, U.: KressArray Xplorer: A New
CAD Environment to Optimize Reconfigurable Datapath Array Architectures. In: 5th Asia
and South Pacific Design Automation Conference (ASP-DAC’00), Yokohama, Japan (2000)
163–168

9. Ferreira, R., Cardoso, J.M.P., Neto, H.C.: An Environment for Exploring Data-Driven Archi-
tectures. In: 14th Int’l Conference on Field Programmable Logic and Applications (FPL’04),
LNCS 3203, Springer-Verlag (2004) 1022-1026

10. Hendrich, N.: A Java-based Framework for Simulation and Teaching. In: 3rd European Work-
shop on Microelectronics Education (EWME’00), Aix en Provence, France (2000) 285–288

11. Burger, D., et al.:Scaling to the End of Silicon with EDGE architectures. IEEE Computer
(2004) 44–55

12. Cardoso, J.M.P: Self Loop Pipelining and Reconfigurable Dataflow Arrays. In: Int’l Workshop
on Systems, Architectures, MOdeling, and Simulation (SAMOS IV), Samos, Greece, LNCS
3133, Springer Verlag (2004) 234–243

13. Cardoso, J.M.P.: Dynamic Loop Pipelining in Data-Driven Architectures. In: ACM Int’l Con-
ference on Computing Frontiers (CF’05), Ischia, Italy (2005)

14. Koren, I., et al.: A Data-Driven VLSI Array for Arbitrary Algorithms. IEEE Computer 21
(1989) 30–43

15. Bansal, N., et al.: Network Topology Exploration of Mesh-Based Coarse-Grain Reconfig-
urable Architectures. In: Design, Automation and Test in Europe Conference (DATE ’04),
Paris, France (2004) 474–479

16. Texas Instruments, Inc. TMS320C6000 Highest Performance DSP Platform. 1995-2003,
http://www.ti.com/sc/docs/products/dsp/c6000/benchmarks/62x.htm#search

17. Budiu, M., Goldstein, S.C.: Compiling application-specific hardware. In: Proceedings 12th
Int’l Conference on Field Programmable Logic and Applications (FPL’02), LNCS 2438,
Springer-Verlag (2002) 853–863

18. Cardoso, J.M.P, Weinhardt, M.: XPP-VC: A C Compiler with Temporal Partitioning for
the PACT-XPP Architecture. In: 12th Int’l Conference on Field Programmable Logic and
Applications (FPL’02), LNCS 2438, Springer Verlag (2002) 864–874

Automatic FIR Filter Generation for FPGAs

Holger Ruckdeschel, Hritam Dutta, Frank Hannig, and Jürgen Teich

Department of Computer Science 12, Hardware-Software-Co-Design,
University of Erlangen-Nuremberg, Germany
{dutta, hannig, teich}@cs.fau.de

Abstract. This paper presents a new tool for the automatic generation of
highly parallelized Finite Impulse Response (FIR) filters. In this approach we
follow our PARO design methodology. PARO is a design system project for mod-
eling, transformation, optimization, and synthesis of massively parallel VLSI ar-
chitectures. The FIR filter generator employs during the design flow the follow-
ing advanced transformations, (a) hierarchical partitioning in order to balance
the amount of local memory with external communication, and (b), partial lo-
calization to achieve higher throughput and smaller latencies. Furthermore, our
filter generator allows for design space exploration to tackle trade-offs in cost and
speed. Finally, synthesizable VHDL code is generated and mapped to an FPGA,
the results are compared with a commercial filter generator.

1 Introduction and Related Work

At all times, there was a need for high performance, low size, low cost, low power, and
other criteria, and therefore the ambition to develop dedicated massively parallel hard-
ware to achieve these goals. We can not imagine life today without audio, video, and
speech communication which are all based on digital signal processing. The applica-
tions considered in this variety of areas are well qualified for hardware implementation
because of their inherent data parallelism and the common computational units found in
most signal processing algorithms. A lot of these applications can be described by algo-
rithm classes based on sets of recurrence equations which are closely related to single
assignment code (SAC), where the whole parallelism is explicitly given. However only
few synthesis tools for the design of application specific circuits exists when starting
from a given nested loop program. For instance, Compaan [1] which deals with process
networks or PICO-N initially developed by the Hewlett-Packard Laboratories [2,3] and
recently commercialized as PICO Express by Synfora [4]. PARO [5, 6], is a design
system project for modeling, transformation, optimization, and processor synthesis for
the class of Piecewise Linear Algorithms (PLA). PARO can be used for the process of
automated synthesis of regular circuits and will be later described in this paper. Cer-
tainly, there exists a number of fully developed hardware design languages and tools
like Handel-C [7] but they use imperative forms as input code or they do not allow
high-level program transformations.

In this paper we present a flexible design tool for the automatic synthesis of FIR fil-
ters. In general, digital filters are used for two purposes, (1) for the separation of signals
that have been combined, and (2), the restoration of signals that have been distorted
in some way, i.e., filters modify or remove unwanted frequencies from an input sig-
nal. Since FIR filters have a wide field of application there exist quite a large number

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 51–61, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

52 H. Ruckdeschel et al.

of tools for designing and generating filters. For example, in [8] the authors describe
an approach for the automatic VHDL generation of FIR filters by the use of truncated
multipliers in order to decrease the design complexity. Other approaches to reduce the
filter size are distributed arithmetic as used in Xilinx CORE Generator [9] or in Altera’s
FIR Compiler [10]. Closely related to the basic concepts presented here is the approach
in [11] where the authors use MMAlpha for the automatic generation of pipelined LMS
adaptive filters.

Beside the possibilities to parameterize the bitwidths of input and output signals,
and the number of taps, the following aspects are the novel contributions of this paper:

– Highly parallel implementation as a two-dimensional pipelined processor array.
– Application of hierarchical partitioning techniques in order to balance the amount

of local memory with external communication [12].
– Usage of partial localization [13] to achieve throughput higher than 100% (real

parallel computation) and smaller latencies.

The rest of the paper is structured as follows. In Section 2, we introduce briefly some
basic definitions and transformations for the automatic parallelization in the polytope
model. In Section 3 and 4, the architecture design and features of our developed Firgen
tool are described. In Section 5, results and comparison of the generated FIR filters to
state of the art tools are presented. In Section 6, we conclude our work.

2 Definitions, Notations, and Some Concepts

The class of algorithms dealt with in our methodology is a class of recurrence equations
known as Piecewise Linear Algorithms (PLA) [13].

Example 1. The FIR (Finite Impulse Response) filter is described by the simple dif-
ference equation y(i) = ∑N−1

j=0 a(j) ·u(i− j) with 0 ≤ i < T , N denoting the number of
filter taps, a(j) the filter coefficients, u(i) the filter input, and y(i) the filter result. The
difference equation on parallelization and embedding in a common index space can be
written as the following PLA

a[i, j] = a[0, j]; u[i, j] = u[i− j,0]; x[i, j] = a[i, j] ·u[i, j];
y[i, j] = y[i, j−1]+ x[i, j]; (1)

with the iteration domain I = {(i, j) | 0≤ i≤ T −1 ∧ 0≤ j ≤ N−1}.
The process of obtaining a hardware description in VHDL from PLA definitions in-
volves scheduling and allocation transformations (see Section 2.2) to obtain a full-size
processor array (PA) implementation. However, full size implementations are depen-
dent on problem parameters. Therefore another well known transformation partitioning
is used to obtain reduced size PAs which meet the architecture constraints. Localization
is a transformation to convert broadcast signals into short propagation links. The local-
ization of all input and output variables gives the following set of recurrence equations
for the FIR filter.

a[i, j] = a[i−1, j]; u[i, j] = u[i−1, j−1]; x[i, j] = a[i, j] ·u[i, j];
y[i, j] = y[i, j−1]+ x[i, j]; (2)

In the next subsections, we describe the mentioned transformations in detail.

Automatic FIR Filter Generation for FPGAs 53

2.1 Partitioning

Partitioning is a transformation which covers the index space of computation using
congruent hyperplanes, hyperquaders, or parallelepipeds called tiles. The transforma-
tion has been studied in detail for compilers and its use has led to program acceleration
through better cache reuse on sequential processors (i.e., loop tiling) [14], implementa-
tion of algorithms on given parallel architectures from supercomputers to multi-DSPs
and FPGAs. For PAs, it is carried out in order to match a loop nest implementation

j1=0

j1=1
k1=0

l1=0

l1=1

a u y

l2=1l2=0

k2=1k2=0

j2=2j2=1j2=0

k1=1

1

0 2

3

4

5

2

3

4

5

6

7

5

6

7

8

9

10

7

8

9

10

11

12

10

11

12

13

14

15

15

16

17

18

19

20

12

13

14

15

16

17

17

18

19

20

21

22

16

17

18

19

18

19

20

21

21

20

21

22

23

22

23

24

23

24

25

26

25

26

27

28

26

27

28

29

28

29

30

31

30

31

32

33

31

32

33

34

35

36

33

34

35

36

37

38

Fig. 1. The iteration space of an example localized co-partitioned FIR filter multiplication with
12 taps. Each arc denotes a data dependency

to resource constraints. Well known partitioning techniques are multiprojection, LSGP
(local sequential global parallel, often also referred as clustering or blocking) and LPGS
(local parallel global sequential, also referred as tiling). Formally, partitioning divides
the index space I using congruent tiles such that it is decomposed into spaces J and K ,
i.e., I �→ J ⊕K . J ∈ Zn represents the points within the tile and K ∈ Zn accounts for
regular repetition of the tiles, i.e., the origin of each tile. Hierarchical partitioning meth-
ods use different hierarchies of tiling matrices to divide the index space. Co-partitioning
is such an example of a 2-level hierarchical partitioning [12], where the index space is
first partitioned into LS (local sequential) tiles, this tiled index space is tiled once more
using GS (global sequential) tiles as shown in Fig. 1. Co-partitioning uses both LSGP
and LPGS methods in order to balance local memory requirements with I/O bandwidth
with the advantage of problem size independence. Formally, it is defined as splitting of

54 H. Ruckdeschel et al.

an index space into spaces J , K and L , i.e., I �→ J ⊕K ⊕L1 using two congruent tile
types defined by tiling matrices, PLS and PGS. J ∈Zn represents the points within the LS
tiles and K ∈ Zn accounts for the regular repetition of the origin of LS tiles (i.e., tiles
marked with solid line in Fig. 1). L ∈ Zn accounts for the regular repetition of the GS
tiles (i.e., bigger tiles marked with dotted line in Fig. 1). Different partitioning schemes
such as LSGP, LPGS, and co-partitioning are defined by specific scheduling functions
which are typically realized through appropriate affine transformations defining the al-
location and scheduling (see Section 2.2).

Example 2. The dataflow graph of the localized co-partitioned FIR filter with tiling

matrices PLS =
(

J1 0
0 J2

)
, PGS =

(
K1 0
0 K2

)
with J1 = 2, J2 = 3, K1 = 2, K1 = 2 is shown

in Fig. 1. The recurrence equation for only the weights, i.e., a on co-partitioning is as
follows. For the sake of brevity the description of other variables (i.e. u, y) has been
omitted.

a [j1, j2,k1,k2, l1, l2] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(j2,k2, l2)
a[j1−1, j2,k1,k2, l1, l2]
a[j1 + J1−1, j2,k1−1,k2, l1, l2]
a[j1 + J1−1, j2,

k1 +K1−1,k2, l1−1, l2]

if j1 = 0 ∧ k1 = 0 ∧ l1 = 0
if j1 > 0
if j1 = 0 ∧ k1 > 0

if j1 = 0 ∧ k1 = 0 ∧ l2 > 0

The spaces after co-partitioning are J = {J = (j1, j2) | 0≤ j1 < J1 ∧ 0≤ j2 < J2} ,
K = {k1,k2 | 0≤ k1 < K1 ∧ 0≤ k2 < K2} ,L = {l1, l2 | 0≤ l1 < L1 ∧ 0≤ l2 < L2}

2.2 Space-Time Mapping

Linear transformations are used as space-time mappings in order to assign a processor
p (space) and a sequencing index t (time) to index vectors [15]. In co-partitioning, the
index points within the LS tiles are executed sequentially. All the LS tiles within a GS
tile are executed in parallel by the PA. The GS tiles are executed sequentially.

Definition 1. (Space-time mapping for co-partitioning). A space-time mapping in case
of co-partitioning is an affine transformation of the form

(
p
t

)
=

(
0 E 0
λJ λK λL

)(J
K
L

)
(3)

where E ∈ ZnK×nK is the identity matrix, λJ ∈ Z1×nJ , λK ∈ Z1×nK , λL ∈ Z1×nL .

Similarly, other partitioning schemes can be realized using an appropriate selection
of affine transformations characterizing the scheduling and the allocation of the index
points. The problem of determining an optimal sequencing index (i.e., λJ ,λK , . . .) taking
into account constraints on timing of PAs and availability of resources might be solved
by a Mixed Integer Linear Programming (MILP) formulation of the problem similar as
in [16].

1 J ⊕K ⊕L = {i = j +PLS · k +PGS · l | j ∈ J ∧ k ∈K ∧ l ∈ L ∧ PLS,PGS ∈ Zn×n}.

Automatic FIR Filter Generation for FPGAs 55

a yu

l1=1

l1=0

k1=0
j1=0

j1=1

l2=0 l2=1

k2=1k2=0

j2=0 j2=3j2=2j2=1

k1=1

0

1

2

3

4

5

6

7

32

3

1

4

5

6

7

8

9 4

5

2

6

7

8

9

10

3

4

5

6

7

8

8

9

10

11

12

13

14

15

10

11

12

13

14

15

16

17

9

10

11

12

11

12

13

14

15

16

13

14

15

16

17

18

16

17

18

19

20

21

22

23

18

19

20

21

22

23

24

25

17

18

19

20

19

20

21

22

23

24

21

22

23

24

25

26

24

25

26

27

26

27

28

29

30

31

28

29

30

31

32

33

25 27 29 31

3226 28 30

27

28

29

30

31

32

33

34

Fig. 2. Iteration space of the partially localized co-partitioned FIR filter with 12 taps. Each arc
denotes a data dependency. The black points denote the partial sums to be added, introduced due
to partial localization

Example 3. One can verify that scheduling and allocation for the dataflow graphs in
Fig. 1 and Fig. 2 are given by the following space-time mappings.(

p
t

)
=

(
0 0 1 0 0 0
0 0 0 1 0 0
1 2 2 5 16 10

)(
J
K
L

) (
p
t

)
=

(
0 0 1 0 0 0
0 0 0 1 0 0
1 2 2 1 16 8

)(
J
K
L

)

2.3 Partial Localization

Localization prior to partitioning introduces unnecessary copy operations and addition-
ally restricts optimal schedules available after partitioning [13]. A new design flow
implements partitioning before localization and therefore eliminates above mentioned
disadvantages. The concept of partial localization entails localization of data dependen-
cies for intra-tile dependencies in case of LPGS partitioning and inter-tile dependencies
for LSGP partitioning [13], and partial localization for intermediate schemes. Fig. 2
shows an example of the partially localized dataflow graph of the FIR filter. The latency
for the partially localized example is 15 cycles as compared to 19 cycles for the fully
localized example.

3 Architecture Design

This section describes the architecture design of the Firgen implementation. First, an
overview about the architecture is given and afterwards the major components of the
design are described in detail.

56 H. Ruckdeschel et al.

control flow

data flow

processor arrayinput FIFOs output FIFOs

I/O control
unit

input
data

output
data

coefficient
memories

coefficients

Fig. 3. Overview of the Firgen FIR filter architecture for a processor array with 3×3 processors

Architecture Overview. The core of the design is a 2-d array of K1×K2 processor ele-
ments (PE). Where K1, K2 can be selected according to FPGA architecture constraints.
Each PE contains one fixed-point, full precision multiply-and-accumulate unit (MAC),
which is used to compute the basic MAC operation in the FIR filter. This PA implements
the co-partitioned FIR filter as described in Section 2, with either fully or partially lo-
calized data dependencies. An overview of the architecture of Firgen is shown in Fig. 3.
The PA gets its input samples from a number of input FIFOs and stores the results in the
output FIFOs, where each row of the PA has its own pair of I/O-FIFOs. The streaming
input is distributed to corresponding input FIFOs as determined by an I/O control unit.
Similarly, each column of the array reads its coefficients from a separate coefficient
memory. In contrast to many other FIR filter implementations, like Xilinx Coregen, the
coefficients need not to be specified at synthesis time, but are stored in a RAM, allowing
the user to change the coefficients.

Processor Array. The structure of the processor array is depicted in Fig. 4. For each
data dependency crossing LS tiles, there is a corresponding interconnection between
the respective processors, with the appropriate number of delay registers between them.
Each processor needs the counter signals j1, j2, l1, and l2 to generate the control signals
for its internal multiplexers. These counter signals are generated by a global counter
unit and then propagated through the entire PA, delayed by an appropriate number of
registers. The automatic generation of a global counter and control unit has been done
as proposed in [17]. The number of registers is λK1 for the registers between two sub-
sequent processor rows, and λK2 between two subsequent processor columns.

Processor Element. The internal structure of a processor is depicted in the zoomed
view in Fig. 4. The boxes labeled Da0, Du0, Dy0 contain the respective number of delay
registers for the intra-processor (i.e., within one LS tile) data dependencies. The multi-
plexers select if the processor should compute with the internally stored values or read
data from another processor or from outside the array. Depending on the processor’s

Automatic FIR Filter Generation for FPGAs 57

Du1

Du1

Du3 Du3

Du4 Du4Du5

Du6

Du2

Du2

Du7

Du8

y1D

Da

y1D

Dy2

Dy2

Da

PE PE

PEPE

+

Dy0

Da0 Du0

from coefficient
memory

yua

from coefficient
memory

from input
FIFO

from input
FIFO

to output
FIFO

to output
FIFO

0

0

control
unit

M
U

X
_Y

MUX_UMUX_A

x

Fig. 4. Structure of the PA. Note that the length of the delay registers on the wrap around paths
(e.g. Du7 = 14) might be large in that case external memory is used for corresponding data storage

position in the array, the MUX U multiplexer has a different number of inputs. The
control unit gets the iteration counter signals j1, j2, l1, and l2 and decodes them into
select signals for the multiplexers. For the border PEs at k1 = 0, k2 = 0, and k2 = K2−1,
this control unit also generates the control signals for the input/output FIFOs and the co-
efficient memories, respectively. To increase the clock frequency, the processors might
be pipelined by using a pipelined multiplier and an additional pipeline register between
the multiplier and the adder. Even with full pipelining, the multipliers are still the slow-
est component of the whole design.

I/O Model. With partial localization enabled and a sufficient number of processors
available, the PA is able to process more than one sample per clock cycle. But in this
case of course, the filter I/O ports must allow this higher sample rate. For this reason, the
I/O ports are decoupled from the filter clock and operate at a different clock frequency.
This is no problem because modern FPGAs offer several clock domains. Generally, the
MAC unit tends to limit the overall clock frequency of a design. For example, on a Xil-
inx Virtex FPGA (xcv1000-4-bg560), using 16 bit input data and coefficients as well as
a pipelined MAC unit, the maximum frequency of the PA can work at is about 65 MHz,
while the maximum frequency for the I/O components is around 100 MHz. In this exam-
ple, the maximum filter throughput would be 100MHz/65MHz = 1.54. Asynchronous
I/O FIFOs provide the interface between the two clock domains. The input FIFOs are
filled with one sample per I/O clock cycle, while the PA reads the samples with the filter
clock frequency. The data flow through the output FIFOs is just the other way round.
The order in which the input samples are stored in the input FIFOs and the results are
read from the output FIFOs is controlled by a global I/O control unit. Because more
than one processor may read coefficients at the same time, each processor column gets
its own, independent coefficient memory, which holds only those coefficients that are
required by the corresponding subset of processors.

4 Automatic Filter Generation Tool

This section describes our C++ tool Firgen. Its purpose is to automate the steps parti-
tioning, scheduling and VHDL generation for the synthesis of FIR filters onto an FPGA.

58 H. Ruckdeschel et al.

Automatic Partitioning. The first step is to choose an optimal partitioning scheme that
meets the user’s requirements with respect to number of filter taps, latency, through-
put, clock frequency and costs. In order to find the optimal partitioning scheme, Firgen
needs to know the effects of tile sizes and scheduling on resource usage and speed.
This knowledge was obtained from a number of synthesis runs in order to character-
ize the building components (multiplier, register, etc.). Because these values are partly
FPGA-dependent, they are stored in a configuration file and thus may be easily adapted
for other devices. Also taking into account the theoretical facts from Section 2, Firgen
looks for Pareto-optimal solutions that match the requested constraints. If they cannot
be met, Firgen takes the solution closest to the user’s preferences.

Scheduling. After the partitioning scheme is selected, the next step is to find an optimal
scheduling. When determining the scheduling vector, Firgen takes into account the user
specified latency and throughput constraints. After choosing the scheduling vector, the
number of delay registers for each data dependency can be calculated. For the data de-
pendency vector d and the scheduling vector λ, the number of resulting delay registers
is n = λ ·d.

Optimization. During the filter generation, Firgen may perform the following opti-
mizations:

– Selection of the optimal number of pipeline registers for the MAC units in order to
maximize the clock frequency.

– Replace long shift registers that don’t contain valid data at every stage by FIFOs.
This reduces the number of required FPGA slices [5].

VHDL Generation. After all necessary parameters are determined by Firgen, the last
step is to actually generate the VHDL code. Firgen generates an example component
instantiation that the user can include in his design, and prints all necessary information,
like the required ratio of I/O clock to filter clock frequency and the I/O latency. A VHDL
test bench to verify the filter implementation may also be created.

5 Results and Comparison

In this section, we will explore the influence of the various partitioning parameters on
resource usage and speed of our design. We also compare our design to FIR filters
generated by Xilinx Coregen. All synthesis results were obtained from Xilinx ISE 6.3i
on a Xilinx Virtex FPGA (xcv1000-4-bg560).

Fig. 5 (a) and (b) show the theoretical total number of 1 bit registers for different LS
tile sizes (J1,J2) and the two possible LS scheduling directions. The parameters K1 = 4,
K2 = 4 are fixed, resulting in a 4× 4 PA, with fully pipelined MAC units, 16 bit input
data, 16 bit coefficients and 40 bit filter output. The discrepancy between the theoretical
number of registers and the actual FPGA resource usage as shown in Fig. 6 (a) and
(b) has one major reason: Shift registers can be mapped to LUTs in a very efficient
manner. One LUT can contain up to 16 bit of one shift register, therefore the slice count
is proportional not to the number of registers n, but to �n/16�, leading to steps in the
diagram. The same is true for the input and output FIFOs and the coefficient memories,
which also grow with greater tile sizes. The conclusions that can be drawn from the
results are, (a) smaller tile sizes are generally preferable, (b) row-major scheduling leads
to a significant saving of resources and considerably smaller latencies.

Xilinx Coregen offers also the possibility to generate classical MAC based filters
(MAC FIR). We used Coregen to generate a filter with 64 taps, 16 bit signed input

Automatic FIR Filter Generation for FPGAs 59

1
3

6
10

14
18

22
26

30

J11

3

6

10

14
18

22
26

30

J2

0

50000

100000

Registers

1
3

6
10

14
18

22
26

30

J1

0

00

0

(a)

1
3

6
10

14
18

22
26

30

J11

3

6

10

14
18

22
26

30

J2

0

50000

100000

Registers

1
3

6
10

14
18

22
26

30

J1

0

00

0

(b)

Fig. 5. Resource usage depending on LSGP tile sizes and LSGP scheduling direction, for an array
with 4× 4 processors, and the number of taps being N = 4J2 (a) Total number of 1 bit registers
for column-major LSGP scheduling. (b) Total number of 1 bit registers for row-major LSGP
scheduling

1
3

6
10

14
18

22
26

30

J11

3

6

10

14

18
22

26
30

J2

0

5000

10000

Slices

1
3

6
10

14
18

22
26

30

J1

0

00

0

(a)
1

3
6

10
14

18
22

26
30

J11

3

6

10

14

18
22

26
30

J2

0

5000

10000

Slices

1
3

6
10

14
18

22
26

30

J1

0

00

0

(b)

Fig. 6. Resource usage depending on LSGP tile sizes and LSGP scheduling direction, for an
array with 4× 4 processors, and the number of taps being N = 4J2 (a) Number of FPGA slices
for column-major LSGP scheduling, (b) Number of FPGA slices for row-major LSGP scheduling

data, 16 bit signed coefficients and 38 bit filter output. The filter throughput was set
to 12.5% (0.125 samples per cycle) for all cases. Special features offered by Coregen
implementations, exploiting coefficient symmetry, use of block RAM, that are not yet
supported by Firgen were disabled to get comparable results. In Table 1 the results are
shown. Note that the clock frequencies shown in the table are estimated by the synthesis
tool, and obviously do not differ between the ’min area’ and ’max speed’ configurations
of MAC FIR. Even after place-and-route, the resulting improvement of ’max speed’ is
only 0.7 MHz. So the differences of those two cases are unclear. In the current state,

60 H. Ruckdeschel et al.

Table 1. Resource usage and speed of Firgen, Xilinx Coregen MAC FIR generated FIR filters
with 64 taps and a throughput of 12.5%

Tool Configuration Slices Clock Latency
Firgen (optimized for slices) 2×4 PEs 2271 64.107 MHz 68
Firgen (optimized for latency) 1×8 PEs 2744 61.263 MHz 20
Coregen MAC FIR min area 2289 55.654 MHz 74
Coregen MAC FIR max speed 2303 55.654 MHz 75

Firgen is as good as MAC FIR with respect to costs, and even better in terms of clock
speed and latency. With partial localization enabled, Firgen has the advantage that it
allows filter throughput greater than 100% with drastically reduced latencies but usually
also for a higher prize.

6 Conclusions and Future Work

In this paper we used new transformations co-partitioning and partial localization for
the automated generation of 2-d PAs for FIR filters. Considerable gains are obtained
in throughput due to the mentioned transformations. The future work entails inclusion
of efficient pipelined parallel multipliers as truncated multipliers [8] to achieve further
increase in clock speeds. Also, Firgen can be easily adapted to FPGA’s features such as
block RAM and embedded multipliers. Furthermore, the Firgen tool is to be extended
to handle standard VLSI signal processing algorithms as IIR filter, motion estimation,
discrete wavelet transform etc.

References

1. Kienhuis, B., Rijpkema, E., Deprettere, E.: Compaan: Deriving process networks from
matlab for embedded signal processing architectures. In: Proc. Int. Workshop Hard-
ware/Software Co-Design, San Diego, U.S.A. (2000)

2. Schreiber, R., Aditya, S., Rau, B., Kathail, V., Mahlke, S., Abraham, S., Snider, G.: High-
level synthesis of nonprogrammable hardware accelerators. Technical Report HPL-2000-31,
Hewlett-Packard Laboratories, Palo Alto (2000)

3. Kathail, V., Aditya, S., Schreiber, R., Rau, B.R., Cronquist, D.C., Sivaraman, M.: PICO:
Automatically designing custom computers. Computer 35 (2002) 39–47

4. Synfora, Inc.: (www.synfora.com)
5. Bednara, M., Teich, J.: Automatic synthesis of FPGA processor arrays from loop algorithms.

The Journal of Supercomputing 26 (2003) 149–165
6. PARO Design System Project: (www12.informatik.uni-erlangen.de/research/paro)
7. CELOXICA, Handel-C: (www.celoxica.com)
8. Walters, E.G., Glossner, J., Schulte, M.J.: Automatic VHDL model generation of parame-

terized FIR filters. In: Proc. Int. Samos Workshop Systems, Architectures, Modeling, and
Simulation. (2002)

9. Xilinx, Inc.: CORE Generator Guide, San Jose, CA, U.S.A. (2004)
10. Altera Corporation: FIR Compiler – MegaCore Function User Guide 3.2.0, San Jose, CA,

U.S.A. (2004)
11. Guillou, A.C., Quinton, P., Risset, T., Massicotte, D.: Automatic design of VLSI pipelined

LMS architectures. In: Proc. Int. Conf. Par. Comput. Electrical Eng., Quebec, Canada (2000)
144–149

Automatic FIR Filter Generation for FPGAs 61

12. Eckhardt, U., Merker, R.: Hierarchical algorithm partitioning at system level for an improved
utilization of memory structures. IEEE T. CAD Integrated Circuits Syst. 18 (1999) 14–24

13. Teich, J., Thiele, L.: Exact partitioning of affine dependence algorithms. In Deprettere,
E., Teich, J., Vassiliadis, S., eds.: Embedded Processor Design Challenges. Volume 2268 of
Lecture Notes in Computer Science (LNCS). (2002) 135–153

14. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley Inc.
(1996)

15. Hannig, F., Dutta, H., Teich, J.: Regular mapping for coarse-grained reconfigurable archi-
tectures. In: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., Montréal, Quebec,
Canada (2004) 57–60

16. Hannig, F., Teich, J.: Design space exploration for massively parallel processor arrays. In:
Proc. Int. Conf. Par. Comput. Technologies, Novosibirsk, Russia (2001) 51–65

17. Dutta, H.: Mapping of Hierarchically Partitioned Regular Algorithms onto Processor Arrays.
Master’s thesis, University of Erlangen-Nuremberg (2004)

Two-Dimensional Fast Cosine Transform for
Vector-STA Architectures

J.P. Robelly, A. Lehmann, and G. Fettweis

Vodafone Chair for Mobile Communications Systems,
Technische Universität Dresden,

01062 Dresden, Germany
robelly@ifn.et.tu-dresden.de

Abstract. A vector algorithm for computing the two-dimensional Discrete Co-
sine Transform (2D-VDCT) is presented. The formulation of 2D-VDCT is stated
under the framework provided by elements of multilinear algebra. This algebraic
framework provides not only a formalism for describing the 2D-VDCT, but it
also enables the derivation by pure algebraic manipulations of an algorithm that is
well suited to be implemented in SIMD-vector signal processors with a scalable
level of parallelism. The 2D-VDCT algorithm can be implemented in a matrix
oriented language and a suitable compiler generates code for our family of STA
(Synchronous Transfer Architecture) vector architectures with different amounts
of SIMD-parallelism. We show in this paper how important speedup factors are
achieved by this methodology.

1 Introduction

The two-dimensional DCT plays a paramount role in video and image compression
techniques. Over the years many fast algorithms have been proposed for the computa-
tion of the DCT. Most of the publications related to implementation issues of the DCT
concentrate on VLSI implementations. We address in this paper the implementation of
a fast algorithm for the DCT into our family of STA processor cores featuring SIMD-
vector parallelism.

Over the past three decades, we have experienced how the SIMD-vector computa-
tional model has made its way from classical supercomputers to real-time embedded
applications. In fact, vector signal processors have emerged upon the promise of deliv-
ering flexibility and processing power for computing number crunching algorithms at
reasonable levels of power consumption. In [1] we presented a novel micro-architecture
for designing and implementing low-power, high-performance DSPs cores. We call this
architectural template Synchronous Transfer Architecture (STA). Moreover, in [2] we
presented a hardware design methodology that enables the rapid silicon implementa-
tion of SIMD-vector processors with different levels of parallelism based on our STA
architectural template.

The fast computation of signal transformations like the DCT is based on iterative
divide-and-conquer algorithms: The transformation matrix is expressed as a function of
smaller transformation matrices. Thus, the original computation that operates on vector

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 62–71, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Two-Dimensional Fast Cosine Transform for Vector-STA Architectures 63

spaces of a high dimensionality is reduced to the computation of smaller transformation
matrices that operate on smaller vector spaces. The iterative formulation of the original
transformation matrix is achieved by adequate permutation of the input samples. Ele-
ments of multilinear algebra are especially suitable for the description of this sort of al-
gorithm. On the one hand, the rich framework offered by multilinear algebra allows for
expressing the recursive nature of divide-and-conquer algorithms. On the other hand, it
also enables the manipulation and derivation of new algorithms by exploiting pure al-
gebraic properties. Especially interesting are those algebraic manipulations that reveal
the vector operations of the algorithm, since they lead to formulations of algorithms
that process data in vector fashion. These ideas are discussed in detail in [3], and they
encouraged many researchers to publish a series of papers. Most of these papers address
the derivation of vector algorithms for the classical example of the Fast Fourier Trans-
form (FFT). Especially interesting is the work by Franchetti [4], where an algorithm for
the vector computation of the FFT is presented.

In this paper we present the design of a vector algorithm for the computation of
the two-dimensional DCT based on the framework of multilinear algebra. Once a suit-
able algorithm is designed, we implement it in a matrix oriented language like Matlab.
Such a language allows for expressing vector algorithms described in the notation of
multilinear algebra. A suitable compiler can recognize these operators and generate a
sequence of vector machine instructions for our family of STA DSP cores. We show
that important speedup factors are achieved by this methodology. The remainder of this
paper is as follows. In section 2 we present our STA architectural template. In section 3
we introduce some elements of multilinear algebra. In section 4 we use this algebraic
framework for the derivation of the 2D-VDCT algorithm. In section 5 we introduce our
compiler infrastructure and the results obtained from the automatic code generation.
Finally, in Section 6 we present our conclusions.

2 Synchronous Transfer Architecture STA

Our DSP architectural concept is based on basic modules of the form shown in Fig. 1.
Such a basic module has an arbitrary number of input and outputs ports. In our concept
the output of each module is a register. Input and output ports can deal with a certain
data type, e.g. bool, 16-bit integer, 32-bit floating point, vectors of 16-bit integer, vec-
tors of 32-bit floating point, etc. Basic modules implement some functionality. In our
architecture concept, a system is built up from basic modules. Thus, ports of the same
data type are connected with each other through an interconnection network formed by
multiplexers.

Both the functionality of basic modules and the input multiplexers are explicitly
controlled by processor instructions. At each cycle the instruction configures the mul-
tiplexing network and the functionality of the basic modules. Thus, the whole system
forms a synchronous network, which at each clock cycle consumes and produces some
data. The produced data will in turn be consumed by other basic modules in the next
cycle. Due to the synchronous transfer of data between basic modules we have named
the architecture STA. In our concept, basic modules can be highly optimized data paths
or memory blocks. Memory blocks can be either register files or memories.

64 J.P. Robelly, A. Lehmann, and G. Fettweis

Functional Unit

MUX

Output Ports

Input Ports

Signals from
Output Ports

O
pc

od
e

In
pu

t 1

Control Signals

Input Selection
…

..
In

pu
t n

Im
m

ed
ia

te

S
T

A
 In

st
ru

ct
io

n
S

eg
m

en
t

Fig. 1. STA Architectural Template

The STA architecture offers a high degree of data reusability: Data produced in the
current cycle is directly routed to other processing units in the next cycles without going
through the register file or memory. This not only speeds up computations but it lowers
power consumption and register file pressure. The STA architecture also supports data
and instruction level parallelism. In fact, SIMD-vector data parallelism is supported by
letting input ports, output ports and data paths to deal with vector data types. Instruction
level parallelism is supported, since at each cycle a wide instruction controls each basic
module and the multiplexing network. This poses two problems. On the one hand, for
large STA systems the multiplexing interconnection network becomes a critical part of
the design. On the other hand, a wide instruction memory is needed. The complexity
of the interconnection network can be alleviated by reducing the number of connec-
tions between ports. An obvious strategy for this is to determine those connections
which allow for reusing program variables that present a high data locality. This is a
viable approach, since applications are known at design time of the processor and thus
the interconnection network can be customized. For those connections which are not
frequently reused, a connection with the register file suffices. To alleviate instruction
memory footprint we are applying code compression techniques similar to [5].

The simplicity and modularity of the STA concept enables the automatic generation
of RTL and simulation models of processor cores from a machine description [2]. This
allows for generating processor cores with different characteristics, e.g. size of register
file, memory capacity, interconnection network, functional units, data types and amount
of SIMD-vector parallelism. Despite the architecture simplicity of STA, it can handle
many applications of considerable complexity. For example a generic STA processor
1 with 8 data paths running at 212 Mhz. executes a 256 complex FFT in 8μs. The au-
tomatic code generation of processor cores imposes a new challenge: How to design
and implement algorithms that can be reused for a scalable level of SIMD-vector paral-

1 STA processor core furnished only with multipliers and adders. No customized functional units
for FFT acceleration (complex arithmetic, bit reverse or butterfly units) are available.

Two-Dimensional Fast Cosine Transform for Vector-STA Architectures 65

lelism? In order to face this problem some sort of abstraction is needed. From the code
generation perspective the adequate abstraction is achieved by applying compiler tech-
niques that can be reconfigured according to the target processor. From the algorithm
design perspective the adequate abstraction is achieved by using an algebraic frame-
work that resembles the features of the processor.

3 The Algebraic Characterization of SIMD Parallelism

Let us assume the computation y = Ax, where y,x are some vectors whose components
are scalars. The transformation matrix A defines an algorithm which in order to be
computed in a serial computer requires a certain number of machine cycles c. Now, let
us consider that the same transformation is to be computed in a vector processor with a
level of parallelism ν. It is a fact that in the same number of considered machine cycles
c the transformation described by the matrix A can be computed for ν different vectors.
This can be expressed as

ỹ = (A⊗ Iν) x̃, (1)

where⊗ is the Kronecker product, Iν is a ν×ν identity matrix, and x̃, ỹ can be regarded
as vectors with ν components and each component is itself a vector of the same di-
mensionality as x and y respectively. Equation (1) captures the SIMD computational
model and thus it is called a Kronecker SIMD-Vector factor [3]. More generally, the
expression

(Ib⊗A⊗ Iν⊗ Ic) (2)

can be fully vectorized and thus it can be efficiently implemented in a vector processor
with a level of parallelism ν. As we can observe the Kronecker product, which is an
operator from multilinear algebra, plays an important role in the description of algo-
rithms for SIMD-vector processors. Consider the m1×n1 matrix A with entries

[
a j,k
]

for j = 1,2, . . . ,m1 and k = 1,2, . . . ,n1, and the m2×n2 matrix B, then the m1m2×n1n2

matrix C that results from the Kronecker product of A and B is defined as

C = A⊗B =

⎡⎢⎢⎢⎣
a1,1B a1,2B . . . a1,n1B
a2,1B a2,2B . . . a1,2B

...
...

...
am1,1B am1,2B . . . am1,n1B

⎤⎥⎥⎥⎦ . (3)

Another important concept from multilinear algebra is the direct sum. The direct
sum of n arbitrary matrices is defined as

n−1⊕
i=0

Ai =

⎡⎢⎢⎢⎢⎣
A0 0 · · · 0

0 A1
...

...
. . . 0

0 · · · 0 An−1

⎤⎥⎥⎥⎥⎦ . (4)

To some extent, multilinear algebra can be regarded as the branch of algebra that
deals with the construction of vector spaces of a higher dimensionality from a set of

66 J.P. Robelly, A. Lehmann, and G. Fettweis

primitive vector spaces. The Kronecker product and the direct sum are the two funda-
mental concepts of algebra that enable this construction of vector spaces of a higher
dimensionality.

Especially intriguing is the connection between Kronecker products and shuffle al-
gebra. Davio, in his classical paper [6] established the connection between the Kro-
necker product of matrices and stride permutations. In his paper he proved the important
so called commutation theorem of Kronecker products

(A⊗B) = PN
M(B⊗A)PN

L , N = ML, (5)

where A, B are M×M, L×L matrices and PN
L is an N-point stride by L permutation.

Additional useful identities for manipulating stride permutations are

PMLK
K =

(
PMK

K ⊗ IL
)(

IM⊗PLK
K

)
, (6)

PMLK
ML =

(
IM⊗PLK

L

)(
PMK

M ⊗ IL
)
, (7)

IML = IM⊗ IL. (8)

Kronecker products present a series of other interesting algebraic properties. For exam-
ple, for the above introduced square matrices A and B we can write

A⊗B = (A⊗ IL)(IM⊗B) . (9)

4 2D-VDCT

In this section we introduce the mathematical derivation of the two-dimensional DCT
adapted to SIMD-vector processing. At first, we introduce the one-dimensional DCT
algorithm and later we extend the algorithm to the two-dimensional case.

4.1 1-D Fast Cosine Transform Algorithm

In [7], Cvetković developed an algorithm for the one-dimensional DCT based on the
algorithm derived by Hou [8]. The fast algorithm described in this paper presents a
factorization of the N-point Type-II 1D-DCT as a product of sparse matrices. This fac-
torization can be expressed in terms of elements of multilinear algebra as follows

DCTN = QN

[
q−2

∏
k=0

(
I2k ⊗A N

2k

)][q

∏
k=1

(
I N

2k
⊗B2k

)
·
(

I N
2k
⊗DFT2⊗ I2k−1

)]
RN , (10)

where q = ld(N). The bit-reversal matrix can be defined in terms of stride permutations
as

QN =
q−2

∏
k=0

(
I2k ⊗P2q−k

2q−k−1

)
.

Two-Dimensional Fast Cosine Transform for Vector-STA Architectures 67

AN is a sparse matrix involved in the computation and is defined as

AN =
(

IN
2
⊕KN

2

)
, (11)

where IN is an N×N identity matrix and KN = QNLNQN for the N×N matrix

LN =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0

0 1 1
. . .

...

0 0 1
. . . 0

...
. . .

. . . 1
0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Other sparse matrix involved in the computation is BN , which is defined as

BN =
(

IN
2
⊕CN

2

)
, (13)

where

CN
2

= diag

[
1

2cos(φm)

]
, m = 0,1, . . . ,N/2−1 (14)

and

φm =
2π(m+1/4)

N
.

The matrix DFT2 denotes the 2-point Discrete Fourier Transform (DFT) matrix and it
is given by

DFT2 =
[

1 1
1 −1

]
. (15)

Finally, the input permutation matrix RN is defined as

RN =
(

IN
2
⊕ I N

2

)
PN

2 ,

where IN/2 is the mirrored N/2×N/2 identity matrix. For example, I N
2

for N = 8 is
given by

I 8
2

=

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ .

4.2 Derivation of the 2-D VDCT Algorithm

Pratt [9] points out that separable bilinear transformations can be expressed as two
linear transformations: one operating over the rows and one operating over the columns.
Since the 2D-DCT can be regarded as such a bilinear transformation we can write for
the transformation of an N×N matrix X the following

(DCTN)X (DCTN)T . (16)

68 J.P. Robelly, A. Lehmann, and G. Fettweis

The computation of the 2D-DCT in the matrix space as in equation (16) is isomorph to
a computation of the algorithm that operates onto a vector space. The vector space is
constructed by stacking the rows of the matrix X . For this case the computation of the
2D-DCT becomes

(DCTN ⊗DCTN) ·Vec(X) , (17)

where Vec(·) represents the vectorization of a matrix in row-major order. Thus, the
two-dimensional algorithm can be derived from the one-dimensional matrix form using
the identity

DCTN×N = DCTN⊗DCTN . (18)

This 2-D transformation matrix has to be applied to a vector x of N2 elements. The
vector x is obtained from the row-major ordering of the N×N input data array X(n,n)
and thus it is defined as

x =

⎡⎢⎢⎢⎣
xT

0
xT

1
...

xT
N−1

⎤⎥⎥⎥⎦ for xn = [X(n,1) . . . ,X(n,N−1)].

Using (9), we can write for equation (18) the following

DCTN×N = (DCTN⊗ IN)(IN⊗DCTN). (19)

In order to derive an algorithm that process data in vector fashion, expressions of the
form given by (1) are required. By using identity (5), (19) can be expressed as

DCTN×N = (DCTN ⊗ IN)PN·N
N (DCTN ⊗ IN)PN·N

N , (20)

where the maximal SIMD parallelism of νmax = N is obtained. The expression PN·N
N

denotes a transposition matrix that cannot be efficiently mapped to SIMD processors,
since it does not match the form given by (2). For this reason, a further decomposi-
tion is required to obtain a simpler structure for vector processors. Using identities (6)
and (7) yields to a formulation adapted to a level of parallelism ν. We obtain for the
transposition

PN2

N =
(

IN
ν
⊗PN

ν ⊗ Iν

)(
IN2

ν2
⊗Pν2

ν

)(
P

N2
ν

N
ν
⊗ Iν

)
. (21)

The term (DCTN ⊗ IN) adapted to a SIMD vector length ν, using the selected 1D-
algorithm (10) and identity (8) is given by

(DCTN⊗ IN) =
q−2

∏
k=0

(
I2k ⊗P2q−k

2q−k−1 ⊗ Iν⊗ IN
ν

)
·
[

q−2

∏
k=0

(I2k ⊗A N
2k
⊗ Iν⊗ IN

ν
)

][
q

∏
k=1

(
I N

2k
⊗B2k ⊗ Iν⊗ IN

ν

)
·
(

I N
2k
⊗DFT2⊗ Iν⊗ I2(q−p+k−1)

)](
RN ⊗ Iν⊗ IN

ν

)
q = ld(N), p = ld(ν), p≤ q. (22)

Two-Dimensional Fast Cosine Transform for Vector-STA Architectures 69

Applying (21) and (22) into (20), we obtain a fast 2-D VDCT algorithm for SIMD-
vector processing. The derived algorithm is completely parameterizable by the trans-
formation size N of the source data array and the available level of parallelism ν of
the used processor. Nearly all terms of the algorithm are vector computations matching

expression (2) excepting for
(

IN2/ν2 ⊗Pν2

ν

)
.

5 Implementation and Results

The algorithm derived above can be directly implemented in a matrix-oriented lan-
guages like Matlab. In [2], we presented a compiler infrastructure for the automatic
code generation for our STA SIMD-vector cores. In Fig. 2, we can observe a block di-
agram of the compiler. The compiler stage known as Kronecker center part features
the pattern matching of expressions embedded in the Matlab code, which have the form
of equation (2). The Matlab code is programmed using functions that compute the dif-
ferent operators of multilinear algebra and stride permutations introduced in section 3.
This compiler stage also generates a high level intermediate representation of vector
instructions that will be processed by further stages of the compiler. This high level
intermediate representation of the program resembles a linear instruction list.

C Code

Frontend

Matlab Source
Code

RNA
Intermediate

Representation

Kronecker
Center Part

Sequential
Instruction List

insn

Backend

To C

Processor
Object Code

Fig. 2. Block Diagram of the Compiler Infrastructure for Automatic Code Generation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4 8 16

Number of Slices

1,00

1,8

4,47

Fig. 3. Speed-up factors for DCT16×16

70 J.P. Robelly, A. Lehmann, and G. Fettweis

0 1 2 3Slice

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 0

1

2

3

row

1.step

Slice

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0

1

2

3

row

2.step

0 1 2 3

Blockwidth 1 2

Fig. 4. Data transfers for computing Pν2

ν for ν = 4

The algorithm presented in section 4 was programmed in Matlab and object code
was generated for our DSP processor cores with different levels of parallelism ν. For
N=16 speedup results for a raising number of data paths ν are presented in Fig.3. The
speedup is computed taking as a reference the execution time required to compute the
algorithm into a DSP processor with a level of parallelism ν = 4. As we can observe
from the diagram, we can expect to achieve a speedup factor of 1.8 if we implement the
algorithm into a machine with ν = 8 data paths. A more important gain on the speedup
factor is achieved if the level of parallelism is ν = 16. For this case some expensive
permutations of (21) are cancelled out.

In order to reduce the impact of the unique non-vector term of our algorithm, namely
Pν2

ν , it is important to find an efficient implementation. A proposed approach is described
in Fig. 4 for ν = 4. Our processor architecture is furnished with an interconnection
network that supports the required data transfers between data paths in i = ldν steps.

6 Conclusions

The 2D-VDCT algorithm has been derived by pure mathematical means using concepts
of multilinear algebra. Since almost all terms involved in the computation of 2D-VDCT
process data in vector fashion, the algorithm is especially efficient for SIMD-vector pro-
cessors. The algorithm is completely parameterized for a certain transformation size N
and the available level of SIMD parallelism ν. We have presented a compiler infrastruc-
ture that can generate code for our family of STA DSP cores from a Matlab program.
The computation of the algorithm in a processor with ν = 16 data paths can be up to
a factor of 4,47 times faster than the implementation of the algorithm into a processor
with ν = 4 data paths. We believe that the methodology presented in this paper offers
an interesting approach to close the gap between fast algorithms for signal processing,
compiler technology and processor architecture.

References

1. Cichon, G., Robelly, P., Seidel, H., Bronzel, M., Fettweis, G.: Synchronous transfer archi-
tecture (STA). In Vassiliadis, S., ed.: Lecture Notes on Computer Science. Springer-Verlag,
Berlin, Germany (2004) 343–352

Two-Dimensional Fast Cosine Transform for Vector-STA Architectures 71

2. Robelly, P., Cichon, G., Seidel, H., Fettweis, G.: A hw/sw design methodology for embedded
simd vector signal processors. International Journal of Embedded Systems IJES (2005)

3. Tolimieri, R., An, M., Lu, C.: Algorithms for Discrete Fourier Transform and Convolution.
Springer Verlag, Berlin, Germany (1997)

4. Franchetti, F., Pueschel, M.: Short vector code generation for discrete fourier transform. In:
In Proc. International Parallel and Distributed Processing Symposium (IPDPS). (2003) 58–67

5. Weiss, M., Fettweis, G.: Dynamic codewidth reduction for vliw instruction set architectures in
digital signal processors. In: In Proc. of the 3rd. Int. Workshop in Signal and Image Processing
IWSIP’96. (1996) 571–520

6. Davio, M.: Kronecker products and shuffle algebra. IEEE Trans. on Computers C-30 (1981)
116–125

7. Cvetković, Z., Popović, M.V.: New fast recursive algorithms for the computation of the dis-
crete cosine and sine transforms. IEEE Trans. on Signal Processing 40 (1992) 2083–2086

8. Hou, H.: A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans.
on Acoustics, Speech and Signal Processing 35 (1987) 1455–1461

9. Pratt, W.: Digital Image Processing. John Wiley and Sons (1991)

Configurable Computing for
High-Security/High-Performance

Ambient Systems�

Guy Gogniat1, Wayne Burleson2, and Lilian Bossuet1

1 Laboratory of Electronic and REal Time Systems (LESTER),
University of South Britanny (UBS), Lorient, France
{guy.gogniat, lilian.bossuet}@univ-ubs.fr

2 Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA 01003-9284, USA

burleson@ecs.umass.edu

Abstract. This paper stresses why configurable computing is a promising tar-
get to guarantee the hardware security of ambient systems. Many works have
focused on configurable computing to demonstrate its efficiency but as far as we
know none have addressed the security issue from system to circuit levels. This
paper recalls main hardware attacks before focusing on issues to build secure
systems on configurable computing. Two complementary views are presented to
provide a guide for security and main issues to make them a reality are discussed.
As the security at the system and architecture levels is enforced by agility signif-
icant aspects related to that point are presented and illustrated through the AES
algorithm. The goal of this paper is to make designers aware of that configurable
computing is not just hardware accelerators for security primitives as most stud-
ies have focused on but a real solution to provide high-security/high-performance
for the whole system.

1 Introduction

Configurable computing research area has been deeply studied these last ten years. To-
day its maturity is largely admitted and many works have demonstrated its efficiency.
As a consequence, configurable computing is now widely used in embedded systems to
provide system performances and flexibility. At the same time pervasive computing is
becoming a reality which enables interconnecting systems in a huge network [1]. As all
entities can communicate to exchange data the critical question of security is unavoid-
able. Privacy and confidentiality is a major issue for users [2]. At the hardware level
configurable computing offers numerous interesting features to efficiently handle this
point. However, since now most studies have focused on the use of configurable com-
puting to speed up security primitives dealing with architectural optimizations whereas
it is also mandatory to consider configurable computing at all levels from system to cir-
cuit. In this paper the problem of hardware security related to configurable computing

� This work is supported by the French DGA DSP/SREA under contract no. ERE 04 60 00 010.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 72–81, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Configurable Computing for High-Security/High-Performance Ambient Systems 73

is addressed. A quick review of hardware attacks is first presented in order to emphasize
the main features a system must provide to be secure. Then configurable computing is
analyzed to demonstrate its ability to address these features. Based on this information
a guide for hardware security using configurable computing is proposed. Main issues to
make this guide a reality are then discussed. Finally, as most of these concepts rely on
the agility property provided by configurable computing a case study dealing with the
AES security primitive is proposed to illustrate that point.

2 Hardware Attacks and Counter-Measures

Hardware Attacks. Two types of attacks are considered depending on the way the
attack is performed: active or passive attack. Active attack which corresponds to an
alteration of the normal device operation can be further refined into three subtypes. Ir-
reversible attack is a physical attack and corresponds to chip destruction or modification
for reverse-engineering. After this type of attack the device does not perform its initial
computation or not at all. Reversible attack consists in punctually moving the device out
of its specified operation modes so as to move it into a weak state or to gain information
from a computation fault [3]. Reversible attack can be or not detectable. When detected
the device can react in order not to leak any information (e.g., by erasing a private key).
Non detectable attacks can be for example glitch attacks on clock or power. It is very
difficult to detect these types of attacks as there is always a compromise between relia-
bility and efficiency. When too sensitive the detection is not reliable since it can detect
some normal variations that do not correspond to any attacks and when not enough
sensitive the detection is neither reliable since it cannot detect some attacks. Detectable
attack is for example black box attack, fault injection and power or temperature reduc-
tion. For a whole system they are difficult to handle. However one has to keep in mind
that given enough time, resources and motivation an attacker can break any system [4].
Passive attacks enable to deduce secrets from the analysis of the correlation between the
legal information output by the device and the side-channel information (i.e., current,
power, electromagnetism) [3]. In that case the device computes normally and the attack
is more sophisticated since it relies only on the statistical evolution of the peripheral in-
formation. Examples of passive attacks are timing, power and electromagnetic emission
analysis [5].

Counter-Measures. So what conclusions from these attacks must be drawn in order to
increase system security at the hardware level? To be safe a system should:

– Not provide any information (i.e., data leaks) in order to disable passive attacks.
The system must be symptom-free [3].

– Be continuously aware of its state and notably of its vulnerability in order to react
if necessary. The system must be security-aware.

– Analyze its states and its environments in order to detect any irregular activity. The
system must embed distributed sensors and monitors to be activity-aware.

– Be agile in order to react rapidly to an attack or to anticipate an attack. Be agile to
be a ble to update security mechanisms as long as attacks evolve. The system must
provide agility.

74 G. Gogniat, W. Burleson, and L. Bossuet

– Be tamper resistant in order to resist to physical attacks. The system must be robust
[6][7].

And at the same time, the system must provide high performance to run the applications.
Throughput, latency, area, power, energy are examples of parameters that are mandatory
to run actual applications. So where is the solution, what technology provides these
characteristics?

3 Configurable Computing

Configurable computing presents several major advantages to deal with both security
and performance compared to dedicated hardware components and processors. Some
aspects are not specific to configurable computing but are more related to design at logic
and circuit levels as for example symptom-free and robustness. But one major feature
is required when dealing with security, adaptability (this term gathers the notions of
awareness and agility) that is not provided by dedicated hardware components. Proces-
sors also provide adaptability through code update but they do not meet with the high
performance requirements. Configurable computing provides many interesting features
to be selected as a high-security/high-performance target. One key feature that underlies
all others is the dynamic nature of configurable computing. Dynamic configuration en-
ables to react and adapt rapidly in order to provide efficient architecture for performance
and security. Irregular activities can be detected and the system can react objectively.
This dynamism can be performed at run time or not, depending on the requirements.
High performance with configurable computing has been deeply studied these last ten
years. In the special case of security these studies have focused and still focus on high
performance for security primitives (typically cryptography) [8][9]. However this vi-
sion of security is only a part of the challenge to be addressed to provide secure system
since it deals mainly with architecture optimizations. In the following a vision of secu-
rity that gathers all the issues from system to circuit levels is proposed. It is essential to
enlarge today vision of security since configurable computing may not be a single part
of the system but the whole system.

4 Secure Systems and Configurable Computing

When dealing with security it is important to determine what you want to protect and for
how long you want to protect it. Furthermore defining the proper security boundary is
critical for designing a flexible yet provably secure system [4]. In order to address these
points it is essential to analyze what the different issues to provide secure configurable
computing are. The very important idea is to classify and to define what the boundary
of each part of a configurable system is and what design levels for security have to be
targeted. Depending on the design and the security policy one or several security issues
have to be considered. The designer has to be aware of these boundaries and design
levels in order to guide his safe design building. In the following two complementary
views are proposed in order to deal with security and configurable computing, the first

Configurable Computing for High-Security/High-Performance Ambient Systems 75

one is related to system parts (system boundaries) and the second one to system security
layers (security hierarchy).

4.1 Configurable Computing Security Space

The view of a system and of its different parts enables to highlight what the issues to
build secure systems are. Three domains have to be addressed: Configurable Security
Module, Secure Configurable System, and Configurable Design Security. Each domain
focuses on a specific point and is detailed hereafter.

Configurable Security Module. A Configurable Security Module is a part of the whole
system and performs some security primitives (e.g., cryptography, data filtering). A
system generally embeds several Configurable Security Modules. Many works have fo-
cused to define efficient Configurable Security Modules dealing with very interesting
and optimized architectures [8][9], however when dealing with agility it is also essential
to define what the rules to switch or to update a module are. Thus, a security module
controller is needed in order to manage the agility (i.e., flexibility) provided within
the Configurable Security Module. Typical security module controller control tasks are
related to configuration context to change or to adapt the functionality of the module
[10].

Secure Configurable System. The Secure Configurable System domain deals with the
security of the whole system to mainly perform intrusion prevention and detection. To
build a Secure Configurable System three main points have to be considered: security
awareness, activity awareness through distributed sensors and monitors, and agility. Se-
curity awareness is required in order to build a system that is aware of its state in order
to anticipate and to detect possible attacks. Distributed sensors and monitors build the
security network that enables the system to be aware of its activity [10]. Agility enables
the system to react in order to modify its state to defeat an attack. Different levels of
reaction are considered depending on the type of attack, reflex or global. Typical mon-
itor control tasks are related to sensors and protocols analysis, monitor state exchange,
reaction management, and monitor agility.

Configurable Design Security. A configurable computing module/system is defined
through the configuration data since each hardware execution context is defined through
a specific configuration. The configuration data represents the design of the mod-
ule/system; it may contain private information (i.e., intellectual property) that needs
to be protected from adversaries to prevent reverse-engineering. The design security is
provided through cryptography and needs a dedicated Configurable Security Module
that performs the cryptography primitives (i.e., authentication, encryption). When the
configuration data is protected the Configurable Security Module enables to configure
the system without leaking any information about the design it embeds [11].

Depending on the security policy one or all domains have to be considered. Right
now at the hardware level most studies have focused on Configurable Security Module
and Configurable Design Security however it is essential to deal with the system level
architecture to enable the visions of ubiquitous computing [10]. It is important to keep

76 G. Gogniat, W. Burleson, and L. Bossuet

in mind that building a secure system has some overhead costs, so defining the right
security boundary is important to meet with design constraints and to provide power
efficient system [12]. Configurable computing enables to provide security/performance
trade-off dynamically which promotes dynamic evolution of the system to manage dy-
namic security policy.

4.2 Configurable Computing Security Hierarchy

The previous view was dealing with the different parts of a system which is important
for the designer in order not to disregard any parts of the security barriers. Another view
is important which is related to the different hierarchical levels of a design from system
to circuit levels. As each level provides specific weaknesses specific mechanisms need
to be defined in order to build a global secure system (i.e., defense in depth). Depending
on the requirements several levels have to be considered however as previously men-
tioned it is important to clearly define what the security boundaries for a system to be
protected are. In the following main issues dealing with each level are presented.

Secure System Level. At the system level configurable computing is seen as the global
system (it corresponds to the Secure Configurable System in the previous view). At that
level it is important to continuously monitor the activity of the system to detect irregular
sequence of computation [10]. Another important feature is to keep the system as a
moving target in order not to enable attackers to get a signature of the system or to
identify some sensitive parts of the system [4]. This mobility should be provided for
both system parts and monitors.

Secure Architecture Level. At the architectural level the architecture of a module is
considered (it corresponds to the Configurable Security Module in the previous view).
Critical modules are typically cryptography primitives. The architecture of these mod-
ules has to be flexible, efficient and fault tolerant. Another important feature for security
is to provide symptom-free and security-aware algorithms and modules in order to dis-
able side-channel attacks.

Secure Logic Level. At the logic level the design of gates is targeted. The main point
that has to be considered is to provide symptom-free gates (e.g., balance the computa-
tion time, synchronize the inputs, leave no evidence of previous computation) [3]. Gates
need to be fault tolerant in order to be reliable. Reliability has to be a major concern
since fault injection can break security barriers.

Secure Circuit Level. At the circuit level the transistors and the physical process are
considered. The goal is to strengthen the hardware physical shielding against for exam-
ple RAM overwriting, optical induced fault, clock or power glitch attacks. An essential
issue at that level is to define sensors that enable to prevent attacks by detecting them.

Configurable Computing Security Hierarchy is a complex structure and each level
has its importance in order to provide a defense in depth. There are still many open prob-
lems to provide such a hierarchy from physical to system level concepts. The key idea

Configurable Computing for High-Security/High-Performance Ambient Systems 77

10
0.

3
10

1.
4

53
.1

13
6.

5

5486

3973

4724
4806

21
.5

4

17
.8

18
.5

6

15112
12450

10992
10750

1.
94

2507

3528

5673

0.
41

4

0.
35

3

0.
29

4

12600

2222
2784

5177

5810

21
.5

4

11
.7

7
12

.1

6.
95

20
.3

35
3

25
0

30
0

4312

250

288

Fig. 1. Agility design space for the AES security primitive: throughput/area/reliability trade-offs

is always to provide symptom-free and security-aware devices; the strength of config-
urable computing is its inherent agility using dynamic configuration. It enables to keep
the system moving and to strengthen the security barriers when needed. Another essen-
tial issue when dealing with embedded systems is to provide the just right barrier and
efficiency in order to keep alive the system functionality as long as possible (i.e., power-
aware systems). Configurable computing provides this capability but the mechanisms
to control this adaptability still need to be defined. As most of the concepts presented
in the two previous views rely on agility, in the following a discussion dealing with that
point is provided.

5 AES (Rijndael) Security Primitive Agility Case Study

To illustrate the concepts related to agility an analysis of a Configurable Security Mod-
ule is proposed. The case study deals with the AES security primitive. This case study
is based on published works dealing with configurable architecture. All the selected im-
plementations have been performed on Xilinx Virtex FPGA which is a fine grain config-
urable architecture. For that architecture the configuration memory relies on a 1D con-
figuration array. More precisely it is a column based configuration array, hence partial
configuration can be performed only column by column. For security issues, this type of
configuration memory does not provide full flexibility but still enables partial dynamic

78 G. Gogniat, W. Burleson, and L. Bossuet

configuration to perform security scenarios. Figure 1 gathers all the different imple-
mentations and represents them in four charts; each chart corresponds to some spe-
cific parameters. Figure 1.a corresponds to the AES cryptographic core security primi-
tive with BRAMs (i.e., embedded RAM) on non-feedback mode [13][14][15][16][17].
Thus for these studies key setup management is not considered. Concerning agility all
the solutions are based on static and full configuration. The configuration is defined
through predefined configuration data and performed using remote-configuration. The
configuration time is on average tens of ms, since full configuration is performed. The
security module controller is not addressed in these studies since the implementations
are static. Figure 1.a highlights that various area/throughput trade-offs can be provided
depending on the implementation. This is important to dynamically adapt the perfor-
mance and to deal with security of the module. From the security side it enables the
global system to behave as a moving target and from the performance side it allows
to dynamically consider different throughputs depending on the actual application re-
quirements. Figure 1.b corresponds to the AES cryptographic core security primitive
without BRAMs on feedback [8][9][13] and non-feedback modes [8][17][18][19]. As
previously key setup management is not considered. Solutions [8], [9] and [13] corre-
spond to feedback mode while the others to non-feedback mode. Feedback solutions
provide throughput on average hundreds of Mbits/s whereas non-feedback solutions
are around tens of Gbits/s. Same remarks as previously can be done concerning agility
characteristics; static, full and predefined configuration is considered. The goal in these
studies is to promote high throughput while reducing area and dealing with a specific
execution mode. However as explained in this paper dynamism and reliability have to
be considered also.

Figure 1.c is interesting since it proposes different solutions that manage fault de-
tection which guaranties reliability; essential feature for security. Fault detection can
be performed at different levels of granularity from algorithm to operation level [20].
Performance/reliability trade-off is interesting since finer level of granularity enables
reduced fault detection latency and then promotes fast reaction against an attack. But
this efficiency is at the price of area overhead. No error detection leads to better perfor-
mance, thus is it important to dynamically adapt the level of protection depending on
the environment and the state of the system. Concerning agility static, full and prede-
fined configuration is considered. Finally Fig. 1.d provides some interesting values since
solutions dealing with dynamic configuration are proposed. In [9] full configuration
with predefined configuration data is implemented whereas in [21] partial configura-
tion with dynamic configuration data is carried out. In both cases remote-configuration
is performed since the Configurable Security Module is seen as an agile hardware ac-
celerator. Both solutions also deal with key setup management, in [9] it is performed
within the module so that the architecture is generic and in [21] it is performed by the
remote-processor which enables to provide key-specific architecture. In [21] the remote-
processor implements the security module controller that computes the new configura-
tion when new keys have to be taken into account by the cryptography core. This type of
execution enables a large flexibility since the configuration data can be defined at run-
time. However, in that case the computation time to define the new configuration data is
in the range of 63-153 ms, which can be prohibitive for some applications. The recon-

Configurable Computing for High-Security/High-Performance Ambient Systems 79

figuration time for a new configuration data is not critical (around tens of μs) since only
partial configuration is performed. As it can be seen on Fig. 1.d partial configuration
enables to significantly save area compared to a generic implementation since in that
case the architecture is specialized for each key. the security policy supported by the
security module controllers are not explicitly presented in these papers. Figure 1 high-
lights that various solutions can be implemented for a same security primitive hence
various area/throughput/reliability trade-offs can be considered. Agility enables to pro-
mote these trade-offs and then to adapt dynamically both performance and security to
actual execution context. A last point which is important is related to power consump-
tion. All previous studies did not deal with that point however for ambient system it is
an essential feature. In [12], energy efficient solutions are proposed for the AES security
primitive. In this case the important metric is Gbits/joule which is very relevant since
ambient systems are mobile.

In conclusion of that part it is important for designers that have to build Config-
urable Security Module to be aware of all these trade-offs in order to promote agility
and to meet with performance. Studies dealing thoroughly with configuration power
consumption, secure communication links and security module controller policy are
still required in order to propose secure Configurable Security Module and by exten-
sion secure systems. However agility provides many keys to build high-security/high-
performance systems.

6 Conclusion

Configurable computing presents significant features to target high-security/high-
performance ambient systems. However today these features are partially addressed
and it is time to extend the vision of security using configurable computing since not
only some parts but the whole system will be embedded within configurable systems. In
this paper an analysis of major issues dealing with security at the hardware level using
configurable computing is proposed. The goal of this paper is to stress that configurable
computing is not just hardware accelerators for security primitives as most studies have
focused on. Actually this point is part of the global system when dealing with config-
urable embedded computing. For that purpose two complementary views are proposed
in order to guide the designer when facing with the difficult problem of system secu-
rity and key aspects related to agility are presented and illustrated through the AES
security primitive. Clearly there are still many issues to make security commonplace
dealing with configurable computing and to define the overhead costs that imply secu-
rity mechanisms at the hardware level but this paper aims to propose a first step toward
a security design guide using configurable computing to meet with high-security/high-
performance ambient system requirements.

References

1. Plessl, C., Enzler, R., Walder, H., Beutel, J., Platzner, M., Thiele, L., Troster, G.: The case
for reconfigurable hardware in wearable computing. Personal and Ubiquitous Computing 7
(2003) 299–308

80 G. Gogniat, W. Burleson, and L. Bossuet

2. Xenakis, C., Merakos, L.: Security in third generation mobile networks. Computer Commu-
nications 27 (2004) 638–650

3. Guilley, S., Pacalet, R.: SoC security: a war against side-channels. Systeme sur puce elec-
tronique pour les telecommunications 59 (2004)

4. Cravotta, N.: Prying eyes. EDN (2002) http://www.edn.com/toc-archive/2002/20020926.
html.

5. Standaert, F.X., tot Oldenzeel, L.V.O., Samyde, D., Quisquater, J.J.: Power analysis of FP-
GAs: How practical is the attack? In Heidelberg, S.V., ed.: international conference on Field-
Programmable Logic and its Applications (FPL 2003). Volume LNCS 2778. (2003) 701–711

6. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: Second USENIX Work-
shop on Electronic Commerce Proceedings, Oakland, California, USA (1996)

7. Wollinger, T., Paar, C.: Security aspects of FPGAs in cryptographic applications. In Rosen-
stiel, W., Lysaght, P., eds.: New Algorithms, Architectures, and Applications for Reconfig-
urable Computing. Kluwer (2004)

8. Elbirt, A., Yip, W., Chetwynd, B., Paar, C.: An FPGA-based performance evaluation of the
AES block cipher candidate algorithm finalists. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 9 (2001) 545–557

9. Dandalis, A., Prasanna, V.: An adaptive cryptography engine for internet protocol security
architectures. ACM Transactions on Design Automation of Electronic Systems (TODAES)
9 (2004) 333–353

10. Gogniat, G., Wolf, T., Burleson, W.: Configurable security architecture for networked em-
bedded systems. Technical report, ECE Department, University of Massachusetts, Amherst,
USA (2004)

11. Bossuet, L., Gogniat, G., Burleson, W.: Dynamically configurable security for SRAM FPGA
bitstreams. In: 11th Reconfigurable Architectures Workshop (RAW 2004), Santa Fé, New
Mexico, USA (2004)

12. Schaumont, P., Verbauwhede, I.: Domain specific tools and methods for application in secu-
rity processor design. (2002) 365–383

13. Gaj, K., Chodowiec, P.: Fast implementation and fair comparison of the final candidates for
advanced encryption standard using field programmable gate arrays. In Springer-Verlag, ed.:
RSA Security Conf. - Cryptographer’s Trac, San Francisco, CA, USA (2001) 84–99

14. McLoone, M., McCanny, J.: High performance single-chip FPGA Rijndael algorithm imple-
mentations. In: Third International Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2001), Paris, France (2001) 65–76

15. Standaert, F.X., Rouvroy, G., Quisquater, J.J., Legat, J.D.: A methodology to implement
block ciphers in reconfigurable hardware and its application to fast and compact aes rijndael.
In: ACM/SIGDA 11th International Symposium on Field Programmable Gate Arrays (FPGA
2003), Monterey, California, USA (2003) 216–224

16. Saggese, G.P., Mazzeo, A., Mazzocca, N., Strollo, A.G.M.: An FPGA-based performance
analysis of the unrolling, tiling, and pipelining of the AES algorithm. In Heidelberg, S.V., ed.:
International Conference on Field-Programmable Logic and its Applications (FPL 2003).
Volume LNCS 2778. (2003) 292–302

17. Hodjat, A., Verbauwhede, I.: A 21.54 Gbits/s fully pipelined AES processor on FPGA. In:
IEEE Symposium on Field -Programmable Custom Computing Machines (FCCM 2004).
(2004)

18. Standaert, F.X., Rouvroy, G., Quisquater, J.J., Legat, J.D.: Efficient implementation of Rijn-
dael encryption in reconfigurable hardware: Improvements and design tradeoffs. In Springer,
ed.: Cryptographic Hardware and Embedded Systems (CHES 2003). Volume Lecture Notes
in Computer Science 2779., Cologne, Germany (2003) 334–350

Configurable Computing for High-Security/High-Performance Ambient Systems 81

19. Järvinen, K., Tommiska, M., Skyttä, J.: A fully pipelined memoryless 17.8 Gbps AES-128
encryptor. In: ACM/SIGDA 11th International Symposium on Field Programmable Gate
Arrays (FPGA 2003), Monterey, California, USA (2003) 207–215

20. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for fault-based
side-channel cryptanalysis of symmetric block ciphers. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 21 (2002)

21. McMillan, S., Cameron, C.: JBits implementation of the advanced encryption standard (Ri-
jndael). In: International Conference on Field-Programmable Logic and its Applications
(FPL 2001), Belfast, Ireland (2001)

FPL-3E: Towards Language Support for Reconfigurable
Packet Processing

Mihai Lucian Cristea1, Claudiu Zissulescu1, Ed Deprettere1, and Herbert Bos2

1 Leiden University, The Netherlands
{cristea, claus,edd}@liacs.nl

2 Vrije Universiteit Amsterdam, The Netherlands
herbertb@cs.vu.nl

Abstract. The FPL-3E packet filtering language incorporates explicit support
for reconfigurable hardware into the language. FPL-3E supports not only generic
header-based filtering, but also more demanding tasks such as payload scanning
and packet replication. By automatically instantiating hardware units (based on a
heuristic evaluation) to process the incoming traffic in real-time, the NIC-FLEX
network monitoring architecture facilitates very high speed packet processing.
Results show that NIC-FLEX can perform complex processing at gigabit speeds.
The proposed framework can be used to execute such diverse tasks as load balanc-
ing, traffic monitoring, firewalling and intrusion detection directly at the critical
high-bandwidth links (e.g., in enterprise gateways).

1 Introduction

There exists a widening gap between advances in network speeds and those in bus,
memory and processor speeds. This makes it ever more difficult to process packets at
line rate. At the same time, we see that demand for packet processing tasks such as
network monitoring, intrusion detection and firewalling is growing. Commodity hard-
ware is not able to process packet data at backbone speeds, a situation that is likely to
get worse rather than better in the future. Therefore, more efficient and scalable packet
processing solutions are needed.

It has been recognised that parallelism can be exploited to deal with processing at
high speeds. A network processor (NP), for example, is a device specifically designed
for packet processing at high speeds by sharing the workload between a number of in-
dependent RISC processors. However, for very demanding applications (e.g., payload
scanning for worm signatures) more power is needed than any one processor can offer.
For reasons of cost-efficiency it is infeasible to develop NPs that can cope with back-
bone link rates for such applications. An attractive alternative is to use a reconfigurable
platform such as an FPGA that exploits parallelism at a coarser granularity.

We have previously introduced the efficient monitoring framework Fairly Fast Packet
Filters (FFPF) [1], that can reach high speeds by pushing as much of the work as pos-
sible to the lowest levels of the processing stack (see Fig. 1.b). The NIC-FIX architec-
ture [2] showed how this monitoring framework could be extended all the way down to
the network card. To support such an extensible programmable environment, we intro-
duced the special purpose language known as FPL-3.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 82–92, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

FPL-3E: Towards Language Support for Reconfigurable Packet Processing 83

easy

ha
rd

to
 p

ro
gr

am

to program

a) Problem: Traffic Monitoring

at very high speed

PCI bus

6xRISC processors(MEs)

host_PC

PCI bus

(Intel x86)
host_PC heavy packet processing

NIC
(Ethernet−1Gbps)

Network traffic

PCI bus

FPGA

IP cores

Network Processor

processing results

processing results

host_PC

c) Solution2: Using reconfigurable hardware

b) Solution1: Using Network processor

Network traffic

Network traffic

Fig. 1. Moving to special purpose embedded systems

In this paper, we exploit packet processing parallelism at the level of individual
processing units (FPGA cores) to build a monitoring architecture: NIC-FLEX(see
Fig. 1.c). Incoming traffic is stored in fast off-chip memory, wherefrom it is processed
by multiple FPGA cores in parallel. The processing results are first stored in a very fast
local memory and then passed, on demand, to a higher level (e.g., user space tools). The
main contribution of this paper consists of a novel language that explicitly facilitates
parallelisation of complex packet processing tasks: FPL-3E. Also, with NIC-FLEX
we extend the FFPF architecture upwards with specific packet processing support to
create a flexible and fast filtering platform. Experiments show NIC-FLEX to be able
to handle complex tasks at gigabit line-rate.

This paper builds on the idea of extensible system-on-programable-chip that was
advocated by Lockwood et al. in [3] for firewalling. However, we use it to provide a
generic high-speed packet processing environment by using the Compaan/Laura tool
chain [4, 5] that automatically transforms a user code into synthesizable VHDL code
that targets a specific FPGA platform.

The remainder of this paper is organised as follows. In Section 2, the architecture of
the packet processing system and its supporting language are presented. Section 3 is de-
voted to the implementation details. The proposed architecture is evaluated in Section 4.
Related work is discussed throughout the text and summarised in Section 5. Finally,
conclusions are drawn and options for future research are presented in Section 6.

2 Architecture

2.1 High-Level Overview

At present, high speed network packet processing solutions need to be based on special
purpose hardware such as dedicated ASIC boards or network processors (see Fig. 1.b).
Although faster than commodity hardware (see Fig. 1.a), solutions based even on these

84 M.L. Cristea et al.

platforms are surpassed by the advances in reconfigurable hardware systems, e.g., FP-
GAs.

To counter this packet processing trend we propose the solution shown in Fig. 1c,
which consists of mapping the user’s program onto hardware, processing the incoming
traffic efficiently, and then passing the processing results back to the user.

The software architecture is comprised of three main components (see Fig. 2). The
first component 1© is a high level interface to the user and the kernel space of an Op-
erating System (e.g., Linux) and is based on the Fairly Fast Packet Filter (FFPF) [1]
framework. The second component 2© is the FPL-compiler interface between the first
and the last components. The compiler takes a program written in a packet processing
language a© and generates a code object b© for the lowest level of processing: Recon-
figurable hardware. The third component 3© is a synthesiser tool that maps specific
processing algorithms onto an FPGA platform and is based on the Laura tool.

filter_x

2

a

1

3

b

filter script

FPL−3E

FPL

mapping

compiler

PCI bus

obj. code for PowerPC/FPGA

PowerPC

M
A

C

Pkt.Processing:
Filter: TCP payload scan for

a set of worm signatures

FFPF

Network traffic
1 Gbps IP cores

Users:
reading the filtering

results

Virtex−II Pro

Intel x86

Fig. 2. Packet processing architecture

2.2 The FFPF Software Framework

FFPF was designed to meet the following challenges: (1) monitor high-speed links and
scale with future link rates, (2) offer more flexibility than existing packet filters, and
(3) provide a migration path by being backward compatible with existing approaches
(notably pcap-based applications [6]). The FFPF framework supports userspace pro-
grams, kernel, the IXP1200 network processor, or a combination of the above. FFPF
now extends also to reconfigurable hardware by introducing explicit support for FPGA
in the FFPF programming language (FPL-3E).

2.3 The FPL-3E Language and the FPL-Compiler

As our architectural design relies on explicit hardware support, we needed to introduce
this functionality into our framework. With FPL-3E, we adopted a language-based ap-
proach, following our earlier experiences in this field. We designed FPL-3E specifically
with these observations in mind: First, there is a need for executing tasks (e.g., payload

FPL-3E: Towards Language Support for Reconfigurable Packet Processing 85

scanning) that existing packet languages like BPF [6] or Snort [7] cannot perform. Sec-
ond, special purpose devices such as network processors or FPGAs can be quite com-
plex and thus are not easy to program directly. Third, we should facilitate on-demand
extensions, for instance through hardware assisted functions. Finally, security issues
such as user authorisation and resource constraints should be handled effectively. The
previous version of the FPL-3E language, FPL-3 [8], addressed many of these con-
cerns. However, it lacked features fundamental to reconfigurable hardware processing
like resource partition and parallel processing.

We will introduce the language design with an example. First, a simple program
requiring a high amount of processing power is introduced in Figure 3. Then, the same
example is discussed through multiple ‘mapping’ cases by using the FPL-3E language
extensions in Figures 4, 5.

IF (TCP) THEN
IF (HTTP) THEN

scan (web_attack)

FPGA logic:
FOR (pkt_length)

scan (web_attack) core1: PatternSearching_A

core2: PatternSearching_B
from FPL−4 to run−time

Control processor:
IF (TCP) && (HTTP) THEN ’validate’ core1
IF (TCP) && (MAIL) THEN ’validate’ core2

scan (spam)
FOR (pkt_length)

ELSE IF (UDP)

ELSE IF (MAIL)

FOR (pkt_length)

FOR (pkt_length)
scan (spam)

Fig. 3. Packet processing example

As Figure 3 shows, the FPL-3E compiler translates the program into multiple output
objects, one for a control processor (ASIC embedded into the FPGA) and a second one
for the FPGA reconfigurable hardware (logic that contains multiple cores). The FPGA
cores consist of specific heavy computation algorithm implementations (e.g., pattern
searching) that are interconnected in such way as to achieving an optimal processing
path as we show later in this section. Besides the parallelism built into the logic, we
note that the task from embedded control processor runs itself in parallel with the FPGA
logic. The control code is mostly composed of nested IF statements used for result
validation and, therefore, the processing speed of the control processor is high enough
to keep up with the high speed FPGA data processing.

Note that the requirement to perform complex packet processing at Gbps line rate
means that each packet has to be processed within a very limited time budget – a basic
task. When a task requires a large amount of per-packet processing power (e.g., a full
packet scan for a worm), it becomes infeasible to perform this task on a single process-
ing unit when network speeds go up. Thus, we give the same example mapped using
various techniques for parallel processing environment. For the sake of simplicity we
limit our granularity to three levels.

A basic processing task consists of searching through the whole packet payload
data for a string (e.g., a worm signature) and it is performed by a processing unit imple-
mented in hardware. When the task overloads the processing unit, then this task can be
distributed across three hardware units in parallel, using one search key per packet, as

86 M.L. Cristea et al.

shown in Figure 4.a, or multiple keys per packet (see Fig. 4.b), or a combination of both
techniques. In the first configuration, the required number of cycles is reduced with the
number of hardware devices instantiated – three in our example, as the same string is
searched on different parts of the packet. The second approach allows us to search in
parallel three signatures on the same packet at a cycles cost of one. However, when the
receiving rate is higher than the processing abilities given by ‘one packet’ approach, we
can process multiple packets in parallel (depth-processing), as illustrated in Figure 5.

String−key

Packet

String−key 1

String−key 2

String−key 3

Packet

b) multiple keys / packet

a) single key / packet

Fig. 4. Packet processing techniques

Packet1

String−key 2

String−key 3

String−key 1

String−key 6

String−key 5

String−key 4

Packet2

Packet3

b) multiple keys / packets

Packet1
Packet2

Packet3

String−key

a) one key / each packet

Fig. 5. Multi-packet processing techniques

The FPGA technology gives us enough flexibility to choose for one or a mix of
the above mentioned approaches. It also provides a long-term platform life by its ease-
to-extend with new algorithm implementations, such as IP cores specifically designed
for pattern matching, regular expressions, protocol recognition, etc. This support will
address future issues like adaptivity to new protocols (e.g., peer-to-peer). The limitation
is given only by the hardware capacity (that nowadays goes beyond our needs) and
the compiler abilities to perform such complex mapping from a simple and ‘natural’
programming language: FPL-3E.

FPL-3E: Towards Language Support for Reconfigurable Packet Processing 87

2.4 The Compaan/Laura Tool Chain

The FPGA platform is a highly parallel structure suitable to accommodate algorithms
that exploit this parallelism. Although this texture is the key to take advantage of the
platform, the commonly used imperative specification programming languages like C,
Java or Matlab are hard to compile to parallel FPGA specifications. In general, spec-
ifying an application in a parallel manner is a difficult task. Therefore, we used the
Compaan Compiler [4] that fully automates the transformation of sequential specifica-
tion to an input/output equivalent parallel specification expressed in terms of a so-called
Kahn Process Network (KPN). Subsequently, the Laura tool [5] takes as its input this
KPN specification and generates synthesizable VHDL code that targets a specific FPGA
platform. The Compaan and Laura tools together realise a fully automated design flow
that maps sequential algorithms onto a reconfigurable platform. We use this design tool
chain to implement our computational intensive cores such as pattern matching algo-
rithms. Thus, in FPL-3E, we separate the control intensive tasks from data intensive
tasks. These last tasks are automatically analysed and mapped onto an FPGA platform
thereby exploiting the inherit parallelism of the data processing algorithms.

3 Implementation Details

3.1 The FPL-3E Language

The FFPF programming language (FPL) was devised to give the FFPF platform a more
expressive packet processing language than previously available. The FPL-3E syntax
is summarised in Figure 6. It supports all common integer types and allows expressions
to access any field in the packet header or payload in a friendly manner.

The latest version (FPL-3) conceptually uses a register-based virtual machine, but
compiles to fully optimised object code. FPL-3 supports commodity PCs and NPs (fur-
ther implementation details available in [8]). We now introduce its direct descendant,
FPL-3E, which extends FPL-3 with constructs for reconfigurable hardware processing.

EXTERN() Construct. This was introduced in FPL-3 to support the ‘extensibility’
system feature. We extend it with support for reconfigurable hardware devices (FPGAs).
EXTERN(name,input,output,hw_depth) tells the compiler that the task needs the
help of the specified core ‘name’ to process the current packet according to ‘input’
parameters and place the processing results in the ‘output’. ‘hw depth’ is an optional
parameter for advance users that want to ‘force’ the compiler to use a certain amount
of hardware units for parallel packet processing. By default, the compiler estimates this
parameter accordingly to the incoming traffic rate and the available hardware resources
(given at compile time).

3.2 The FPL-3E Compiler

The FPL-3E is a source-to-source compiler. Like its predecessors, it generates straight
C target code that can be further handled by any C compiler. Programs can therefore
benefit from the advanced optimisers in the Intel μEngine C compiler for IXP devices,
gcc for commodity PCs and Xilinx ISE for Xilinx’s FPGAs. As a result, the object code
will be heavily optimised even though we did not write an optimiser ourselves.

88 M.L. Cristea et al.

Moreover, the FPL-3E compiler uses a heuristic evaluation of the hardware in-
stances needed to reach the system goal (e.g., the line rate is 1Gbps). The evaluation is
based on the workload given by one hardware instance to perform the user’s program
and a critical point where the performances fall down because of some heavy compu-
tation like signature length, or packet size. For example, in Figure 5.b, assuming that
the user’s program performs checking of six signatures, but three of them are known as
much longer than the others, the compiler duplicates the hardware units, accordingly,
in order to achieve a well balanced workload of the whole system.

operator-type operator

Arithmetic +, -, /, *, %, --, ++
Assignment =,*=, /=, %=, +=, -=

<<=, >>=, &=, ˆ=, |=
Logical / ==, !=, >, <, >=, <=,
Relational &&, ||, !
Bitwise &, |, ˆ, <<, >>

statement-type operator

if/then/else IF (expr) THEN stmt1 FI
ELSE stmt2 FI

for() FOR (initialise; test; update)
stmts; BREAK; stmts; ROF

return a value RETURN (val)
external function INT EXTERN(name,input,

output) or
INT EXTERN(name,input,
output,hw depth)

Data type syntax

Register n R[n]
Memory location n M[n]
Packets access:
-byte f (n) PKT.B[f (n)]
-word f (n) PKT.W[f (n)]
-double word f (n) PKT.DW[f (n)]
-bit m in byte n PKT.B[n].U1[m]
-nibble m in byte n PKT.B[n].U4[m]
-bit m in word n PKT.W[n].U1[m]
-byte m in word n PKT.W[n].U8[m]
-bit m in dword n PKT.DW[n].U1[m]
-byte m in dword n PKT.DW[n].U8[m]
-word m in dword n PKT.DW[n].U16[m]
-macro PKT.macro name
-ip proto PKT.IP PROTO
-ip length PKT.IP LEN
-etc. customised macros

Fig. 6. FPL-3E language constructs

3.3 Control Processor and FPGA Cores

In modern FPGAs there are embedded from one to four hard cores control processors
(e.g., PowerPC or ARM), that are suitable to map the control part of our algorithms.
The data intensive tasks are mapped directly in hardware (IP cores) using the Com-
paan/Laura tool chain. The IP cores communicate with the control processor using a
set of registers to set some run-time parameters (e.g., the packet length or the searched
key-strings).

To study the feasibility of using the Compaan/Laura tool chain in the Networking
world we compiled in hardware a search algorithm. The Matlab program for this algo-
rithm is shown in Figure 7. The bytes of the packet (e.g., pkt()) are compared with the
content of a signature string (e.g., sig()). If the signature is present in the packet, then
the value of the c variable is equal to the length of the searched string.

The program illustrated in Figure 7 has been rewritten to match the requirements
of the Compaan/Laura tool chain. Additionally, we instructed our tool to generate a
design that compares eight characters in parallel. The hardware network of processors

FPL-3E: Towards Language Support for Reconfigurable Packet Processing 89

for i = 7: 1: PackSize,
c = 0;
for j = 1: 1: StringLength,

if sig(j) = pkt(i),
c = c + 1;

end
end
if c = StringLength,

print "Found!"
end

end

Fig. 7. Simple Search Algorithm

ND_1
ReadPacket|

ND_3
Search|

ED_2

ND_4
Search|

ED_4

ND_5
Search|

ED_6

ND_6
Search|

ED_8

ND_7
Search|

ED_10

ND_8
Search|

ED_12
ND_9
Search|

ED_14

ND_10
Search|

ED_16

ND_2
ReadSignature|

ED_1

ED_3

ED_5

ED_7

ED_9

ED_11

ED_13

ED_15

ND_11
Eval|

ED_17

ED_18

ED_19

ED_20

ED_21

ED_22

ED_23

ED_24

Fig. 8. Processor Network of the simple algo-
rithm

Table 1. Experimental results

Packet Length String Length Clocks/Workload Slices Frequency (MHz)
64 8 77 2035 101

is depicted in Figure 8. Each bubble represents a hardware processor and each arch
a communication channel between two processors. The ReadPacket processor feeds
our network with packet bytes from a MAC network interface. The Search processor
implements the character-wise searching, the result of ‘a search’ is evaluated by the
Eval processor, which is also our write interface toward external devices.

Table 1 gives the hardware results of the FPGA implementation of the algorithm
given in Figure 7. The experiment has been done using Synplify and ISE Xilinx 6.2 for
the Virtex II-6000 platform. The hardware is capable of doing an eight character string
search in a variable packet size. The required number of cycles for a variable packet
size and eight characters search string is cycles = 13+PackSize.

In our example, the length of the search string is fixed to eight characters. However,
the string size can be changed at compile time while its content may be changed at
run-time.

4 Evaluation

Given the pattern matching algorithm result (see Table 1) for one search-key per packet,
we extrapolate to other case studies as already illustrated in Figure 5. In Figure 9 is
shown how the performance of one key per packet approach (1key/1hw) scales up by
increasing the use of hardware units (1key/3hw) in parallel.

90 M.L. Cristea et al.

Fig. 9. FPGA vs. NP processing results

The processing result of a full packet payload pattern search filter performed by a
1Gbps generation network processor (Intel IXP1200) is also shown in Figure 9. There-
fore, making a comparison between an FPGA implementation and a network processor
implementation, it can be seen that a complex filter (such as a pattern searching algo-
rithm) performed by a NP is surpassed by even a single IP core implementation.

Note that the relatively small amount of hardware resources used for this implemen-
tation (ca. 6% for a Virtex II-6000) allows us to map more than one search engine into
a FPGA platform.

5 Related Work

The usage of accelerated cores has been done in the Molen project [9] by annotat-
ing a PowerPC processor with a set of multimedia instructions that are accelerated in
hardware. Our approach focuses on the networking applications algorithms. Thus, our
hardware accelerated cores perform coarse grain computations (e.g., pattern matching).
Additionally, the number of processing elements for a particular task can be set-up at
compile time based either on user demands or on the built-in compiler heuristic estima-
tor about the workload requirements.

Using reconfigurable hardware for increased packet processing efficiency was pre-
viously explored in [10] and [11]. Our architecture differs in that it provides explicit
language support for this purpose. As shown in [12], it is efficient to use a source-
to-source compiler from a generic language (Snort Intrusion Detection System) to a
back-end language supported by the targeted hardware compiler (e.g., Intel μEngineC,
PowerPC C, VHDL). We propose a more flexible and easy to use language as front-end
for users. Moreover, our FPL-3E language is designed and implemented for heteroge-
neous targets in a multi-level system.

The SCAMPI architecture also pushes processing to the NIC [13]. It assumes
that hardware can write packets immediately into host memory (e.g., by using DAG
cards [14]) and implements access to packet buffers through a userspace daemon.
SCAMPI does not support user-provided external functions, powerful languages such
as FPL-3E.

FPL-3E: Towards Language Support for Reconfigurable Packet Processing 91

6 Conclusions and Future Work

This paper presented the NIC-FLEX packet processing environment and its FPL-3E

programming language, which enable users to process network traffic at high speeds by
mapping of their programs onto reconfigurable hardware (FPGA). A program is mapped
by loading IP cores generated using the Compaan/Laura approach to implement the data
intensive tasks in hardware. Currently, this task is performed by an engineer and thus,
the user cannot generate its own tasks in hardware. However, we supply the FPL frame-
work with a wide range of hardware cores to overcome the need for different cores. All
these cores are annotated with performace numbers such that the FPL-3E environment
computes the right work balance, based on a heuristic evaluation. This heuristics may
be ignored by the user and replaced with its own evaluation. The experimental results
show that NIC-FLEX can outperform traditional packet filters by processing at Gbps
line rate.

In the future, we plan to extend NIC-FLEX with a management environment that
can take care of object code loading and program instantiation.

Acknowledgements

This work was supported by the EU SCAMPI project IST-2001-32404, while Intel do-
nated the network cards and Xilinx donated the development kit.

References

1. Bos, H., de Bruijn, W., Cristea, M., Nguyen, T., Portokalidis, G.: FFPF: Fairly Fast Packet
Filters. In: Proceedings of OSDI’04, San Francisco, CA (2004)

2. Nguyen, T., de Bruijn, W., Cristea, M., Bos, H.: Scalable network monitors for high-speed
links: a bottom-up approach. In: Proceedings of IPOM’04, Beijing, China (2004)

3. Lockwood, J.W., Neely, C., Zuver, C., Moscola, J., Dharmapurikar, S., Lim, D.: An extensi-
ble, system-on-programmable-chip, content-aware Internet firewall. In: Field Programmable
Logic and Applications (FPL), Lisbon, Portugal (2003) 14B

4. Kienhuis, B., Rypkema, E., Deprettere, E.: Compaan: Deriving Process Networks from Mat-
lab for Embedded Signal Processing Architectures. In: Proceedings of the 8th International
Workshop on Hardware/Software Codesign (CODES), San Diego, USA (2000)

5. Zissulescu, C., Stefanov, T., Kienhuis, B., Deprettere, E.: LAURA: Leiden Architecture
Research and Exploration Tool. In: Proc. 13th Int. Conference on Field Programmable Logic
and Applications (FPL’03), Lisbon, Portugal (2003)

6. McCanne, S., Jacobson, V.: The BSD Packet Filter: A new architecture for user-level packet
capture. In: Proceedings of the 1993 Winter USENIX conference, San Diego, Ca. (1993)

7. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings of the
1999 USENIX LISA Systems Adminstration Conference. (1999)

8. Cristea, M.L., de Bruijn, W., Bos, H.: Fpl-3: towards language support for distributed packet
processing. In: Proceedings of IFIP Networking 2005 (accepted for publication), Waterloo,
Canada (2005)

9. Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Panainte, E.M.: The
molen polymorphic processor. IEEE Transactions on Computers (2004)

92 M.L. Cristea et al.

10. Anto, D., Koenek, J., Minakov, K., ehk, V.: Packet header matching in combo6 ipv6 router.
Technical Report 1, CESNET (2003)

11. Clark, C., Lee, W., Schimmel, D., Contis, D., Kone, M., Thomas, A.: A hardware platform
for network intrusion detection and prevention. In: The 3rd Workshop on Network Processors
and Applications (NP3), Madrid, Spain (2004)

12. Charitakis, I., Pnevmatikatos, D., Markatos, E.: Code generation for packet header intrusion
analysis on the ixp1200 network processor. In: SCOPES 7th International Workshop. (2003)

13. Polychronakis, M., Markatos, E., Anagnostakis, K., Oslebo, A.: Design of an application
programming interface for ip network monitoring. In: IEEE/IFIP NOMS, Seoul (2004)

14. Cleary, J., Donnelly, S., Graham, I., McGregor, A., Pearson, M.: Design principles for accu-
rate passive measurement. In: Proceedings of PAM, Hamilton, New Zealand (2000)

Flux Caches: What Are They and Are They Useful?

Georgi N. Gaydadjiev and Stamatis Vassiliadis

Computer Engineering, EEMCS, TU Delft, The Netherlands
{G.N.Gaydadjiev, S.Vassiliadis}@ewi.tudelft.nl

http://ce.et.tudelft.nl

Abstract. In this paper, we introduce the concept of flux caches envisioned to
improve processor performance by dynamically changing the cache organization
and implementation. Contrary to the traditional approaches, processors designed
with flux caches instead of assuming a hardwired cache organization change their
cache ”design” on program demand. Consequently program (data and instruction)
dynamic behavior determines the cache hardware design. Experimental results to
confirm the flux caches potential are also presented.

1 Introduction

To improve processor performance numerous cache organizations have been proposed
(and some of them implemented) in the past. All well known cache organizations can be
divided in two classes: A) static approaches, e.g. victim [1, 2] 1, column associative [4],
skewed-associative [5] and assist [6] caches; and B) adaptive designs, e.g split tempo-
ral/spatial [7], dual data [8], reconfigurable [9] and configurable line size [10] caches.
The first group relies on time invariant design improvements, while the second one
aims on trivial cache organization changes according to some running application re-
quirements. We envision a third approach, termed flux caches, based on demand driven
cache designs and implemented using for example reconfigurable technologies.
Reconfigurable hardware extensions of general purpose processors (GPP) have been
mainly focusing on accelerating frequently used code in hardware [11, 12, 13]. Such
hardware/software repartitioning usually leads to drastic changes in cache behavior
since the application temporal and spacial locality is mainly accounted on highly iter-
ative loops that form the primary subjects for hardware implementation. While dealing
with the aforementioned effects did not get unnoticed [14], using on-demand hardware
designs to improve the GPP memory sub-system seems to lack attention from the re-
search community. In this paper depending on expected execution benefits of a single
program (or a subsection of a program), memory sub-system designs are changed on
demand. If during program execution (or before the execution of a program) it is found
or expected that a different cache organization is beneficial then a new cache design
is (dynamically) installed in hardware. In essence our approach allows on demand L1,
L2 cache designs where all cache parameters (e.g. associativity, total size, line size,

1 This is the earliest work on victim caches presented before the widely recognized victim cache
paper of Jouppi [3].

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 93–102, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

94 G.N. Gaydadjiev and S. Vassiliadis

replacement policy, victim cache addition etc.) can be adjusted. Using reconfigurable
technologies we show how to incorporate our approach with no need for architectural
changes. We target an existing processor platform [15] and show that dynamic cache
design can be transparently done with no architectural (ISA) changes.

The remainder of this paper is organized as follows. Section 2 introduces the flux
caches and how they map to the MOLEN machine organization. Section 3 reviews the
most relevant related work. In Section 4 the simulation framework for this study and
the performance results are described. Finally, the discussion is concluded in Section 5.

2 Flux Caches Organization and Implementation

It is envisioned that different programs have unique cache requirements that can be
satisfied by alternative cache organizations. Support for such flexibility is expected to
exploit significant improvements in application execution times. For example, let us
consider two applications of different kind running on the same embedded (e.g. in a
mobile phone) processor. The first one is a digital video processing algorithm with pre-
dominantly streaming (spacial locality) memory accesses. Let the second application
be a Java Virtual Machine (JVM) with heavy temporal locality memory accesses. Obvi-
ously the system designer is confronted with a dilemma considering the fact that drowsy
behavior for both cases is considered unacceptable. Coming up with a cache design that
works optimally for both applications is rather difficult. Let assume instead that both ap-
plications can at advance (before they start) set up a cache design that will best fit their
particular memory requirements. This is not such a non-realistic scenario since in the
majority of the cases the user will never watch a football match and play a strategy game
at the same time. In such a system, different cache designs coexist in time with their
corresponding applications and can be optimized according to the specific demands.

Fig. 1. Flux cache

Flux caches are fully customizable memories, possibly imple-
mented in reconfigurable hardware, that can be installed on
demand before or during program execution. Hardware imple-
mentations of arbitrary cache design can be instantiated under
software or hardware control at runtime and are pre-determined
”off-line” at hardware/software co-design stage using applica-
tion partitioning, monitoring, profiling etc. Generally speaking
the flux cache mechanism would require additional ISA sup-
port 2 to enforce the intended cache design and will introduce
some reconfiguration overhead. The flux cache organization is
depicted in Figure 1.

The Arbiter will partially decode the instructions received
from the instruction fetch unit and issue the flux cache in-
structions to the control unit. The control unit is responsi-

ble for loading the cache configuration code from memory and instruction / data
paths consistency. The envisioned operations support consists only of a single put

2 But not always as it will be shown later by using the MOLEN polymorphic processor [15].

Flux Caches: What Are They and Are They Useful? 95

phase. During this phase, the flux cache is configured to the intended hardware
organization. More precisely, a bitstream is loaded from the main memory into
the local configuration memory. This concept requires one-time architectural ex-
tension by a single instruction. The put instruction that initiates the flux cache
configuration has the following format: put <address>. The address is a mem-
ory location the first element of the configuration bitstream is to be loaded from.

Fig. 2. Single program execution

Parameters of the cache are usually implicit
as in the example presented hereafter, explicit
calls can also be envisioned. The put phase is
initiated by the arbiter after detection of a put
instruction and has to be interrupted right af-
ter the hardware configuration is completed.
This can be achieved only by proper configu-
ration bitstream termination. There exist two
different approaches (using special operation
at the end or by defining the configuration
code length at the beginning) both with their
advantages and shortcomings.

Assuming the case (different from the
aforementioned two applications example) of
a single application with clearly defined re-
gions with predominant spacial or temporally
localities executing on a machine augmented
with a flux cache (Figure 2). The original
GPP execution code sequence is augmented
with put instructions at the positions differ-
ent cache organization is needed. The decision on cache type, size and configuration
is left to the system designer since he/she is expected to understand the targeted ap-
plications behavior. The cache selection process can be supported by profiling, cache
simulation and/or dynamic program monitoring. In addition, the latter process can be
fully automated and integrated in the automated design tools. The put instruction will
be redirected to the control unit and interpreted. More precisely, the configuration mi-
crocode located at the targeted address will be loaded into the configuration memory to
ensure the flux cache hardware structure. After the cache reconfiguration is completed
(and all valid tags of the ”new” cache are invalidated) the execution of the GPP will
continue from the next instruction following the put. In order to reduce the penalty
of such execution stalls various prefetch and partial configuration techniques [16] and
concurrent loading can be applied. Please note that after complete reconfiguration, the
”new” cache will be ”empty” and the cold-start effects have to be taken into considera-
tion (keeping ”old” filled caches, prefetching designs to fill caches and partial flux cache
designs may help). The flux caches can be realized using existing technology, i.e. Virtex
II Pro platform FPGA from Xilinx. The only constraint on the targeted technology is
partial reconfiguration support.

To show the flux cache feasibility we assume reconfigurable implementation and
the MOLEN paradigm. The MOLEN machine organization consists of two main com-

96 G.N. Gaydadjiev and S. Vassiliadis

ponents: the Core Processor (CP), usually a general purpose processor, and the Recon-
figurable Processor (RP).

Fig. 3. MOLEN organization

The application’s division in a
hardware and a software part
is directly mappable to the
above two units. The execu-
tion flow redirection is per-
formed by the Arbiter using
partial instruction decoding. In
respect to the Core Processor
original ISA, MOLEN requires
only an one-time extension with
four and up to eight instruc-
tions dependent on the spe-
cific implementation [16]. To
perform the actual reconfigu-
ration of the CCU, reconfig-

uration microcode is loaded into the ρμ-code unit. This stage is also re-
ferred to as the set phase. The execute phase is responsible for the ac-
tual operation execution on the CCU, and is performed by running the ex-
ecution microcode. It is important to emphasize that both the set and exe-
cute phases do not specify any pre-defined hardware operation to be performed.

Fig. 4. A flux cache implementation

Instead, the pset, cset and execute instruc-
tions (reconfigurable instructions) directly
point to the memory location where the re-
configuration or execution microcode is lo-
cated. The hardware/software communica-
tion is supported by the Exchange Registers
bank and performed through the movtx and
movfx MOLEN instructions. As depicted on
Figure 4, flux caches can be implemented
under a simplified MOLEN scenario (only
flux caches no CCUs). Cache coherence logic
may be needed if for example the core proces-
sor employs L1 caches. The put flux cache
phase is functionally equivalent to the set
phase in MOLEN. All MOLEN configura-
tion microcode termination and prefetching
techniques [13] are directly applicable to flux
caches. Said this we can use the MOLEN set
instruction for put emulation. The execution
phase with its supporting MOLEN instruc-
tions and functional modules is no longer needed for the flux cache implementation
case. This allows the overal system organization to be reduced significantly. First of

Flux Caches: What Are They and Are They Useful? 97

all the data memory Multiplexer / Demultiplexer can be avoided due to the absence of
CCU that will perform data accesses. The exchange registers bank and the two move in-
structions for data exchange between the core and the reconfigurable processors are not
required. The sequential consistency model, inherent to MOLEN, will naturally arbi-
trate the execution of the core processor code with the flux cache reconfiguration times.
This leads to a very minimal but still completely functional flux cache implementation
that will decrease the complexity (and the overall overhead) of the MOLEN functional
blocks. In reality, the arbiter and the simplified ρμ-code unit can be combined into a
single module that handles the flux cache reconfigurations. It is to be noted that code
running on such simplified MOLEN instantiation will be binary compatible with any
other MOLEN implementation. In the opposite direction, however, additional fix up
code and exception handling may be needed to cope with all not implemented MOLEN
(e.g. mov and execute) instructions.

3 Related Work

The flux caches allow their internal structure to be ”redesigned” at any given moment
during the execution time. This is the reason why only the time variant cache proposals
(as introduced in Section 1) will be considered hereafter.

The ”reconfigurable caches” introduced by Ranganthan et. al. [9] divide the avail-
able cache memory into several partitions that may be used to support applications usu-
ally unable to exploit conventional caches in an optimal way. As example the multime-
dia applications with their streaming nature are used. Although named reconfigurable,
this proposal is just an extension of the conventional set-associative and direct mapped
cache designs to support a limited number of partitions that are dynamically selectable.
In addition, special ISA support may be required to control repartitioning (in case the
software controlled approach is used). Our proposal differs in two aspects: first we do
not impose any limitation on the number of possible cache configurations; and second
very limited or no additional ISA support (as in the case of the MOLEN processor) is
required to indicate the intended configuration.

The Split Temporal/Spatial (STS) caches [7] employ two cache sub-systems: one
for ”temporal” data and another for ”spacial” data. The main idea is that handling data
with temporal locality in a ”spacial” way, e.g. prefetching its neighboring addresses is
usually counterproductive. This leads to data classification into two sub-groups, each
to be handled separately by the corresponding cache. Such classification can be per-
formed on compile / profile or run-time. Two ways to express this to the hardware are
envisioned: by ISA extension or by tagging. The flux caches differ from STS caches in
the following way. First, we allow instruction and data cache modifications compared to
data cache only target of the STS caches. Second, we do not require and additional ISA
modifications or tag bits to implement similar functionality. STS caches can be imple-
mented in flux caches in a straight forward way by using the MOLEN pset or execute
instructions to distinguish between ”temporal” and ”spacial” data.

The Dual Data Cache (DDC) bears some similarities with STS. Like STS, it has
two separate modules to deal with data of different locality. The data allocation, how-
ever, is more sophisticated and one additional bypass mode is introduced. The memory

98 G.N. Gaydadjiev and S. Vassiliadis

instructions are tagged as in STS with the difference that five different data types are
distinguished. As in the case of STS caches our proposal differs in its flexibility con-
cerning the instruction cache and its zero overhead ISA support.

The configurable line size caches proposed by the University of California, River-
side [10] focus mainly on the cache memory energy consumption. This work covers
static selection of the cache line size early in the embedded system design process. The
assumption is that an embedded system will execute only a pre-defined (and hence very
limited) set of applications during its operational lifetime. Later ongoing research of
the same group [14] reported dynamic configuration during run-time. However, again
only a very limited number of cache configurations is supported. Our proposal does not
impose such restriction on the system designers, allowing them to introduce changes
later (even in the field) when new applications have been added or existing one should
be upgraded (e.g. using MPEG4 instead of MPEG2). The above list of related work
is not complete but to our knowledge representative. The reason of not including all
previous approaches is the significant number of publications on the topic and space
limitations. Proposals such as software managed data caches (implemented in HP PA-
7200 CPU) [17] or Veidenbaum’s et. al. dynamic cache line size adaptation [18] are
not considered in details due to some similarities with DDC and the work from UC
Riverside respectively.

All of the proposals reported in the publicly available literature do focus on organiz-
ing the available cache memory in a number of pre defined ways, mainly in respect to
associativity and cache line size. In our proposal the only restriction known is the avail-
able reconfigurable hardware resources (e.g. on-chip SRAM size) that may limit the
overal cache size. All remaining cache parameters, e.g. replacement strategy, prefetch-
ing and write back policy, can be adjusted to the targeted application in order to gain
optimal performance. In addition, our proposal does not limit the system designer to
the conventional cache architectures and provides him with means to utilize (and/or
evaluate) unique approaches, e.g. stream caches, or even design and apply completely
customized memory sub-system (e.g. 2-D rectangular memory [19]).

4 Simulation Framework, Methodology and Results

We studied the potential benefits of reconfigurable caches using dinero IV [20], a trace
driven cache simulator that models the first two levels of the memory hierarchy. We
share the opinion that statements about cache performance can be based only on trace-
driven simulation or direct measurements [21]. The former method is slow and has sig-
nificant demands on storage capacity, while the latter is fast but prohibitively expensive.
Since our study is about relative cache performance, a non-functional simulator such as
dinero is considered sufficient. The application traces for this study where obtained
using the SimpleScalar 4.0 simulator [22] modified to generate dinero style memory
traces. The traces where generated in an in-order execution fashion. Only the three
basic memory access types where implemented: data read, data write and instruction
fetch. This fact, however, does not have any influence on the generality of the reported
results. The targeted applications of interest where multimedia.

Flux Caches: What Are They and Are They Useful? 99

Table 1. Benchmarks used in this study

benchmark Description Input

gsmenc GSM speech encoding (toast) clinton.pcm
gsmdec GSM speech decoding (untoast) clinton.pcm.gsm
adpcmenc ADPCM speech encoding (rawcaudio) clinton.pcm
adpcmdec ADPCM speech decoding (rawdaudio) clinton.adpcm
mpegenc MPEG-2 video encoding (four 352x240 frames IBBP) mei16v2.yuv
mpegdec MPEG-2 video decoding (video stream to YUV) mei16v2.m2v
cjpeg JPEG encoding (1024x630 3-band image) rose16.ppm
djpeg JPEG decoding (1024x630 3-band image) rose16.jpg
epicenc EPIC encoding (unepic) (512x512 grayscale image) test.image.pgm.E
epicdec EPIC decoding (epic) (512x512 grayscale image) test image.pgm
g721enc G721 speech compression clinton.pcm
g721dec G721 speech decompression clinton.g721

This is the reason for selecting a representative set of benchmarks and correspond-
ing data sets from the UCLA MediaBench [23] suite as summarized in Table 1. We
targeted set of benchmarks that cover audio, video, images and speech data processing
that is assumed to represent the application domain for our study. We have simulated
many different L1 caches to explore the impact of various cache parameters on the miss
ratio. All the simulation and data collection work was automated using a script that did
attempt local and global minimum determination in the reported miss ratios. Sophisti-
cated algorithms for optimal cache selection are outside the scope of the current study.

Fig. 5. I-cache miss ratios vs line size

We do realize that some of the
synthetic benchmarks used may
not truly represent a real-life
multimedia application. For ex-
ample, the gsm pair (also known
as toast/untoast) consists mainly
of highly iterative functions that
rely on the register keyword
for speed up optimizations. In
our case (SimpleScalar architec-
ture and gcc compiler) unrealis-
tically low data miss ratios are
expected for those benchmarks.
On the other hand, such situa-
tion forms a worst case scenario
for evaluation of the proposed
cache organization.

In an attempt to evaluate the optimal configuration for the targeted benchmark set
under a flux cache scenario, a variety of cache configurations where simulated. They
all differ in overall cache sizes, line sizes, associativity, prefetch behavior and write-
allocate and write-back policies just to name a few. For simplicity, we always assumed

100 G.N. Gaydadjiev and S. Vassiliadis

(a) (b)

Fig. 6. D-cache miss ratios vs line size

only L1 split instruction/data caches of equal sizes. The primary cache size of interest
is 8k (2x4k instruction and data caches) - a realistic scenario for the embedded domain.
We did not evaluate the influence of the replacement policy since it has been found
that LRU and FIFO outperform the random approach, however do not show signifi-
cant differences among each other. In all of the experiments reported hereafter the LRU
replacement is used. We would like to emphasize that this is only due to the specific
behavior of the targeted benchmarks and does not form any restriction for the proposed
approach. It is very likely that different applications may greatly benefit from replace-
ment policy changes. The first well expected clear difference in performance was found
when the cache line size was changed.

Figures 5 and 6 depict how the cache line size influences the miss ratio. The instruc-
tion cache miss ratio is shown in Figure 5, while Figure 6 (a) and (b) demonstrate the
miss ratio variation for the data cache. In this experiment, direct mapped cache with
instruction and data cache sizes equal to 4k where considered. While for the instruc-
tion cache the miss ratio keeps decreasing with increasingly larger cache line sizes, the
data cache miss ratio shows a clear optimum at certain sizes. For example the djpeg
and cjpeg curves have a minimum at 16 and 32 byte line sizes. The adpcm encoder
and decoder perform optimally with 8 and respectively 16 bytes long cache lines. Two
benchmarks show slightly deviating behavior - the epic and the mpeg. Both mpeg vari-
ants, the encode and the decode, show increasing miss ratios when the line size grows
from 8, through, 16, 32, 64 and up to 128 bytes. Epic however shows even more surpris-
ing properties - while the encode direction shows clear miss ratio minimum in the miss
ratio for cache line size of 32 bytes, the decoding part of the benchmark shows a mini-
mum only at 128 byte cache line. This fact, however not shown in the figure was found
by performing experiments with 256 byte cache lines. The remaining two benchmarks-
gsm and g721 do not show significant changes in our experiment, mainly due to the
usage of the C register keyword that will assign most of the variables to internal regis-
ters. It is interesting to note, however that the instruction cache behavior for the g721
encoder and decoder shows heavy dependence on the cache line size. To summarize,
the optimal flux cache configuration needed for djpeg and cjpeg should be 4k/32 (4k
cache organized into 32 byte lines) for instructions and 4k/32 for data for optimal cache

Flux Caches: What Are They and Are They Useful? 101

performance. Please note that we did ignore some minor differences in cache miss ra-
tios for 32 byte (0.0257) and 128 byte (0.0157) cases otherwise we would be selecting
4k/128 configuration for the cjpeg instruction cache. The same configuration (4k/32)
works best for the epic encoder, while before starting the epic decoder the flux cache is
to be ”redesigned” into a 4k/128 considering optimal data cache performance.

5 Conclusions and Future Work

In this paper, we introduced the concept of flux caches and have indicated their per-
formance potential for applications with streaming data access patterns such as multi-
media. More precisely, we studied different cache sizes and showed the improvement
potential inherent to the studied applications in respect to the line size in the case of
8k cache. Since cache miss ratios do only give an indication about the flux cache per-
formance, currently we are implementing the flux caches on the MOLEN Virtex-II Pro
prototype and will report the measured numbers in the near future. In addition, the
energy performance analysis of the proposed organization needs careful investigation,
together with issues like: data consistency and multiprogramming environment.

References

1. Dejuan, E., Casals, O., Labarta, J.: Cache memory with hybrid mapping. In: 7th International
Conference on Modelling, Identification and Control, Grindelwald (1987) 27–30

2. Dejuan, E., Casals, O., Labarta, J.: Management algorithms for an hybrid mapping cache
memory. In: International Conference on Mini an Microcomputers and their applications,
Sant Feliu (1988) 368–372

3. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In: ISCA. (1990) 364–373

4. Agarwal, A., Pudar, S.D.: Column-associative caches: A technique for reducing the miss
rate of direct-mapped caches. In: ISCA. (1993) 179–190

5. Seznec, A.: A case for two-way skewed-associative caches. In: ISCA. (1993) 169–178
6. Chan, K.K., Hay, C.C., Keller, J.R., Kurpanek, G.P., Schumacher, F.X., Zheng, J.: Design of

the HP PA 7200 CPU processor chip. Hewlett-Packard Journal 47 (1996) 25–33
7. Milutinovic, V., Markovic, B., Tomasevic, M., Tremblay, M.: The split temporal/spatial

cache: Initial performance analysis. Proceedings of SCIzzL-5 (1996) 63–69
8. Sánchez, F.J., González, A., Valero, M.: Software management of selective and dual data

caches. In: Technical Committee on Computer Architecture (TCCA) Newsletter. (1997)
9. Ranganathan, P., Adve, S.V., Jouppi, N.P.: Reconfigurable caches and their application to

media processing. In: ISCA. (2000) 214–224
10. Zhang, C., Vahid, F., Najjar, W.A.: Energy benefits of a configurable line size cache for

embedded systems. In: ISVLSI. (2003) 87–91
11. Hartenstein, R.W., Kress, R., Reining, H.: A new FPGA Architecture for Word-Oriented

Datapaths. In: 4th International Workshop on Field Programmable Logic and Applica-
tions:Architectures, Synthesis and Applications. (1994) 144–155

12. Trimberger, S.M.: Reprogramable Instruction Set Accelerator. U.S. Patent No. 5,737,631
(1998)

102 G.N. Gaydadjiev and S. Vassiliadis

13. Vassiliadis, S., Wong, S., Cotofana, S.: The MOLEN ρμ-Coded Processor. In: 11th Inter-
national Conference on Field Programmable Logic and Applications (FPL). Volume 2147.,
Belfast, UK, Springer-Verlag Lecture Notes in Computer Science (LNCS) (2001) 275–285

14. Gordon-Ross, A., Vahid, F., Dutt, N.: Automatic tuning of two-level caches to embedded
applications. In: DATE. (2004) 208–213

15. Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Panainte, E.M.: The
molen polymorphic processor. IEEE Transactions on Computers (2004) 1363– 1375

16. Vassiliadis, S., Gaydadjiev, G.N., Bertels, K., Panainte, E.M.: The molen programming
paradigm. In: Proceedings of the Third International Workshop on Systems, Architectures,
Modeling, and Simulation. (2003) 1–10

17. Kurpanek, G., Chan, K., Zheng, J., DeLano, E., Bryg, W.: Pa7200: A pa-risc processor with
integrated high performance mp bus interface. In: COMPCON. (1994) 375–382

18. Veidenbaum, A.V., Tang, W., Gupta, R., Nicolau, A., Ji, X.: Adapting cache line size to
application behavior. In: ICS ’99: Proceedings of the 13th international conference on Su-
percomputing, New York, NY, USA, ACM Press (1999) 145–154

19. Kuzmanov, G., Gaydadjiev, G.N., Vassiliadis, S.: Visual data rectangular memory. In: Pro-
ceedings of the 10th International Euro-Par Conference (Euro-Par 2004). (2004) 760–767

20. Edler, J., Hill, M.D.: Dinero IV trace-driven uniprocessor cache simulator. (1998)
http://www.cs.wisc.edu/˜markhill/DineroIV.

21. Smith, A.: Cache Memories. Computing Surveys 14 (1982) 473–530
22. Burger, D., Austin, T.M., Bennett, S.: Evaluating future microprocessors: The simplescalar

tool set. Technical Report CS-TR-1996-1308 (1996)
23. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: Mediabench: A tool for evaluating and

synthesizing multimedia and communicatons systems. In: 30th Annual International Sym-
posium on Microarchitecture, MICRO30. (1997) 330–335

First-Level Instruction Cache Design for Reducing
Dynamic Energy Consumption�

Cheol Hong Kim1, Sunghoon Shim1, Jong Wook Kwak1, Sung Woo Chung2,
and Chu Shik Jhon1

1 Department of Electrical Engineering and Computer Science,
Seoul National University, Shilim-dong, Kwanak-gu, Seoul, Korea

{kimch, shshim, leoniss, csjhon}@panda.snu.ac.kr
2 Processor Architecture Lab., Samsung Electronics,

Giheung-eup, Gyeonggi-do, Korea
s.w.chung@samsung.com

Abstract. Microarchitects should consider energy consumption, together with
performance, when designing instruction cache architecture, especially in embed-
ded processors. This paper proposes a power-aware instruction cache architec-
ture, named Partitioned Instruction Cache (PI-Cache), to reduce dynamic energy
consumption in the instruction cache. The proposed PI-Cache is composed of
several small sub-caches. When the PI-Cache is accessed, only one sub-cache is
accessed by utilizing the locality of applications. In the meantime, the other sub-
caches are not accessed, resulting in dynamic energy reduction. The PI-Cache
also reduces energy consumption by eliminating energy consumed in tag match-
ing. Moreover, performance loss is little, considering the physical cache access
time. We evaluated the energy efficiency by running cycle accurate simulator,
SimpleScalar, with power parameters obtained from CACTI. Simulation results
show that the PI-Cache reduces dynamic energy consumption by 42% – 59%.

1 Introduction

Energy consumption has become an important design consideration, together with per-
formance, when designing embedded processors. It can be attributed to the limitation
on battery capacity and significant thermal problems causing high cooling costs. Unfor-
tunately, as the system performance continues to improve, energy consumption in a pro-
cessor dramatically increases. Therefore, many researches have focused on the energy
efficiency of cache memories to reduce energy consumption in a processor, because
caches may consume up to half of total processor energy [1]. Filter cache trades perfor-
mance for power consumption by filtering power-costly regular cache accesses through
an extremely small cache [2]. Bellas et al. proposed a technique using an additional
mini cache located between the first-level instruction cache and the CPU core, which
reduces signal switching activity and dissipated energy with the help of compiler [3].
Selective-way cache provides the ability to disable a set of the ways in a set-associative

� This work was supported by the Brain Korea 21 Project.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 103–111, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

104 C.H. Kim et al.

cache during periods of modest cache activity to reduce energy consumption, while the
full cache may remain operational for more cache-intensive periods [4]. Way predicting
set-associative caches access one tag and data array initially based on their prediction
mechanism, and access the other arrays only when the initial access did not result in a
match, which leads to less energy consumption at the expense of longer access time [5].

Energy consumption in the first-level instruction cache (iL1) accounts for a signifi-
cant portion of total processor energy consumption, because accesses to the iL1 occur
almost every cycle [6]. Therefore, total energy consumption in a processor is highly
dependent on the energy efficiency of the iL1. In this paper, we propose Partitioned
Instruction Cache (PI-Cache) to reduce per-access energy consumption of the iL1 by
partitioning it to several sub-caches. We propose the PI-Cache to reduce per-access en-
ergy consumption of the iL1 by utilizing high locality of applications in the iL1. It
is commonly regarded that the program control flows sequentially. Generally, branch
instructions occupy only 0% – 30% of total instructions [7][8]. Therefore, most instruc-
tions are expected to be accessed sequentially in the iL1. We try to exploit benefits from
this high locality of applications in the iL1. The proposed PI-Cache is not applicable to
data caches, since the locality in data caches is inferior to that in instruction caches.

There have been several studies in partitioning the iL1 to several sub-caches. One
study closely related to ours is that on the partitioned cache architecture, proposed by
Kim et al. [9]. They split the iL1 into several sub-caches to reduce per-access energy
cost. Each sub-cache in their scheme may contain multiple pages. In contrast, each
sub-cache in our scheme is dedicated to only one page, resulting in more reduction of
per-access energy compared to their work by eliminating tag lookup and comparison
within the iL1. A cache design to reduce tag area cost by partitioning the cache has
been proposed by Chang et al. [10]. They divide the cache into a set of partitions, and
each partition is dedicated to a small number of pages in the TLB to reduce tag area
cost in the iL1. However, they did not consider energy consumption. When the cache is
accessed, all partitions are concurrently accessed in their work.

The rest of this paper is organized as follows. Section 2 and Section 3 present the
traditional cache architecture and the proposed cache architecture, respectively. Section
4 discusses our evaluation methodology and shows detailed evaluation results. Section
5 concludes this paper.

2 Traditional Instruction Cache

The traditional instruction cache architecture, including instruction TLB, is shown in
Fig. 1. Instruction cache structure focused in this paper is Virtually-Indexed, Physically-
Tagged (VI-PT) cache. VI-PT cache is used in many current processors to remove the
TLB access from critical path. Virtual address is used to index the iL1 and the TLB is
concurrently looked up to obtain physical address. After that, the tag from the physical
address is compared with the corresponding tag bits from each block to find the block
actually requested. The two-level TLB, a very common technique in embedded proces-
sors (e.g. ARM11 [11]), consists of micro TLB and main TLB. Micro TLB is placed
over the main TLB for filtering accesses to the main TLB for low power consumption.
When a miss occurs in the micro TLB, additional cycle is required to access the main

First-Level Instruction Cache Design for Reducing Dynamic Energy Consumption 105

Main TLB

Data

Virtual
Address

Micro TLB

tag data
tag data

tag data

tag data

tag

tag

tag

data

data

data

tag data

tag

tag

tag

data

data

data

Tag

Decoder

DataTag

Decoder

== ? == ?

Data

L1 icache

Hit ?

Valid Valid

Fig. 1. Traditional Instruction Cache Architecture

TLB. Traditional cache mainly consists of two arrays: tag and actual data. Tag array
has the address of actual data. The address tags of cache blocks with same index are
compared with the address obtained from the TLB to find the block actually requested.
Valid bit identifies the validity of each cache line.

When an instruction fetch request from the processor comes into the iL1, virtual
address is used to determine the set. If the selected blocks are not valid, a cache miss
occurs. If there is a valid block, the tag of the block is compared with the address
obtained from the TLB to see whether it was really requested. If they match, the cache
access is a hit.

3 Partitioned Instruction Cache

Energy consumption in the cache is mainly dependent on the cache configuration such
as cache size and associativity. In general, small cache consumes less energy than large
cache. However, small cache increases cache miss rates, which leads to performance
degradation. Thus, large cache is inevitable for performance. The proposed PI-Cache
is composed of several small sub-caches in order to make use of both advantages from
small cache and large cache. When an access comes into the PI-Cache, only one sub-

106 C.H. Kim et al.

Data

Virtual
Address

PSC
(Predicted Sub-Cache id)

Data

Main TLB

Proposed
Micro TLB

tag data id
tag data id

tag data id

tag data

tag

tag

tag

data

data

data

tag data

tag

tag

tag

data

data

data

Decoder DecoderDecoder

Valid ?

Valid

Data

Valid

Data

Valid

Valid ? Valid ?

Predicted
Sub-Cache

Correct
Prediction

?

Fig. 2. Proposed PI-Cache Architecture

cache that is predicted to have the requested data, is accessed, and the other sub-caches
are not accessed. In the PI-Cache, each sub-cache is dedicated to only one page al-
located in the micro TLB. The number of sub-caches in the PI-Cache is equal to the
number of entries in the micro TLB. Therefore, there is one-to-one correspondence
between sub-caches and micro TLB entries.

Increasing the associativity of the cache to improve the hit rates has negative ef-
fects on the energy efficiency, because set-associative caches consume more energy
than direct-mapped caches by reading data from all the lines that have same index. In
the PI-Cache, each sub-cache is configured as direct-mapped cache to improve the en-
ergy efficiency. Each sub-cache size is equal to page size. Therefore, we can eliminate
tag array in each sub-cache because all the blocks within one page are mapped to only
one sub-cache.

Fig. 2 depicts the proposed PI-Cache architecture. There are three major changes
compared with the traditional cache architecture. 1) Id field is added to each micro TLB
entry to denote the sub-cache which corresponds to each micro TLB entry. The id field
in each micro TLB indicates the sub-cache which all cache blocks within the page are
mapped to. 2) There is a register called PSC (Predicted Sub-Cache id) that stores the id
of the latest accessed sub-cache. An access to the PI-Cache is performed based on the
information in the PSC register. 3) Tag arrays are eliminated in the iL1.

First-Level Instruction Cache Design for Reducing Dynamic Energy Consumption 107

When an instruction fetch request from the processor comes into the iL1, only one
sub-cache, which was accessed just before, is accessed based on the information stored
in the PSC register. At the same time, the access to the instruction TLB is performed. If
the access to the micro TLB is a hit, it means that the requested data is within the pages
mapped to the iL1.

In case of a hit in the micro TLB, the id of the matched micro TLB entry is com-
pared with the value in the PSC register to verify the prediction. When the prediction is
correct (the sub-cache id corresponding to the matched micro TLB entry is same to that
stored in the PSC register), a normal cache hit occurs if data was found in the predicted
sub-cache and a normal cache miss occurs if data was not found. A normal cache hit
and a normal cache miss mean a cache hit and a cache miss without penalty (another
sub-cache access delay), respectively. If the prediction is not correct, it means that the
requested data belongs to the other pages in the iL1. In this case, the correct sub-cache
is also accessed. This incurs additional cache access penalty. If data is found in the cor-
rect sub-cache, a cache hit with penalty occurs. If cache miss occurs even in the correct
sub-cache, a cache miss with penalty occurs.

If a miss occurs in the micro TLB, it implies that the requested data is not within
the pages mapped to the iL1, consequently a cache miss occurs. In this case, the sub-
cache that corresponds to the replaced page from the micro TLB is flushed in whole.
Each sub-cache can be easily flushed by resetting valid bits of all cache blocks because
the iL1 only allows read operation (No write-back is required). Then, incoming cache
blocks which correspond to the newly allocated entry in the micro TLB are placed into
the flushed sub-cache.

Table 1. Memory Hierarchy Parameters

Parameter Value

Micro TLB fully associative, 1 cycle latency
Main TLB 32 entries, fully associative, 1 cycle latency, 30 cycle miss penalty
L1 I-Cache 16KB and 32KB, 1-way – 8-way, 32 byte lines, 1 cycle latency

Sub-cache in the 4KB (Page size), 1-way, 32 byte lines,
PI-Cache 1 cycle latency

L1 D-Cache 32KB, 4-way, 32 byte lines, 1 cycle latency, write-back
L2 Cache 256KB unified, 4-way, 64 byte lines, 8 cycle latency, write-back
Memory 64 cycle latency

In the PI-Cache, there is no conflict miss, since one page is mapped to one sub-cache
whose size is equal to page size. However, there are more compulsory misses than the
traditional cache, since the sub-cache in the PI-Cache is flushed whenever the corre-
sponding entry in the micro TLB is replaced. Compulsory misses may be eliminated
if the PI-Cache transfers all cache blocks in the page simultaneously when the page is
allocated in the micro TLB. However, the PI-Cache does not transfer whole page at the
same time, because it may incur serious bus contention problem. The PI-Cache transfers
the cache block from lower level memory only when it is requested.

108 C.H. Kim et al.

The PI-Cache incurs little hardware overhead. Traditional micro TLB must be ex-
tended to incorporate the id for each entry for this scheme. However, the number of
bits for id field is typically small: 2, 3 or 4 bits. One register is required for the PSC
register and one comparator is required to check sub-cache prediction. This overhead is
negligible.

The PI-Cache is expected to reduce dynamic energy consumption by reducing the
size of accessed cache and eliminating tag comparison. If the hit rates in the PI-Cache
do not decrease so much compared to those in the traditional cache, the PI-Cache can
be an energy-efficient alternative as an iL1.

4 Experiments

In order to determine the characteristics of the proposed PI-Cache with respect to
the traditional caches, we simulated various benchmarks using SimpleScalar simula-
tor [12]. CACTI cache energy model was used to collect the power parameters where
we assumed 0.18um technology [13]. Simulated applications are selected from SPEC
CPU2000 suite [8]. Memory hierarchy parameters used in this simulation are shown in
Table 1. The simulated processor is a 2-way superscalar processor with an L2 cache,
which is expected to be similar to the next generation embedded processor by ARM
[14].

4.1 Cache Delay

The normalized instruction fetching delay obtained from simulations is given in Fig. 3.
We assume that pic in the graphs denotes the proposed PI-Cache. L1 lookup portion
in the bar represents the cycles required for iL1 accesses. L1 miss portion denotes the
cycles incurred by iL1 misses. Overhead in pic portion denotes the delayed cycles
incurred by sub-cache misprediction in the PI-Cache scheme, namely the penalty to
access another sub-cache after misprediction. Note that traditional cache schemes do
not have Overhead in pic portion.

As shown in these graphs, set-associative caches show less cache delay than direct-
mapped caches by reducing the delay due to cache misses. This comes from the fact
that set-associative caches improve the hit rates compared to direct-mapped caches by
reducing conflict misses in the cache. Therefore, the cache delay is reduced with more
degree of associativity. As shown in Fig. 3, the performance of 16KB PI-Cache is de-
graded by 12% on average compared to that of the traditional direct-mapped cache.
32KB PI-Cache is degraded by 6% on average. This performance degradation is caused
by two reasons: one is the degradation of the hit rates by restricting the blocks to be al-
located in the iL1 to the blocks within the pages mapped to the micro TLB entries. The
other is the sub-cache misprediction which incurs additional sub-cache access delay,
indicated by the Overhead in pic portion.

Performance gap between the traditional caches and the PI-Cache decreases as the
cache size increases. This is because the hit rates in the PI-Cache improve by increasing
the number of the pages mapped to the iL1: 32KB PI-Cache with 8 pages (sub-caches)
compared with 16KB PI-Cache with 4 pages (sub-caches). As shown in Fig. 3, L1 miss
portion in the bars significantly decreases in 32KB PI-Cache compared to 16KB PI-

First-Level Instruction Cache Design for Reducing Dynamic Energy Consumption 109

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

bzip2 gcc gzip parser twolf apsi equake lucas swim average

N
or

m
al

iz
ed

 D
el

ay

L1 lookup L1 miss Overhead in pic

0

0.2

0.4

0.6

0.8

1

1.2

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

bzip2 gcc gzip parser twolf apsi equake lucas swim average

N
or

m
al

iz
ed

 D
el

ay

L1 lookup L1 miss Overhead in pic

(a) 16KB L1 I-Cache (b) 32KB L1 I-Cache

Fig. 3. Normalized Cache Delay

Table 2. Physical Cache Access Time

Access Time, ns 1-way 2-way 4-way 8-way PI-Cache

16KB 1.129 1.312 1.316 1.383 0.987
32KB 1.312 1.455 1.430 1.457 0.987

Cache. From these results, the PI-Cache is expected to be more efficient as the cache
size becomes larger.

The results shown in Fig. 3 are obtained from the configurations in Table 1. We sim-
ulated all cache configurations with same cache access latency (1 cycle). In fact, phys-
ical access time varies by the cache configurations. Table 2 gives the physical access
time according to each cache models obtained from CACTI model. For the traditional
cache models, physical cache access time generally increases as the degree of the as-
sociativity increases. Physical access time of the PI-Cache is “1 AND gate delay (it is
required to enable the sub-cache indicated by the PSC register, 0.114 ns, obtained from
ASIC STD130 DATABOOK by Samsung Electronics [15]) + Sub-cache access latency
(0.873 ns, obtained from CACTI)”. As shown in Table 2, physical access time of the
PI-Cache is faster than the direct-mapped traditional cache, because accessed cache size
is small and tag comparison is eliminated in the PI-Cache. This feature is well shown in
32KB iL1 than 16KB iL1. Physical access time of the traditional cache increases if the
cache size increases. However, physical access time for the PI-Cache is dependent on
the sub-cache size, not on the cache size. Consequently, access time of the PI-Cache is
independent of the cache size. Therefore, if the processor clock speeds up or the size of
cache increases in the future, the proposed PI-Cache is expected to be more favorable.

4.2 Energy Consumption

Table 3 shows per-access energy consumption according to each cache models obtained
from CACTI model. In the traditional caches, the energy consumed by the cache in-
creases as the degree of associativity increases. The increase in associativity implies

110 C.H. Kim et al.

Table 3. Per-access Energy Consumption

Energy, nJ 1-way 2-way 4-way 8-way PI-Cache

16KB 0.473 0.634 0.935 1.516 0.232
32KB 0.621 0.759 1.059 1.666 0.232

the increase of output drivers, comparators, sense amplifiers, consequently the increase
of total energy. The PI-Cache consumes less per-access energy compared to traditional
caches. There are two reasons for better energy efficiency: one is that the size of cache
accessed in the PI-Cache is smaller than the traditional cache by partitioning it to several
sub-caches. The other is the elimination of accesses to tag arrays in the PI-Cache.

As shown in Table 3, per-access energy in the traditional caches increases as the
cache size increases. By contrast, per-access energy in the PI-Cache is independent of
the cache size, since per-access energy in the PI-Cache is dependent on the sub-cache
size that is equal to the page size. This size-independent property of energy consumption
is especially favorable in a large cache.

0

0.5

1

1.5

2

2.5

3

3.5

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

bzip2 gcc gzip parser twolf apsi equake lucas swim average

N
or

m
al

iz
ed

 E
ne

rg
y

L1 access L1 miss

0

0.5

1

1.5

2

2.5

3

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

1-
w

ay
2-

w
ay

4-
w

ay
8-

w
ay pi
c

bzip2 gcc gzip parser twolf apsi equake lucas swim average

N
or

m
al

iz
ed

 E
ne

rg
y

L1 access L1 miss

(a) 16KB L1 I-Cache (b) 32KB L1 I-Cache

Fig. 4. Normalized Cache Energy Consumption

Detailed energy consumption obtained from SimpleScalar and CACTI together is
shown in Fig. 4. Total energy consumption presented in these graphs is the sum of
the dynamic energy consumed during instruction fetching. In Fig. 4, L1 access portion
denotes the dynamic energy consumed during iL1 accesses, and L1 miss portion repre-
sents the dynamic energy consumed during accessing lower level memory incurred by
misses in the iL1. 16KB PI-Cache gives the improvement of energy efficiency by 42%
on average and 32KB PI-Cache reduces energy consumption by 59% on average. As
expected, the PI-Cache is more energy efficient with a large cache.

First-Level Instruction Cache Design for Reducing Dynamic Energy Consumption 111

5 Conclusions

We have introduced a new instruction cache design called Partitioned Instruction Cache
(PI-Cache) to reduce energy consumption in embedded processors. The PI-Cache is
composed of several sub-caches and each sub-cache is dedicated to only one page.
When an access from the processor core comes into the PI-Cache, only one predicted
sub-cache is accessed for improving energy efficiency. The proposed PI-Cache reduces
energy consumption significantly compared to traditional caches. This energy efficiency
in the PI-Cache comes in two ways: one is reducing the size of cache accessed and the
other is eliminating tag comparison. Moreover, performance loss is little, considering
the reduced physical cache access time. Therefore, the PI-Cache is expected to be a
scalable solution for a large instruction cache.

References

1. Segars, S.: Low power design techniques for microprocessors. In: Proceedings of Interna-
tional Solid-State Circuits Conference. (2001)

2. Kin, J., Gupta, M., Mangione-Smith, W.: The filter cache: An energy efficient memory struc-
ture. In: Proceedings of International Symposium on Microarchitecture. (1997) 184-193

3. Bellas, N., Hajj, I., Polychronopoulos, C.: Using dynamic cache management techniques to
reduce energy in a high-performance processor. In: Proceedings of International Symposium
on Low Power Electronics and Design. (1999) 64–69

4. Albonesi, D.H.: Selective cache ways: On-demand cache resource allocation. In: Proceed-
ings of International Symposium on Microarchitecture. (1999) 70–75

5. Powell, M., Agarwal, A., Vijaykumar, T.N., Falsafi, B., Roy, K.: Reducing set-associative
cache energy via way-prediction and selective direct-mapping. In: Proceedings of Interna-
tional Symposium on Microarchitecture. (2001) 54–65

6. Montanaro, J., et al.: A 160 Mhz, 32b, 0.5W CMOS RISC microprocessor. In: Proceedings
of International Solid-State Circuits Conference. (1996) 214–229

7. Lee, C., Potkonjak, M., Mangione-Smith, W.: A tool for evaluating and synthesizing multi-
media and communications systems. In: Proceedings of the 30th Annual International Sym-
posium on Microarchitecture. (1997) 330–335

8. SPEC CPU2000 Benchmarks. http://www.specbench.org
9. Kim, S., Vijaykrishnan, N., Kandemir, M., Sivasubramaniam, A., Irwin, M.J.: Partitioned

instruction cache architecture for energy efficiency. ACM Transactions on Embedded Com-
puting Systems 2 (2003) 163–185

10. Chang, Y.-J., Lai, F., Ruan, S.-J.: Cache design for eliminating the address translation bot-
tleneck and reducing the tag area cost. In: Proceedings of International Conference on Com-
puter Design. (2002) 334

11. ARM Corp.: ARM1136J(F)-S. available at http://www.arm.com/products/CPUs/ARM1136JF-
S.html

12. Burger, D., Austin T.M., Bennett, S.: Evaluating future micro-processors: The SimpleScalar
tool set. Technical Report TR-1308, Univ. of Wisconsin-Madison Computer Sciences Dept.
(1997)

13. Shivakumar, P., Jouppi, N.P.: CACTI 3.0: An integrated cache timing, power, and area model.
TR-WRL-2001-2 (2001)

14. Muller, M.: At the Heart of Innovation. available at http://www.arm.com/miscPDFs/6871.pdf
15. Samsung Electronics: ASIC STD130 DATABOOK. (2001)

A Novel JAVA Processor for Embedded Devices

Yiyu Tan, Chihang Yau, Kaiman Lo, Paklun Mok, and Anthony S. Fong

Department of Electronic Engineering, City University of Hong Kong,
Tat Chee Avenue, Kowloon Tong, Hong Kong

anthony.fong@cityu.edu.hk

Abstract. As a result of its object-oriented (OO) feature and corresponding ad-
vantages of security, robustness and platform independence, Java is widely ap-
plied in embedded devices. However, among current solutions to Java execution
engine implemented by software or hardware, the overheads of executing OO re-
lated bytecodes are costly and have a great impacts on the overall performance
of Java applications, especially in embedded devices, where real-time operations
and low power consumptions are required in the case of limited memory. To solve
this problem, a novel Java processor architecture called jHISC is proposed where
the OO related bytecodes are supported in hardware directly. In jHISC, an object
is represented by the hardware-readable data structure -object context, which then
makes it possible to implement complex OO related bytecodes at hardware level
and access some fields of object in parallel to improve the execution speed. It
mainly targets J2ME and implements about 93% bytecodes and 83% OO related
bytecodes in hardware directly, and the OO related operations are executed much
faster in jHISC than by software traps.

1 Introduction

JAVA was introduced in the mid-1990s to overcome the major weakness of C and C++
and is now widely applied in network applications and embedded devices, such as
PDAs, mobile phones, TV set-up boxes and Palm PCs [1]. A new report from ARC
Group estimated the number of J2ME(Java 2 Micro Edition) compatible handsets was
421 millions in 2003, 442 millions in 2004, and 1 billion in 2006 [2]. Java claims to be
more robust, secure and portable in addition to its inheriting the common advantages
of object-oriented programming language such as encapsulation, polymorphism, dy-
namic binding and inheritance. Its increasing robustness and security can be attributed
to the automatic garbage collection, static and runtime type checking, exception han-
dling mechanism, array boundary checking and restrictive object reference management
[3] while its enhanced portability is realized through compilation and execution of Java
machine instructions called bytecodes instead of particular processor binaries.

Amongst the three traditional ways of executing Java bytecodes, interpreter, the
original method, finds its performance significantly affected by the time-consuming
loops in the course of software emulation, though boasting its simple interpretation,
relatively easy implementation, and little memory demand. The second way Just-In-
Time (JIT) compiler, however, also introduces additional compilation overheads and
requires much more memory in spite of its advantages over interpreter in eliminating

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 112–121, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Novel JAVA Processor for Embedded Devices 113

redundant translations and optimizing generated native instructions during compilation.
In view of disadvantages of the above two methods, Java processor, executes Java byte-
codes directly through implementation of Java Virtual Machine (JVM) by hardware.
In addition, tailoring hardware support for some Java special features such as security,
multi-threading and garbage collection can potentially enable Java processor to deliver
much better performance than a general-purpose processor for Java applications. Com-
pared with the other approaches, Java processor appears to be particularly suitable for
embedded devices.

Accordingly, high performance Java processors have been developed by many com-
panies and researchers in recent years [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In
this paper, we propose jHISC, a novel architecture Java processor based on J2ME and
mainly targeting embedded devices. The rest of this paper summarizes major previous
researches on Java processors in section 2, and describes jHISC architecture in section
3. In section 4, the system implementation results and execution performance of some
main OO related bytecodes are presented. Finally, conclusions are made in section 5.

2 Related Work

Among the proposed solutions to Java processors in recent years, the method to sup-
port bytecodes can be mainly summarized into three categories: replacing JVM by a
hardware stack machine, hardware translation, and coprocessor. Each of them has its
advantages and disadvantages.

Replacing JVM by a hardware stack machine is the most popular and easiest way
because JVM is basically a software stack machine. Processors of this type use byte-
codes as their native instructions and execute them directly, such as PicoJava I and
II from Sun Microsystems, aJ-100 from aJile Systems, Inc. [4, 5, 6, 7]. However, the
performance and efficiency of stack machine are quite low since all operands such as
temporary data, intermediate values, and method arguments are pushed into or popped
from stack during execution, which will add overheads. It is also difficult for processors
to handle complex operations due to a lot of data required to pop or push from stack,
such as OO related operations, which leads them to need the assistances of software
traps or microcode. Additionally, since they are pure Java processors, it is inflexible for
them to execute the application programs written by other programming languages if
there are no compilers supporting.

For Java processors implemented by hardware translation method, a small translator
is added between instruction fetch and decoding units in a general-purpose processor
core to convert most simple bytecodes to native instructions by one to one or N to
one at run-time. For the other complex bytecodes, such as OO related bytecodes, it
invokes software traps to perform them. ARM Jazelle and JA108 are two commercial
products by using this method [8, 9]. Some researchers also adopted this technique,
for example, R. Radhakrishnan etc. and M. Schoeberl accelerated Java performance by
hardware interpretation [11, 17]; J. Glossner and S. Vassiliadis developed Delft-Java
by directly translating most bytecodes into Delft-Java instructions [15, 16]. The cost
of hardware translation is relatively low because only a small circuitry is added and
little impact is introduced due to its transparence to the host. Furthermore, the processor

114 Y. Tan et al.

executes the application programs written by other programming languages that the host
architecture supports. But some features of Java language such as security and object-
oriented programming features may be compromised if the host architecture does not
support them at hardware level.

Coprocessor approach simply attaches a Java coprocessor to a general-purpose pro-
cessor, thus Java bytecodes and non-Java bytecodes are performed by coprocessor and
general-purpose processor, respectively, to guarantee the system to execute both Java
and traditional application programs written by other programming languages directly.
AU-J2000 from Aurora VLSI Inc. is a 32-bit dual-processor where a Java coproces-
sor based on hardware stack machine is combined with a general-purpose processor
core [10]. Several researchers also implemented coprocessors by reconfigurable sys-
tems independent outside the general-purpose processors to accelerate the Java execu-
tions [12, 13, 14]. The coprocessor provides a good support to Java without affecting
the compatibility of core. But chip area and power consumption increase significantly.

However, almost all the current Java processors do not support object-oriented pro-
gramming at architectural level so that they perform OO related operations by software
traps where an OO related operation may cost several ten clock cycles, sometimes more
than one hundred clock cycles [6]. Moreover, the OO related operations constitute about
15% of all operations [18, 19], their executions thus have significant impacts on the exe-
cution speed of Java programs. Although in some solutions, a quick version replacement
scheme of OO related bytecodes was adopted to speed up execution, it also increased
the chip area and power consumption because the quick version of the related bytecode
was performed by microcode which implementation needed a lot of ROMs [4, 6]. Their
performance penalty does not fit well with the requirements of embedded devices, such
as real-time operations, low power consumptions in the case of limited memory. In ad-
dition, many application programs written by other programming languages are now
available, which makes it desirable to have a general-purpose processor with enhanced
architectural features to support object-oriented programming in hardware directly. All
these lead us to develop jHISC, a novel architecture Java processor supporting OO re-
lated operations at the hardware level.

3 jHISC Architecture

jHISC is a 32-bit object-oriented processor based on High Level Instruction Set Com-
puter (HISC) architecture [20, 21, 22]. It supports the object-oriented programming and
access control in hardware directly by modifying the descriptor structure. By letting
hardware know what an object is, processor provides various support to manage the
system, such as object management, memory management etc. jHISC mainly targets
such J2ME applications as smart mobile phones, PDAs and the other embedded de-
vices, but the float-point and 64-bit operations are not supported in current version.

3.1 Object Model

The object representation method is critical in object-oriented programming systems
due to its affects on the speed of accessing objects. In jHISC, an object is represented by

A Novel JAVA Processor for Embedded Devices 115

the hardware-readable data structure-object context, which consists of object header,
data space and corresponding descriptor tables, etc. Three kinds of contexts, namely
instance, class, and method contexts, are mapped to the hardware architecture and dis-
tinguished by the object header. The format of the object header is shown in Fig. 1.

ObjType ArrayType DsSize

GCInfo

Class

LockInfo

ArraySize

Object Header (OH)Address

0X00

0X04

0X08

0X0C

0X10

0X14

Reserved

Fig. 1. The format of an object header

Inside an object header, the object type(i.e., instance, class, method and array) is
stored in the field ObjType; Field DsSize specifies the size of the related data space;
Field GCInfo stores information to give hardware support for real-time garbage col-
lections; A reference pointer is put into field Class to link the object with its affiliated
class; ArraySize and ArrayType specify the number and type of the elements in an array,
respectively, when the object is an array; LockInfo is used for multithreading.

Except the object header, an instance context also includes Instance Header (IH)
and Instance Data Space (IDS); a class context consists of Class Header (CH), Class
Operand Descriptor Table (CODT), Class Property Descriptor Table (CPDT) and Class
Data Space (CDS); and a method context includes Method Header (MH), Method Code
Space (MCS) and Local Variable Frame (LVF) for local variable storage. In addition,
when applied to represent an array, an instance context also includes array data area.
And inside the class context, CODT and CPDT store class operand descriptors and
class property descriptors, respectively. Class operand descriptors indicate the resources
accessed by the class and class property descriptors assert the properties owned by the
class. The different object context structures and their relations are shown in Fig. 2.

Typically, each object has a unique object context according to its type, and a refer-
ence always points to the base address of object header after the object is resolved. In
the object context, each component is stored with a constant offset to the object header,
thus some components can be accessed in parallel to reduce the access overhead.

116 Y. Tan et al.

Instance Context Class Context Method Context

IDS
OH

CH

OH

MH

MCS

Array Data

OH

MH

MCS

CODT

CPDT

Array Data

OH

OH

IH

IH

IDS

CDS

Fig. 2. Different object structures and their relations

3.2 Descriptor Format

In jHISC, 32-bit operand descriptors describe properties owned by a class or resources
accessed by this class. Their format is shown in Fig. 3 and similar to that described by
the Java specification, including Address Field, Type Field, Static Flag, Access Modifier,
Read-Only Flag, and Resolved Flag. Address Field provides a byte offset to locate data
in the data spaces. Access Modifier is used for security control, and four access modi-
fiers (public, private, protect and package) are defined in the current system. TypeField
stores the types of described data defined for both primitive and reference types. Static
flag indicates where the data are stored. For the non-static field, data are stored inside
Instance Data Space (IDS) of the target reference, otherwise, inside Class Data Space
(CDS). Read-only flag represents whether the target can be written. And Resolved Flag
indicates whether the reference is resolved or not. If not, the system will be trapped to
the operating system routines for the dynamic reference resolution.

R
e

s
o

lv
e

d
F

la
g

[3
1

]

R
e

a
d

-o
n

ly
F

la
g

[3
0

]

S
ta

tic
F

la
g

[2
8

:2
9

]

T
y
p

e
F

ie
ld

[2
7

:2
4

]

A
c
c
e

s
s

M
o

d
ifie

r
[2

3
:2

2
]

Address Field [21:0]

Fig. 3. Operand descriptor format

A Novel JAVA Processor for Embedded Devices 117

3.3 Instruction Set

jHISC is a RISC processor with some enhancements for the OO operations. Its instruc-
tion set is compatible with MIPS 32 except the memory-register data transfer and OO
related instructions. Memory-register data transfer instructions allow programs to ac-
cess memory directly in traditional computers, which may result in security problems.
In jHISC, all data are encapsulated into objects, and each object associates with a pair
of memory boundaries (upper and lower boundary). A program needs to pass the bound
control checks before it accesses the data and out-of-boundary accesses are prohibited.
And the OO instructions gifld and pifld are added to perform data transfer operations be-
tween memory and register with rigid memory access checks. Additionally, jHISC also
provides object and array manipulation instructions to handle the related operations.
To improve the execution efficiency, bytecode invokevirtual is divided into two instruc-
tions, namely ivkinstance and ivkinternal, according to the invoked instance method. If
the invoked instance method is within the same class as the current method, the instruc-
tion ivkinternal is executed, otherwise, ivkinstance instead. The motivation is that the
overhead of invoking an instance method within the same class is much smaller since it
only needs to switch the involved method contexts. And the similar way is also applied
to the bytecode getfield and putfield.

Table 1. The bytecodes supported by jHISC

Number of bytecodes 226

Number of bytecodes excluding the float-point and 64-bit operations 140

Number of bytecodes supported by the hardware directly 130

Number of bytecodes done by the software traps 10

Number of bytecodes for OO operations 40

Number of OO bytecodes supported by the hardware directly 33

Percentage of bytecodes supported by the hardware directly 93%

Percentage OO bytecodes supported by the hardware directly 83%

Excluding the float-point and 64-bit operation instructions, jHISC implements 93%
bytecodes and 83% OO related bytecodes in hardware directly. The rests are executed
through software traps, such as new, newarray, because their executions are very com-
plex and require the assistance of operating system. The corresponding details are
shown in Table 1.

Java bytecodes can be converted into jHISC instructions in instruction folding unit
by one to one or N to one so as to reduce code density and to improve program execution
speed. Moreover, the application programs written by other programming language can
be performed on the jHISC platform easily since its instruction set is compatible with
MIPS 32.

118 Y. Tan et al.

3.4 System Architecture

Basically, jHISC is RISC architecture, and the block diagram of the whole system is
shown in Fig. 4. The system is implemented by 5 pipelines, including instruction fetch,
instruction folding and decoding, data fetch, execution and write-back. Compared with
the traditional RISC architecture, jHISC adds Instruction Queue, Translation and Data
Buffer units. Instruction Queue, Translation unit consists of an instruction buffer, an
instruction folding manager and a stage controller. The instruction buffer is made up of
eight registers with each storing an instruction and its corresponding program counter.
And the instruction folding manager is used to realize the folding algorithm to convert
the bytecodes to jHISC instructions. Data buffer unit consists of sixteen multi-port reg-
isters so that data can be read or written synchronously to reduce the accessing time.

Instruction
Fetch Unit

Instruction
Decoder

Instruction
Queue

Translation Unit

Data
Buffer

Data Fetch
Unit

Branch
Unit

Register File

Instruction
Cache

Data
Cache

Branch
Prediction
Unit

Arithmetic
And Logic
Unit

External
Bus

Fig. 4. Block diagram of system architecture

4 System Implementation and Timing

The whole system with 4KB instruction cache and 8KB data cache was described by
VHDL and implemented by a Xilinx Virtex FPGA XCV800 to verify our concept and
the corresponding chip is currently under development. During implementation, the
caches were generated by Xilinx CORE Generator and the whole system cost about
600K equivalent gates in FPGA. Table 2 shows the map results reported by Xilinx ISE
6.0.

A Novel JAVA Processor for Embedded Devices 119

Table 2. The bytecodes implemented through software traps in jHISC

Logic Utilization:
Number of Slice Flip Flops: 3,963 out of 18,816 21%
Number of 4 input LUTs: 13,090 out of 18,816 69%
Total Number 4 input LUTs: 14,743 out of 18,816 78%
Number used as logic: 13,090
Number used as a route-thru: 1,629
Number used as 16x1 ROMs : 24
Number of bonded IOBs : 174 out of 316 55%
Number of Tbufs : 3,424 out of 9,632 35%
Number of Block RAMs : 28 out of 28 100%
Number of GCLKs : 1 out of 4 25%
Number of GCLKIOBs : 1 out of 4 25%
Total equivalent gate count for design: 598,463

Table 3. The number of clock cycles needed by some main OO bytecodes in jHISC and software
traps in PicoJava II. The clock cycles consumed by the method revocation instruction oo rvk are
3, 5, 7, respectively, in the case of ivkinternal,ivkclass and ivkinstance. And the value in the table
is the average of them

Bytecodes in clock Instruction clock cycles clock cycles
PicoJavaII II cycles in jHISC (all data hit in (all data miss

the cache) in the cache)

gfld 6 18
getfield 107 gifld 2 6

pfld 6 18
putfield 98 pifld 2 6
getstatic 80 gsfld 6 18
putstatic 79 psfld 6 18
invokestatic 58 ivkclass 9 27

ivkintance 9 27
invokevirtual 150 ivkinternal 5 15
ireturn 8
return 8 oo rvk 5 7
areturn 8
checkcast 97 checkcast 3 9
instanceof 100 instanceof 4 12

To estimate the execution performance, we counted the number of clock cycles
needed by each bytecode execution in jHISC. Since the time cost by instruction ex-
ecutions is not exact in FPGA, the results are mainly based on simulations in jHISC,
partly from simulations of RTL level. Similar to the other Java processors, most of the
simple bytecodes, such as load, store operations, could be executed from one to three
clock cycles in jHISC. However, for object manipulation operations, they were exe-
cuted much faster in jHISC than by software traps. Table 3 shows the number of clock

120 Y. Tan et al.

cycles needed by some main object manipulation bytecodes in jHISC and in PicoJava II
where OO related bytecodes were executed by software traps firstly and the number of
clock cycles consumed was estimated by simply counting the number of the involved
bytecodes in software traps.

5 Conclusion

Embedded devices becomes more and more popular now, and a lot of complex applica-
tion programs written by Java, such as complex games, network applications, begin to
be applied in them, which also put forward rigid requirements to processors in them, for
example, high execution efficiency and low power consumption. In the view of these,
jHISC offers an attractive solution for embedded devices to speed up Java program exe-
cutions while enforcing the security of object-oriented programming and program com-
patibility to the existing systems. Firstly, both the hardware implementation of complex
OO related bytecodes and parallel access of object information contribute to the per-
formance improvement since it uses the hardware-readable data structure to represent
objects and each field of object is stored in a specific address. Secondly, built-in bounds
checking to guarantee no out-of-boundary accessing objects results in the enhancement
of security because all information is encapsulated into objects and no operations access
memory directly. Thirdly, both RISC-based architecture with enhanced features to sup-
port object-oriented programming and instruction set compatible with MIPS 32 make
it possible for the application programs written by other programming languages to be
performed on jHISC. Additionally, in order to improve execution speed in further, we
can add a method cache to store the related reference addresses to reduce the accesses
to memory.

Acknowledgements

This work was supported partly by City University of Hong Kong under Strategic Re-
search Grant 7001548.

References

1. Lee, Y.M., Tak, B.C., Maeng, H.S., Kim, S.D.: Real-time java virtual machine for informa-
tion appliances. IEEE Transactions on Consumer Electronics 46 (2000) 949

2. : (2005) Http://www.anfymobile.com/market/mgaming.html.
3. Grand, M.: Java Language Reference. O’Reilly (1997)
4. O’Connor, J.M., Tremblay, M.: Picojava-i: The java virtual machine in hardware. IEEE

MICRO (1997) 45
5. McGhan, H., O’Connor, J.M.: Picojava: A direct execution engine for java bytecode. Com-

puter (1998) 22
6. Sun Microsystems: PicoJava-II: Java Processor Core. (1998)
7. aJile Systems, Inc.: aJ-100 Real-time Low Power JavaTM Processor. (2001)
8. ARM: Jazelle Technology for Java Application. (2001)

A Novel JAVA Processor for Embedded Devices 121

9. NAZOMI Communications Inc.: JA108 – Multimedia Application Processor. (2003)
10. Aurora VLSI Inc.: AU-J2000: Super High Performance Java Processor Core. (2000)
11. Radhakrishnan, R., Bhargava, R., John, L.K.: Improving java performance using hardware

translation, ACM International Conference on Supercomputing (2001) 427
12. Kent, K.B., Serra, M.: Hardware/software co-design of a java virtual machine, IEEE Inter-

national Workshop on Rapid Systems Prototyping (2000) 66
13. Lattanzi, E., Gayasen, A., Kandemir, M., et al: Improving java performance using dynamic

method migration on fpgas, The 18th International Parallel and Distributed Processing Sym-
posium (2004) 134

14. Ha, Y., Hipik, R., Vernalde, S., Verkest, D.: Adding hardware support to the hotspot virtual
machine for domain specific applications. Lecture Notes In Computer Science 2438 (1997)
45

15. Glossner, C.J., Vassiliadis, S.: The delft-java engine: An introduction, The 3th International
Euro-Par Conference on Parallel Processing (1997) 766

16. Glossner, C.J., Vassiliadis, S.: Delft-java link translation buffer, The 24th Conference on
EuroMicro (1998) 221

17. Schoeberl, M.: Jop: A java optimized processor. Lecture Notes in Computer Science 2889
(2003) 346

18. Vijaykrishnan, N., Ranganathan, N.: Supporting object accesses in a java processor. IEE
Proc.-Comput. Digit. Tech. 147 (2000) 435

19. Lun, M.P., Fong, A., Hau, G.K.W.: Object-oriented processor requirements with instruction
analysis of java programs. ACM SIGARCH Computer Architecture News 31 (2003) 10

20. Lun, M.P., Li, R., Fong, A.: Method manipulation in an object-oriented processor. ACM
SIGARCH Computer Architecture News 31 (2003) 18

21. Fong, A.S.: A computer architecture with access control and cache option tags on individual
instruction operands. ACM SIGARCH Computer Architecture News 31 (2003) 1

22. Fong, A.S.: Hisc: A high-level instruction set computer, The 7th European Simulation Sym-
posium (1995) 406

Formal Specification of a Protocol Processor

Tomi Westerlund1,2 and Juha Plosila2

1 Turku Centre for Computer Science,
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

tomi.westerlund@utu.fi
2 Department of Information Technology, University of Turku,

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland
juha.plosila@utu.fi

Abstract. To ensure the correctness of functional and temporal properties of
modern network hardware devices is becoming increasingly challenging because
the growing complexity and demanding time-to-market requirements. In this pa-
per we address the problem by deriving a TACO protocol processor model in the
formal framework of Timed Action Systems. Formal methods offer a prominent
approach to specify, design, and verify such devices with the benefits of a rigor-
ous mathematical basis. The derivation demonstrates the capability of preserving
correctness when considering an important hardware design decision.

1 Introduction

Formal methods are emerging as a prominent approach to model timed systems. They
provide an environment to specify, design and verify timed systems with the benefits of
a rigorous mathematical basis. The Action Systems formalism [1] is a state based formal
description language initially proposed by Back and Kurki-Suonio [2]. It is based on an
extended version of a guarded command language introduced by Dijkstra [3]. It is used
for specification and correctness preserving development of reactive systems. It was first
tailored to a software system design but is then successfully applied also to hardware
system design, both synchronous [4] and asynchronous [5]. It offers a powerful stepwise
design environment for designing embedded hardware-software systems throughout the
design project from abstract specification to implementable specification. We are able to
formally verify each derivation step within the refinement calculus. The time extended
Action Systems formalism is presented in [6].

In this paper we show a formal development of a general TACO protocol processor.
A TACO (Tools for Application-specific Hardware/Software Codesign) protocol pro-
cessor framework [7] provides tools and methods for helping the designer in specifying,
simulating, evaluating, and synthesising programmable protocol processors. It contains
system-level simulation, physical estimation, and synthesis models for a transport trig-
gered base protocol processor architectures. We start from a conventional sequential
program describing the behaviour of the general TACO protocol processor. Through
several refinement steps we end up a non-trivial model where functional units operate
in parallel. From the formal timing model we obtain information of the relative order-
ing of the system’s components: sockets and functional units. The relative ordering is

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 122–131, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Formal Specification of a Protocol Processor 123

given in form of time constraints that are used in verification of temporal properties of
a system, that is, in ensuring the correct operation of the processor model.

Designing processors using Action Systems is already investigate in [8, 9]. The dif-
ference with this paper and the two mentioned one, is that we use the time extended
Action Systems. Thus, we are able to model both functional and temporal properties
of the system. Furthermore, our target is a synchronous representation of the system,
where in [8, 9] designed an asynchronous microprocessors. There exists also other for-
malisms to design synchronous hardware systems, e.g. in [10] is investigated specifica-
tion and verification of synchronous high-level digital systems using Dill (Digital Logic
in LOTOS). What makes our approach different is the use of refinement calculus-based
framework. The main advantage we gain is that each derivation step can be formally
verified correct within the refinement calculus.

Overview of the Paper. In Section 2 we shortly revise the Action Systems formalism
and its timed extension. In addition, we also revise the time constraint notation, and the
refinement of timed action systems. In Section 3 we shortly describe the TACO protocol
processor architecture. Then in Section 4 we introduce the formal model of the general
TACO protocol processor and stepwisely derive the abstract model into a more concrete
one. Finally, in Section 5 we end with some concluding remarks.

2 Action Systems

2.1 Actions

An action A is defined by

A ::= abort (abortion, non-termination)

| skip (empty statement)

| A1 � . . . � An (non-deterministic choice)

| A1; . . . ;An (sequential composition)

| x := e ((multiple) assignment)

| p→ A (guarded action)

where A and Ai, j = 1..n, are actions; x is a variable or a list of variables; e is an expression
or a list of expressions; p is a predicate (boolean condition).

The actions are defined using weakest precondition predicate transformers [3]. For
example:

wp(skip,Q) = Q ,wp(x := e,Q) = Q[e/x] .

Actions and action composition are considered atomic, which means that only their
pre- and post-states are observable, and when they are chosen for execution they cannot
be interrupted by external counterparts.

Variables. The variables which are assigned within the action A are called the write
variables of A, denoted wA. The other variables present in the action A are called the
read variables of A, denoted rA. The write and read variables form together the access
set vA of A: vA=̂wA∪ rA.

124 T. Westerlund and J. Plosila

Quantified Composition. A quantified composition of actions is defined by [• 1≤ i≤ n :
Ai]=̂A1 • . . . •An, where the bullet • denotes any of the composition operators, and n is
the number of actions (n ∈ N).

2.2 Timed Actions

A timed action system At is, for example, of form:
sys At()
|[
sdelay dAi

var vA
actions Ai�dAi�: aAi

init vA,ct := vA0,0
do [� 1≤ i≤ n : Ai] od
]|

where aA is any of the defined atomic actions, [� 1 ≤ i ≤ n : Ai]=̂[� 1 ≤ i ≤ n : (Aw,i �

Ar,i)] � [� 1≤ i≤ n : Ao,i] � Pt. Ai is called a timed action and Pt is a progress time action
that forwards the current time. The parts of a timed action are: Ao,i is an operation action,
Aw,i is a write action, and Ar,i is a release action. An activity of an action Ai is performed
in Ao,i. The result of the activity is postponed by a specified delay dAi after which it is
written in Aw,i to a write variable wAi. Ar,i is only used when an timed action is disabled
during the delay, that is, it prevents a timed action being deadlocked. The time domain
T is dense (R+), and continuous (∀t1∃t2.(t1 > t2)).

The operation of an action system is started by initialisation in which the variables
are set to predefined values. Then, in the iteration, actions are selected for execution
based on the composition operators and the enabledness of the actions. This is continued
until there are no enabled actions after which the action system is temporarily stopped
until some other action system enables it again.

2.3 Temporal Properties of Action Compositions

To describe and confirm temporal properties of hardware systems, we define a function
that is used during the development phases: a time constraint. Time constraints are used
to confirm the tenability of the timing during development phases.

Definition 1. The time constraint of timed actions is a function � : Tn→{T,F} , where
n (∈ N+) is the number of involved timed actions.

Example 1. In this paper we use temporal relations to describe time constraints. Tem-
poral relations describe the relative ordering of concurrent components, and they has
been used to represent the behaviour of systems in time domain [11, 12, 13]. The tem-
poral relations used in this study are shown in Fig. 1, and the time constraints based on
the temporal relations are:

�(A1 precedes A2)=̂ f tA1 < stA2 ,

�(A1 meets A2)=̂ f tA1 = stA2 ,

where stAi and f tAi are the start and finish times of a timed action defined in Sect. 2.2.
End of example.

Definition 2. The time constraint of a timed action system A is a conjunction of action
level time constraints: �(A)=̂

∧m
i=1 �i where m ∈ N+.

Formal Specification of a Protocol Processor 125

A2
1A

(a) A1 precedes A2

A2
A1
time

(b) A1 meets A2

Fig. 1. Temporal relations in a graphical form

2.4 Refinement

Action systems are meant to be developed in a stepwise manner within the refinement
calculus framework [14]. The (atomic) action A is said to be (correctly) refined by action
C, denoted A≤C, if ∀Q.(wp(A,Q)⇒ wp(C,Q)) holds.

Data Refinement. An action A on the variables a and u is data-refined by an action C
on the variables c and u, denoted A≤R C, using an abstraction invariant R(a,c,u), which
is a boolean relation between the abstract variables a and the concrete variables c, if
∀Q.(R∧wp(A,Q)⇒wp(C,∃a.R∧Q)) holds. The predicate ∃a.R∧Q is a boolean condition
on the program variables a and c.

Trace Refinement of Timed Action Systems. Consider timed action system:
sys A(g)
|[
sdelay dA
tconst �(A)
var a
actions A�dA�: aA
init g,a := g0,a0
do A od
]|

sys C(g)
|[
sdelay dC,dX
tconst �(C)
var c
actions C�dC�: aC, X�dX� : aX
init g,c := g0,c0
do C � X od
]|

where aA, aC, and aX are any of the atomic actions defined previously.
The system C is obtained from A by replasing the local variables a with new local

variables c, the actions Ai with Ci, and adding a set of auxiliary action Xi into the system.
The global variables g are not changed. The trace refinement theorem is used to prove
refinement A � C [15] or its timed extension [16].

3 TACO Processor Architecture

The TACO protocol processor architecture [7] is based on the transport triggered ar-
chitecture (TTA) [17, 18]. In TTA processor data transports are programmed and they
trigger operations - traditionally operations are programmed and they trigger transports.
A TTA processor is formed of functional units (FUs) that communicate via an intercon-
nection network of data buses, controlled by an interconnection network controller unit.
The FU’s connect to the buses through modules called sockets.

A functional unit has input and output registers. FU operations are executed every
time data is moved to a specific kind of FU input register, the trigger register. Each FU
has one such register. Each functional unit in a TACO processor performs a specific
protocol processing task. The FU operations can be, depending on the application to be
implemented, bitstring matching, counting, timing comparisons, and random number
generation. Figure 2 shows the functional view of one possible TACO protocol proces-
sor architecture. There can be more than one of each kind of FU’s in a TACO processor.

126 T. Westerlund and J. Plosila

Network Controller
Interconnection

output socket
Input and

connections

memory
Program User data

uMMU

memory

Counter FU

Input FU

Output FU

TACO IPv6 Client

Shifter FU

Masker FU

Matcher FU

Comparator FU

IP Checksum FU dMMU

memory
Protocol data

In
te

rc
on

ne
ct

io
n

N
et

w
or

k
Fig. 2. The TACO IPv6client

4 Formal Model of the TACO Protocol Processor

The Timed Action System model of a general TACO protocol processor is given be-
low. Our starting point is a conventional sequential program describing its behaviour.
Through several refinement steps we end up a non-trivial model where functional units
operate in parallel. For the sake of simplicity, we do not consider the external interface
in this study.

The T acoPP is of form:

sys T acoPP(. . .)
|[
const laddri,addrTri,addrOpi,addRi: nat
var abus.src,abus.dst,dbus, pword, tri,opi,ri,opcodei: nat; rw, p: bool
actions PP�dPP�: Inc; [� i ∈ {1..n} : Fuw,i]; [� i ∈ {1..n} : Fur,i]
init abus.src,abus.dst,dbus, pword, tri,opi,ri,opcodei := 0; rw, p := F,T
do true→ PP od
]|

where Inc is:
Inc=̂pword := Pmem(pc);abus.src,abus.dst := pword[src], pword[dst]; pc := pc+1 ,

and Fuw,i and Fur,i are, in general:

Fuw,i=̂abus.src = addrRi → dbus := ri ,

Fur,i=̂addrTri ≤ abus.dst ≤ (addrTri + laddri)

→ tri,opcodei := dbus,abus.dst−addrTri;ri := Func(tr,op,opcode)

� abus.dst = addrOpi → opi := dbus ,

where we have two input addresses and one output address: addrTri, addrOpi, and
addrRi, respectively. The number of the addresses may vary between FUs.

The operation of the T acoPP protocol processor is as follows: A program word
pword is read from the program memory Pmem, and then split on the source (abus.src)
and destination (abus.dst) address lines. Then abus.src is compared with the FU’s
source addresses in Fuw,i, and one of the FUs write data on the bus, dbus. Next, in
Fur,i the destination address is compared with the FUs’ destination addresses. Depend-
ing on whether abus.dst equals a trigger (addrTri) or an operand (addrOpi) addresses

Formal Specification of a Protocol Processor 127

sys T acoPP1(. . .)
|[
tconst �1(Inc meets Routl meets Ful)
const laddrl ,addrTrl ,addrOpl ,addRl : nat
var abus.src,abus.dst,dbus, pword, trl ,opl ,rl ,opcodel : nat; p,w,al : bool
actions Inc�dInc�: p→ pword,abus.src,abus.dst := Pmem(pc), pword[src], pword[dst]

; pc, p,w := pc+1,F,T
Ful�dFul�: al ∧addrTrl ≤ abus.dst ≤ (addrTrl + laddrl)

→ trl ,opcodel ,al ,w, p := dbus,abus.dst−addrTrl ,F,T,T
;rl := Func(trl ,opl ,opcodel)
� al ∧abus.dst = addrOpl → opl ,al , p := dbus,F,T

Routl�dRoutl�: w∧abus.src = addrRl → dbus,w,al := rl ,F,T
init abus.src,abus.dst,dbus, pword, trl ,opl ,rl ,opcodel := 0; al , p := F
do Inc � Ful � Routl od
]|

Fig. 3. T acoPP1

a different activity is performed. The operation of the FU is only performed when there
is a match with one of the trigger addresses.

Next we are going to developed the abstract TACO protocol processor model, in a
stepwise manner, into a low-level representation. The goal of the refinement is to have
a model in which the FUs are independent. This requires us to separate the operation
of the FUs from the address decoding. Also the timing information is refined during
the development giving us a more realistic view of the time that different operational
blocks consume in their operation.

4.1 Formal Model of a Functional Unit

Let us start the development by decomposing the timed action PP such that Fuw,i and
Fur,i are located into their own timed actions. The refinement is straightforward as we
retain the execution order by introducing three new boolean variables p, w, and al . The
new timed actions are obtained by performing the following refinements:

PP≤ Inc ,skip≤ Fui (i ∈ {1..n}) ,and skip≤ Routi (i ∈ {1..n}) ,

where n is the number of the FUs. For the clarity of the presentation we concentrate
only one of the FUs, FUl (l ∈ {1..n}). The development of the other FUs follows the
same procedure.

In the refinement we introduce a time constraint �1 that reflect the original execution
order in PP. It defines that the execution of Inc is followed immediately by the execu-
tion of Routl , and furthermore the execution of Ful starts right after the execution of
Routl is finished. The correctness of the performed trace refinement TacoPP� TacoPP1

(Fig. 3) and the following refinements can be proven by showing that all the conditions
of the trace refinement of timed action systems are fulfilled. However, due to space
limitation we do not give the detailed proofs of the refinements.

To further develop the FU towards a more concrete one, we separate the data read
in phases from the computation, that is, we separate the address decoding and reading
the data bus onto the FU’s local variable from the operation of the FU. The execution
order of the timed actions is not affected in the refinement, because Trl or Opl cannot
be enabled at the same time. Thus, they are mutually exclusive. Furthermore, a new

128 T. Westerlund and J. Plosila

sys T acoPP2(. . .)
|[
tconst �1(Inc meets Routl meets (Trl ∨Opl)),�2(Trl meets Fu′l)
const laddrl ,addrTrl ,addrOpl ,addRl : nat
var abus.src,abus.dst,dbus, pword, trl ,opl ,rl ,opcodel : nat; p,w,al ,bl : bool;
actions Inc�dInc�: p→ pword,abus.src,abus.dst := Pmem(pc), pword[src], pword[dst]

; pc, p,w := pc+1,F,T
Trl�dTrl�: al ∧addrTrl ≤ abus.dst ≤ (addrTrl + laddrl)

→ trl ,opcodel ,al ,bl := dbus,abus.dst−addrTrl ,F,T
Opl�dOpl�: al ∧abus.dst = addrOpl → opl ,al , p := dbus,F,T
Fu′l�dFu′l�: bl → rl := Func(trl ,opl ,opcodel);bl , p := F,T

Routl�dRoutl�: w∧abus.src = addrRl → dbus,w,al := rl ,F,T
init abus.src,abus.dst,dbus, pword, trl ,opl ,rl ,opcodel := 0; p,w,al ,bl := F
do Inc � Trl � Opl � Fu′l � Routl od
]|

Fig. 4. T acoPP2

boolean variable bl is introduced to sequence the execution of Trl and Fu′l . The former
reads data in and the latter performs the operation of the FU. The refinements are:

Ful ≤ Fu′l , skip≤ Trl , and skip≤ Opl .

Because Trl and Opl are mutually exclusive, and Trl enables Ful the execution
order of the timed actions is not affected. This is also reflected by the introduced time
constraint �2. We have a trace refinement T acoPP1 � T acoPP2 (Fig. 4).

Next we separate the address decoding performed in the guards of the timed actions
Trl and Opl into their own timed actions. We also introduce a buffering assignment
between the operation of the FU and its result register. We have refinements:

Trl ≤ Trinl , skip≤ Tr′l , skip≤ Trloadl , skip≤ Rl ,

Opl ≤ Opinl , skip≤ Oploadl , skip≤ Op′l , and Fu′l ≤ Fu′′l ,

where we introduced new intermediate variables trloadl and oploadl that buffer the ad-
dress match signals, and new boolean variables cl , dl , el that retain the correct execution
order. The time constraints are also refined to meet the execution order of the new timed
actions. Furthermore, we decomposed the time constraint �2 into two parts. We have a
trace refinement T acoPP2 � T acoPP3 (Fig. 5).

The next refinement requires a little more attention than the previous ones. In this
refinement we introduce a new boolean variable clk that sequence the operation of the
timed actions, that is, the operation of the action is divided into read and write phases.

The earlier refinements grounded this refinement step by decomposing the oper-
ational parts of the FU from the data read in parts. Thus, giving us a possibility to
strengthen only the guards of the data read in actions, that is, to strengthen the guards
of those actions which store the data used in the computation. With operational parts
we mean those timed actions that perform some sort of computation: address decoding
and the functionality of the FU. We have refinements:

Inc≤ Inc′, Tr′l ≤ Tr′′l , Trloadl ≤ Trload′l , Rl ≤ R′l ,

Oploadl ≤ Opload′l , Op′l ≤ Op′′l , and skip≤Clk .

Formal Specification of a Protocol Processor 129

sys T acoPP3(. . .)
|[
tconst �1(Inc meets Routl meets (Trinl ∨Opinl))�2a(Trinl meets Trloadl meets Tr′l),�2b(Tr′l meets Fu′′l meets Rl)�3(Opinl meets Opload′l meets Op′l)
const laddrl ,addrTrl ,addrOpl ,addRl : nat
var abus.src,abus.dst,dbus, pword, trl ,opl ,rl ,r′l ,opcodel , trloadl ,oploadl : nat

p,w,al ,bl ,cl ,dl ,el , trload,opload: bool
actions Inc�dInc�: p→ pword := Pmem(pc);abus.src,abus.dst := pword[src], pword[dst]

; pc, p,w := pc+1,F,T
Trinl�dTrinl�: al ∧addrTrl ≤ abus.dst ≤ (addrTrl + laddrl)

→ myaddrTrl , trdbusl ,operationl := newline,dbus,abus.dst−addrTrl

;al ,dl := F,T
� al ∧¬(addrTrl ≤ abus.dst ≤ (addrTrl + laddrl))
→ myaddrTrl ,al ,dl := F,F,T

Trloadl�dTrll�: dl → trloadl ,dl := myaddrTrl ,F
Tr′l�dTr′l�: trloadl → opcodel , trl ,bl , p := operationl , trdbusl ,T,T

Opinl�dOpinl�: al ∧addrOpl = abus.dst → myaddrOpl ,opdbusl ,al ,el := T,dbus,F,T
� al ∧addrOpl �= abus.dst → myaddrOpl ,al := F,F

Opload′l�dOpll�: el → oploadl ,el := myaddrOpl ,F
Op′l�dOp′l�: oploadl → opl , p := opdbusl ,T
Fu′′l �dFu′′l �: bl → r′l := Func(trl ,opl ,opcodel);bl ,cl := F,T

Rl�dRl�: cl → rl ,cl := r′l ,F
Routl�dRoutl�: w∧abus.src = addrRl → dbus,w,al := rl ,F,T

init abus.src,abus.dst,dbus, pword, trl ,opl ,rl ,r′l opcodel , trloadl ,oploadl := 0
p,w,al ,bl ,cl ,dl ,el := F

do Inc � Trinl � Trloadl � Tr′l � Opinl � Oploadl � 0p′l � Fu′′l � Rl � Routl od
]|

Fig. 5. T acoPP3

The correctness of a trace refinement T acoPP3 � T acoPP4 (Fig. 6) is shown by
choosing an abstract relation Ra:

Ra=̂(p = clk∧ p′)∧ (¬p = ¬p′)∧ (trload = clk∧ trload′)∧ (¬trload = ¬trload′)

∧ (opload = clk∧opload′)∧ (¬opload = ¬opload′)∧ (dl = ¬clk∧d′l)∧ (¬dl = ¬d′l)

∧ (el = ¬clk∧ e′l)∧ (¬el = ¬e′l)∧ (cl = clk∧ c′l)∧ (¬cl = ¬c′l) .

As we perform a refinement that sequence the operation of the timed action sys-
tem, the timed actions whose operation is constrained by the time constraint meets no
longer holds. Therefore, we need to refine meets to precedes, so that the new operation
sequence is reflected. The time constraint precedes allows a time gap between the exe-
cution of timed actions. Now, we have reached a synchronous representation in which
the functional units are independent, and thus considered parallel. The independence of
the FUs is ensured by the input and output sockets whose operation is sequenced by the
introduced boolean variables. Although, FUs are independent and thus a parallel opera-
tion possible, the number of buses does not yet support parallel operation of functional
units. Therefore, to increase the number of buses we need to perform a data refinement
in which all the involved variables are replaced with a vector of the same type. We have,
as an example for the variables pword, dbus, abus.src, and abus.dst an abstract relation
Rb for three bus TACO protocol processor:

Rb=̂pword = 3pword∧dbus = dbus[3]∧abus.src = abus.src[3]∧abus.dst = abus.dst[3] ,

where pword3 contains three source and destination addresses, and dbus[3], abus.src[3],
and abus.dst[3] are vectors containing one item per bus.

130 T. Westerlund and J. Plosila

sys T acoPP4(. . .)
|[
tconst �1(Inc′ meets Routl meets (Trinl ∨Opinl)),�2a(Trinl precedes Trload′l precedes Tr′′l)�2b(Tr′′l meets Fu′′l precedes R′l),�3(Opinl precedes Opload′l precedes Op′l)
const laddrl ,addrTrl ,addrOpl ,addRl : nat
var abus.src,abus.dst,dbus, pword, trl ,opl ,rl ,r′l opcodel : nat

clk, p′,w,al ,bl ,c′l ,d
′
l ,e

′
l , trload′,opload′, iclk,aclkl ,bclkl ,cclkl ,dclkl ,eclkl : bool

actions Clk�dClk�: ¬clk→ clk := T � clk→ clk := F
Inc′�dInc�: p′ ∧ clk∧ iclk→ pword := Pmem(pc)

;abus.src,abus.dst, pc, p′,w, iclk := pword[src], pword[dst], pc+1,F,T,F
� ¬clk∧¬iclk→ iclk := T

Trinl�dTrinl�: al ∧addrTrl ≤ abus.dst ≤ (addrTrl + laddrl)
→ myaddrTrl , trdbusl ,al ,d′l := T,dbus,F,T
;operationl := abus.dst−addrTrl

� al ∧¬(addrTrl ≤ abus.dst ≤ (addrTrl + laddrl))
→ myaddrTrl ,al ,d′l := F,F,T

Trload′l�dTrll�: d′l ∧¬clk∧aclkl → trload′l ,d
′
l ,aclkl := myaddrTrl ,F,F

� clk∧¬aclkl → aclkl := T
Tr′′l �dTr′′l �: trload′l ∧ clk∧bclkl → opcodel , trl ,bl ,bclkl , p′ := operationl , trdbusl ,F,T,T

� ¬clk∧¬bclkl → bclkl := T
Opinl�dOpinl�: al ∧addrOpl = abus.dst → myaddrOpl ,opdbusl ,al ,e′l := T,dbus,F,T

� al ∧addrOpl �= abus.dst → myaddrOpl ,al := F,F
Opload′l�dOpll�: e′l ∧¬clk∧ cclkl → opload′l ,e

′
l ,cclkl := myaddrOpl ,F,F

� clk∧¬cclkl → cclkl := F
Op′′l �dOp′′l �: opload′l ∧ clk∧dclkl → opl , p′,dclkl := opdbusl ,T,F

� ¬clk∧¬dclkl → dclkl := T
Fu′′l �dFu′′l �: bl → r′l := Func(trl ,opl ,opcodel);bl ,c′l := F,T

R′l�dRl�: c′l ∧ clk∧ eclkl → rl ,c′l ,eclkl := r′l ,F,F
� ¬clk∧¬eclkl → eclkl := T

Routl�dRoutl�: w∧abus.src = addrRl → dbus,w,al := rl ,F,T
init abus.src,abus.dst,dbus, pword, trl ,opl ,rl ,r′l ,opcodel := 0

clk, p′,w,al ,bl ,c′l ,d
′
l ,e

′
l ,myaddrTrl ,myaddrOpl , iclk,aclkl ,bclkl ,cclkl ,dclkl ,eclkl := F

do Clk � Inc′ � Trinl � Trload′l � Tr′′l � Opinl � Opload′l � 0p′′l � Fu′′l � R′l � Routl od
]|

Fig. 6. T acoPP4

5 Conclusions

We presented in this study a formal specification of a general TACO protocol processor
model. The used formal method was Timed Action System, which allows us, in addition
to functional properties, to model also the temporal properties of the system. The de-
rived general TACO protocol processor model completes the existing TACO SystemC,
VHDL, and Matlab models by offering tools to formally verify both the functional and
temporal properties of TACO protocol processor architectures. The SystemC model is
used for system-level simulations, the VHDL model for synthesising architectures, and
the Matlab model for estimating physical parameters at the system level.

The advantage of using Timed Action Systems throughout the development of the
TACO protocol processor is that we can formally verify each derivation step correct
within the refinement calculus. During the derivation steps the time constrains were
created and refined to reflect the temporal properties of the refined timed actions.

The future work studies include, for example, developing a formal model of the
whole TACO protocol processor, creating a library that contains formal models of the
existing FU models, and importing timing information, obtained from the synthesised
VHDL models, into the formal framework. The timing information can be used to verify
the temporal properties of the TACO protocol processor.

Formal Specification of a Protocol Processor 131

References

1. Back, R.J., Sere, K.: From Modular Systems to Action Systems. In: Proc. of Formal Methods
Europe ’94, Spain, Lecture notes in computer science, Springer-Verlag (1994)

2. Back, R.J., Kurki-Suonio, R.: Decentralization of Process Nets with Centralized Control. In:
Procs. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing.
(1983) 131–142

3. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall International (1976)
4. Seceleanu, T.: Systematic Design of Synchronous Digital Circuits. PhD thesis, Turku Centre

for Computer Science (2001)
5. Plosila, J.: Self-Timed Circuit Design - The Action System Approach. PhD thesis, University

of Turku (1999)
6. Westerlund, T., Plosila, J.: Formal Timing Model for Hardware Components. In: Proceedings

of the 22nd NORCHIP Conference, Norway (2004) 293–296
7. Virtanen, S.: A Framework for Rapid Design and Evaluation of Protocol Processors. PhD

thesis, University of Turku (2004)
8. Back, R.J., Martin, A.J., Sere, K.: Specifying the Caltech Asynchronous Microprocessor.

Sci. Comput. Program. 26 (1996) 79–97
9. Plosila, J., Sere, K.: Action Systems in Pipelined Processor Design. In: Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems. (1997) 156–166
10. He, J., Turner, K.J.: Specification and verification of synchronous hardware using LOTOS.

In: Proc. Formal Methods for Protocol Engineering and Distributed Systems. (1999) 295–
312

11. Kim, H., Beerel, P.A.: Relative timing based verification of timed circuits and systems. In:
Proc. International Workshop on Logic Synthesis. (1999)

12. Stevens, K., Ginosar, R., Rotem, S.: Relative Timing. In: Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems. (1999) 208–218

13. Rotem, S., Stevens, K., Ginosar, R., Beerel, P., Myers, C., Yun, K., Kol, R., Dike, C., Ron-
cken, M., Agapiev, B.: RAPPID: An Asynchronous Instruction Length Decoder. In: Proc.
International Symposium on Advanced Research in Asynchronous Circuits and Systems.
(1999) 60–70

14. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer-Verlag
(1998)

15. Back, R.J., von Wright, J.: Trace Refinement of Action Systems. In: International Confer-
ence on Concurrency Theory. (1994) 367–384

16. Westerlund, T., Plosila, J.: Towards a Timed Refinement Calculus for Hardware Systems.
Technical Report TR669, Turku Centre for Computer Science (2004)

17. Corporaal, H.: Microprocessor Architectures - from VLIW to TTA. John Wiley and Sons
Ltd. (1998)

18. Tabak, D., Lipovski, G.J.: MOVE Architecture in Digital Controllers. IEEE Transactions on
Computers 29 (1980) 180–190

Tuning a Protocol Processor Architecture Towards
DSP Operations

Jani Paakkulainen1, Seppo Virtanen1,2, and Jouni Isoaho1

1 Department of Information Technology, University of Turku,
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

jani.paakkulainen@utu.fi
2 Embedded Systems lab, Turku Centre for Computer Science,

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

Abstract. In this paper we present an experiment in enhancing our transport
triggered protocol processor hardware platform to support DSP applications. Our
focus is on integrating support for both application domains into a single pro-
cessor without loss of performance in either domain. Such a processor could
be taken advantage of in applications like Voice-over-IP communication using
hand-held devices, where functionality is needed from both domains. As our first
step in bridging the gap between the protocol processing and DSP domains we
implement support for FIR filtering. We analyze four different architectural in-
stances for implementing FIR filters according to their performance and bus util-
isation. We were able to determine that protocol processing and DSP operations
can be executed in parallel very efficiently. The implementations were verified
with VHDL simulations and synthesis using 0.18 μm CMOS technology.

1 Introduction

Increasing system complexity and performance requirements are forcing system de-
signers to constantly find better ways of integrating more functionality into their de-
vices while keeping up with stringent requirements for power consumption and chip
area. The emergence of System-on-Chip and Network-on-Chip has made it possible
to create very complex designs with specific parts of the system (e.g. a DSP or a net-
work interface subsystem) designed by a third party. Such an approach relieves local
design teams of some of the design work at the cost of potentially more effort needed
in tasks like power optimization and on-chip communication design. For example, in
designing a special-purpose multimedia chip, a quick solution in terms of functional
design would be to import the networking and DSP functionality into the architecture
as intellectual property (IP) blocks designed by third parties. In this kind of a design it
is likely that the IP blocks will provide a superset of the functionality required for the
multimedia chip. This would also produce an unnecessary area and power consump-
tion overhead for the overall design process. If however an IP block with only the bare
minimum required networking and DSP capabilities could be obtained, clearly there
would be foreseeable advantages to be gained in terms of area use, power consumption
and also data throughput (no on-chip data transportation between the separate network-
ing and DSP modules would be required). This is especially true for applications like

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 132–141, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Tuning a Protocol Processor Architecture Towards DSP Operations 133

Voice-Over-Internet-Protocol (VoIP) communication using hand-held devices: support
and optimization for special functionality from both the DSP and the protocol pro-
cessing application domains is needed while the designer faces stringent constraints
in terms of device size and power consumption. In previous work we have developed a
TTA (transport triggered architecture; see [1, 2]) based hardware platform for designing
application optimized programmable protocol processor architectures, and a framework
for designing processors adhering to the hardware platform specification [3].

In this paper we start exploring possibilities for augmenting our hardware plat-
form to support DSP operations in addition to the pre-existing support for protocol
processing. Our long-term goal is the ability to design a modular, programmable and
application-optimized core IP block for any application requiring both protocol pro-
cessing and DSP functionality (like VoIP). As our first step towards bridging the gap
between the protocol processing and DSP domains, in this paper we enhance the TACO
(tools for application-specific hardware/software codesign) hardware platform to sup-
port finite impulse response (FIR) filtering. For this, it is necessary to implement sup-
port for the multiply-and-accumulate (MAC) operation. Initially we take an approach
that requires the least modifications to our hardware platform. Thereafter we start tun-
ing the existing modules of the TACO architecture to better cope with the co-existence
of the protocol processing and DSP application domains in a single processor. We con-
clude the paper with experimental results demonstrating that protocol processing and
DSP operations can be executed in parallel very efficiently using our enhanced hard-
ware platform. We verify the additions and modifications to the hardware platform with
VHDL simulations and synthesis using 0.18 μm CMOS technology.

1.1 Related Work

Methodologies for ASIP (application-specific instruction-set processor) design are be-
coming increasingly popular in embedded processor design, especially for DSP applica-
tions. A clear sign of this trend is the appearance of commercial ASIP design tool suites
like LISATek (CoWare) [4] and Chess/Checkers (Target Compiler Technologies) [5] on
the market scene. Also in the academic community the research concerning ASIPs is
quite active. Here we briefly outline the most relevant approaches in terms of the work
presented in this paper.

In [6] a common machine description is used for both a compiler and a core gener-
ator. The core generator generates simulation and synthesis models for an architectural
template called STA (synchronous transfer architecture). According to [6], STA is a
simplification of TTA optimized for the predictable execution environment of DSP. The
MOVE framework [1, 7] consists of a set of tools for automatic design space explo-
ration and synthesis of hardware and software. The tools operate on a parametric TTA
template that consists of funtional units (FUs) that implement combinations of general
purpose operations. A designer can also define user modules called special function
units (SFUs) for use in the template.

The MOVE framework has been applied to DSP ASIP design in e.g. [8]. Another
approach in applying the TTA paradigm to DSP ASIP design is presented in [9]. How-
ever, we are not aware of any approaches besides our own in applying the TTA paradigm

134 J. Paakkulainen, S. Virtanen, and J. Isoaho

to protocol processing; hence, we are also not aware of other TTA approaches that in-
corporate hardware support for both the DSP and the protocol processing application
domains. In comparison to the mentioned TTA DSP approaches, also the TACO proto-
col processor design framework relies on a TTA based hardware platform in designing
application-specific processors. However, in the TACO framework the sequences of op-
erations chosen for hardware implementation are considerably larger than in traditional
ASIP; in TACO the emphasis is not on detecting recurring general purpose code se-
quences but in identifying frequently needed domain-specific functions in the target
application. Also, TACO processors are not general purpose processors enhanced with
special execution units for the detected functionality, but are constructed solely of spe-
cial execution units and no general purpose processing elements. A further discussion
on related ASIP methodologies and a comparison to the TACO framework can be found
in [3].

2 The TACO Framework

The starting point in the TACO design flow is a high level application description or
specification. The development of the application software guides the processor design
work so that the processing requirements of the application determine the hardware
architecture of a protocol processor [10, 11]. The approach is quite different from what
is found in most commercial protocol processors available today. They are most often
multiprocessors with high performance general purpose computing elements.

The TACO protocol processor architecture, as seen in Fig. 1, is based on transport
triggered architectures (TTA) [1, 2]. The most important difference between TTAs and
traditional processors is that in TTAs operations occur as side effects of programmed
data transports. In traditional processors the operations are programmed, and data trans-
ports occur as side effects of the programmed operations. A TTA based processor is
composed of functional units (FUs) that communicate via an interconnection network.
This network of data buses is controlled by a special-purpose controller unit. The FUs
are connected to the buses through modules called sockets. It was observed in the TACO
project that this kind of modularity facilitates both component reuse and hardware de-
sign automation.

Although TTA based, the TACO architecture differs from existing TTA approaches
in many ways. The reader is referred to [3] for a detailed discussion on some of the
differences. Within the scope of this paper we limit ourselves to stating one important
characteristic of the TACO architcture: all TACO functional units are Special Functional
Units (SFUs, as seen in Fig. 1). There are no general purpose FUs as described in e.g.
[1] in the TACO architecture. SFUs are FUs with a distinct application-domain specific
task to execute, and usually they can not efficiently be used in some other application
domain. The application domain for the TACO SFUs has thus far always been protocol
processing.

The SFUs in TACO processors have a varying number of input and output registers
with programmable addresses. SFU operations are executed every time data is moved to
a specific kind of input register, the trigger register. Each SFU has one trigger register,
and each SFU performs a specific protocol processing task or operation (for example,

Tuning a Protocol Processor Architecture Towards DSP Operations 135

Fig. 1. A functional view of the TACO architecture

checksum calculation, bitstring matching and masking inside data words, and logical
comparisons). The TACO architecture (see Fig. 1) is in our view a template for pro-
tocol processors, instantiated for a specific protocol, or family of protocols. Extensive
component and module reuse is typical for TACO design projects.

3 From Protocol Processing to DSP: Tuning the Architecture

The benefit of TTA based platforms is their modularity and scalability. Functional units
can be added to an architecture or they can be refined and changed as long as they pro-
vide the same interface to the sockets connecting them to the interconnection network.
From this follows also module reusability, which we consider to be a very important
strong-point of our TACO hardware platform and design methodology: all our exist-
ing functional units are similar in terms of interface type, and they have been designed
with common guidelines. When designing new functional units for the hardware plat-
form, most often the first phase of the design process is to look among our existing
FUs to find the one whose implementation and provided functionality is closest to the
requirements of the new unit to be designed. Such an existing functional unit serves as
a “design template” for the design process of the new FU, making the process quite fast
and straightforward.

3.1 Taking Advantage of Existing Modules in MAC FU Design

The multiply-and-accumulate (MAC) operation between two long sequences of data
operands is traditionally regarded as one of the most important low-level operations

136 J. Paakkulainen, S. Virtanen, and J. Isoaho

needed in DSP calculations. For this reason the operation is most often supported by
hardware in digital signal processors. The calculation itself is quite straightforward, and
implementational differences arise mostly from the way the data operands are trans-
ported to the unit performing the calculation. The MAC operation is vital to e.g. digital
filtering, in which one of the data sequences carries samples of a digitized signal, and
the other one carries filter parameters called taps. For example, the nth output sample
y(n) of a finite impulse response (FIR) filter is defined by the equation

y(n) =
N−1

∑
k=0

h(k)x(n− k), (1)

where x(n) is the nth input sample, and h(k) is a sequence of N filter taps. N MAC
operations and 2N data transports are needed for calculating one output sample of the
filter, which clearly demonstrates the importance of an efficient MAC implementation
to applications of the DSP domain.

We chose our existing Internet checksum FU (Fig. 2) to act as a starting point for
the process of designing a MAC functional unit for our hardware platform. For a MAC
functional unit implementation at least three distinct executional blocks are needed: a
multiplier, an adder and an accumulator. The existing Internet checksum FU already had
an arithmetic block and an accumulator. By keeping the accumulator and modifying
the arithmetic block to calculate the required addition and multiplication operations
the checksum FU almost changes into a MAC unit. To reach the MAC unit structure
depicted in Fig. 2, some additional minor modifications are still needed: the combined
accumulator and result register bank needs to be divided into two different registers,
some control logic is attached between the output of the adder and the input of the result
register, the output inverters are removed, and the main control of the FU is modified.
Also the unnecessary input register (operand) is removed.

As in any fixed point system, also in this setup the designer has to decide before-
hand how the two input data sequences are handled. We assume that both inputs are
normalized into the range [−1,1]. When these inputs are decoded by the hardware into
a fixed point representation, the leftmost bit is interpreted as a sign bit and the rest of
the bits are interpreted as magnitude. The word size of the data in the input sequences
can be specified to be narrower than the word size on the TACO interconnection net-
work data buses, which makes it possible to execute e.g. the filtering of 16 bit input
samples in parallel with a 32 bit checksum calculation. Naturally in such a setup the
data sequences need to be formatted correctly to meet the MAC unit configuration: all
data is still transported at the specified bus width in the processor, so the data sequences
need to be padded with zeros from the most significant bit to the bit preceeding the sign
bit. In terms of specifying processor architectures, it is up to the designer to decide the
register widths used for the accumulator and the result register, just as the designer is
currently already required to decide the system-wide word size of the processor (like
the MAC unit’s word size, also the TACO processor word size is parametrizable). At
the time of fixing the MAC unit accumulator width it is also necessary to take into ac-
count the lengths of the data sequences (e.g. the number of filter taps) as well as their
magnitudes and internal dynamics.

Tuning a Protocol Processor Architecture Towards DSP Operations 137

Opcode Trigger Data Operand

To output socket

From input sockets

Result

Accumulator

and

handler

Control

unit

Carry

IP CheckSum

+ / −

Accumulator

To output socket

Result

Opcode Trigger Data

MAC From input sockets

Control

unit

Fig. 2. An Internet Checksum FU and a Multiply-and-Accumulate FU

3.2 Data Activity Based Resource Allocation

As mentioned previously, a typical application of the MAC function in digital sig-
nal processing is filtering. In the following we explore four different FIR filtering
implementations using our existing protocol processing functional units and the new
MAC functional unit. This also involves exploring whether potential speed-ups could
be achieved by adding new features like address counters into our existing memory
management units. An important characteristic of the TACO hardware platform is that
there is no limit for the number of memory managers and associated memory blocks
that can be incorporated into an architecture. We exploit this characteristic in the fol-
lowing by using two separate memory managers and associated memory blocks for
transporting data to the new MAC FU.

In our first TACO FIR implementation we specify an architecture in which we take
full advantage of the data transportation capabilities of our interconnection buses. This
means that we include as many interconnection buses and functional units into the ar-
chitecture as required for being able to constantly transport all required operands to the
input registers of the MAC FU. For this implementation (labeled Arc I in the results
shown in Table 1), five different FUs and five interconnection network data buses are
needed. Four of the required functional units, namely two Counter FUs, a uMMU(user
memory management unit) and a dMMU(data memory management unit) already ex-
isted and had been tested in our earlier protocol processing implementations of the
TACO architecture. With five buses, the MAC FU is able to perform one multiply-and-
accumulate calculation in each clock cycle. After performing all the required calcula-
tions needed to produce one output sample, one clock cycle is consumed by moving
the output sample out of the result register and for initializing the counter FUs and the
MAC FU for the next round of calculations.

138 J. Paakkulainen, S. Virtanen, and J. Isoaho

Bus 1 Bus 2

Data SRC DST

Bus N

Input Socket

Trigger Socket

Output Socket

From Interconnection Network Controller

Trigger Socket

Input Socket

Output Socket

Input Socket

Result Register

Operand Register

Trigger Register

Functional
Unit

Trigger Register

Operand Register

Result Register

Data Register

Functional
Unit

Data SRC DST

Fig. 3. Connecting functional units through buses and sockets

In the second implementation (Arc II in Table 1) there is one interconnection bus
less than in the first one. This reduction in the bus count is achieved by making certain
small modifications into the uMMU (user memory management unit): by adding an ex-
tra address counter into the uMMU one counter FU can be eliminated. In terms of im-
plementing only FIR filtering this might seem to be an efficient design choice; however,
if FIR filtering is implemented as part of a larger application there is a penalty to be paid
for changing the uMMU. For example, if it were necessary to simultaneously perform
some other tasks in the same architecture besides FIR filtering, for example processing
the IPv6 protocol, the original uMMU implementation would still be needed, Thus, in-
stead of a single uMMU in the architecture it would be necessary to include two slightly
differing uMMU implementations.

Both of the implementations described above are able to use the interconnection
buses very efficiently, but on the other hand this also means that no other tasks can be
executed in parallel with the FIR filtering. Depending on which is determined to be more
important in terms of the hardware architecture and its target operating environment,
the designer could equally well select either one of these two implementations; one
performs the filtering with fewer buses (Arc II), while the other one does it with fewer
functional units (Arc I).

The third implementation (ARC III in Table 1) is a compromise between processing
speed and the number of interconnection buses. The FUs incorporated into this imple-
mentation are the same as the ones used in Arc I. In Arc III only two buses are used
by the filtering process; thus, the designer can either add more buses into the architec-
ture and so make parallel task execution possible for the programmer. In comparison
with e.g. Arc I, three more buses could be added into the architecture with similar hard-
ware costs and with the option of performing the filtering in parallel with some protocol
processing tasks like e.g. IPv6 header analysis.

Tuning a Protocol Processor Architecture Towards DSP Operations 139

Table 1. Architecture comparisons for N-tap FIR filter, data sample rate 44.1 kHz

Architecture Cycle Taps Cycles per Required FU Bus
instance equation N sample clk MHz used used

Arc I N+1 35 36 1.6 5 5
256 257 11.4 5 5

Arc II N+1 35 36 1.6 4 4
256 257 11.4 4 4

Arc III 3×N+2 35 107 4.8 5 2
256 770 34.0 5 2

Arc IV 5×N+4 35 179 7.9 5 1
256 1284 56.7 5 1

The last implementation (Arc IV in Table 1) requires only one interconnection bus.
Arc IV is actually a variation of Arc III; If the target architecture will anyway contain
at least two buses, the designer is free to choose whether to reserve one (Arc IV) or two
(Arc III) for the filtering task while the remaining buses can be used in parallel with
the filtering for some other tasks. If the number of filter taps or the sample rate of the
input data increases, Arc IV is naturally the first implementation to reach the limits of
its capabilities in FIR filtering; in such a case, it may be necessary to reserve two buses
for the filtering process.

3.3 Synthesis and Verification

The MAC functional unit and the rest of the modules were synthesized using 0.18 μm
CMOS technology at a target clock speed of 250 MHz. Two different input word lengths
were used to find out the dependence between area and input word length. With 16 bit
inputs the area was approximately 32 900 μm2 (∼ 2700 gates) and with 32 bit inputs
the area was approximately 91 500 μm2 (∼ 7500 gates). With 32 bit word size the cost
of having a larger multiplier becomes quite obvious. For 16 bit inputs, the area is in the
same order of magnitude as the average FU size of our existing units (20 000 μm2 or
1 700 gates). With 32 bit inputs the MAC FU consumes three times more area than the
one with 16 bit inputs, but still the size is within the limits of our typical large FUs.
Our previously implemented TACO architectures for protocol prosessing tasks have
consumed area in the range of 0.2 - 1.0 mm2 (17 - 85 kgates), not including memories.
The area increase is approximately 5-10 % when a MAC FU is inserted into an average
TACO protocol processor architecture. This kind of area increase is quite acceptable
when a new special functional unit is integrated into the TACO architecture.

The test material for VHDL simulations was generated using Matlab, and the sim-
ulation results were checked against Matlab simulation results. The simulation results
for MAC-enhanced TACO architectures were also verified against results obtained on
a Texas Instruments TMS320C5510 Digital Signal Processor. The VHDL simulation
results were identical with the results from the signal prosessor, and both results were
nearly identical when compared to results calculated using Matlab. In 10 000 input data
samples just a couple of the results had differences in the least significant bit, and the
difference traced back into truncation errors in fixed point systems.

140 J. Paakkulainen, S. Virtanen, and J. Isoaho

4 Conclusions and Future Work

We presented an experiment in enhancing our TTA protocol processor architecture to-
wards DSP applications, with focus on integrating support for both application domains
into a single processor without loss of performance in either domain. We analyzed four
different architectural instances for implementing FIR filters in terms of their perfor-
mance and bus utilization, and concluded that application software can be written for
our hardware platform in a way that allows efficient parallel execution of both protocol
processing and DSP operations.

The process of designing and implementing a new functional unit (FU) for the
multiply-and-accumulate (MAC) operation demonstrated the flexibility of our hardware
platform in terms of adding support for newly required functionality, even across appli-
cation domains: we used an existing protocol processing functional unit as our initial
starting point in the design of the MAC FU, a DSP domain functional unit. Also, with a
single MAC FU hardware implementation we were able to specify multiple system im-
plementation schemes with different optimization factors for the target application. The
implementations were verified with VHDL simulations and synthesis using 0.18 μm
CMOS technology. With 16 bit MAC inputs the FU consumed 2.7 kgates, and with 32
bit inputs 7.5 kgates. Overall, the MAC FU was determined to consume about 5-10 %
of the total chip area of a typical TACO processor implementation, which we regard
highly acceptable.

This work lays foundation for further studies in executing DSP domain operations
in parallel with protocol processing tasks on our hardware platform. We are also con-
sidering some improvements to the presented MAC FU: first, with the integration of
two local memories into the unit, a significant amount of data communication on the
interconnection buses would become internal data flow of the MAC FU. Second, we are
considering a FU design in which several MAC blocks with local coefficient memories
would be interconnected internally. This internal parallelism would provide a significant
increase of filtering capacity.

References

1. Corporaal, H.: Microprocessor Architectures - from VLIW to TTA. John Wiley and Sons
Ltd., Chichester, West Sussex, England (1998)

2. Tabak, D., Lipovski, G.J.: MOVE architecture in digital controllers. IEEE Transactions on
Computers 29 (1980) 180–190

3. Virtanen, S.: A Framework for Rapid Design and Evaluation of Protocol Proces-
sors. PhD thesis, Dept. of Information Technology, University of Turku, Finland (2004)
http://www.tucs.fi/publications/insight.php?id=phdVirtanen04a/.

4. Hoffmann, A., Kogel, T., Nohl, A., Braun, G., Schliebusch, O., Wahlen, O., Wieferink, A.,
Meyr, H.: A novel methodology for the design of application-specific instruction-set proces-
sors (ASIPs) using a machine description language. IEEE Transactions on Computer-aided
Design of Integrated Circuits and Systems 20 (2001) 1338–1354

5. Van Praet, J., Lanneer, D., Geurts, W., Goossens, G.: Processor modeling and code selec-
tion for retargetable compilation. ACM Transactions on Design Automation of Electronic
Systems 6 (2001) 277–307

Tuning a Protocol Processor Architecture Towards DSP Operations 141

6. Cichon, G., Robelly, P., Seidel, H., Matúš, E., Bronzel, M., Fettweis, G.: Synchronous trans-
fer architecture (STA). In: Proc. of 3rd and 4th Intl. SAMOS Workshops (LNCS 3133),
Springer-Verlag, Berlin, Germany (2004) 343–352

7. Corporaal, H., Hoogerbrugge, J.: Cosynthesis with the MOVE framework. In: Proceedings of
the IMACS-IEEE Multiconference on Computational Engineering in Systems Applications
(CESA’96), Lille, France (1996) 184–189

8. Heikkinen, J., Sertamo, J., Rautiainen, T., Takala, J.: Design of transport triggered archi-
tecture processor for discrete cosine transform. In: Proceedings of the 15th Annual IEEE
International ASIC/SOC Conference, Rochester, NY, U.S.A. (2002)

9. Radosavljevic, P., Cavallaro, J.R., de Baynast, A.: ASIP architecture implementation of
channel equalization algorithms for MIMO systems in WCDMA downlink. In: Proceedings
of the 60th IEEE Vehicular Technology Conference, Los Angeles, CA, U.S.A. (2004)

10. Lilius, J., Truscan, D.: UML-driven TTA-based protocol processor design. In: Proceedings
of the 2002 Forum for Design and Specification Languages (FDL’02), Marseille, France
(2002)

11. Virtanen, S., Lilius, J.: The TACO protocol processor simulation environment. In: Pro-
ceedings of the 9th International Symposium on Hardware/Software Codesign (CODES’01),
Copenhagen, Denmark (2001) 201–206

Observations on Power-Efficiency Trends in Mobile
Communication Devices

Olli Silvén1 and Kari Jyrkkä2

1 Department of Electrical and Information Engineering,
University of Oulu, Finland
Olli.Silven@ee.oulu.fi

2 Technology Platforms, Nokia Corporation, Oulu, Finland
Kari.Jyrkka@nokia.com

Abstract. Computing solutions used in mobile communications equipment are
essentially the same as those in personal and mainframe computers. The key dif-
ferences between the implementations are found at the chip level: in mobile de-
vices low leakage silicon technology and lower clock frequency are used. So
far, the improvements of the silicon processes in mobile phones have been ex-
ploited by software designers to increase functionality and to cut development
time, while usage times, and energy efficiency, have been kept at levels that sat-
isfy the customers. In this paper, we explain some of the observed developments.

1 Introduction

During the brief history of GSM mobile phones, the line widths of silicon technologies
used for their implementation have decreased from 0.8 μm in the mid 1990’s to around
0.13 μm in the early 21st century. In a typical phone, a basic voice call is fully executed
in the base band signal processing part, making it a very interesting reference point for
comparisons as the application has not changed over the years, not even in the voice
call user interface. Nokia gives the “talk-time” and “standby-time” for its phones in the
product specifications, measured according to [1] or an earlier similar convention. This
enables us to track the impacts of technological changes over time.

Table 1 documents the changes in the worst case talk-times of high volume mobile
phones released by Nokia between 1995 and 2003 [2], while Table 2 presents approxi-
mate characteristics of CMOS processes during the same period [3], [4], [5]. We make
an assumption that the power consumption share of the RF power amplifier was around
50% in 1995. As the energy efficiency of the silicon process has improved, the last
phone in our table should have achieved around an 8 hour talk-time with no RF energy
efficiency improvements since 1995.

During 1995-2003 the gate counts of the DSP processor cores have increased sig-
nificantly, but their specified power consumptions have dropped by a factor of 10 [4]
from 1mW/MIPS to 0.1mW/MIPS. On the microcontroller side, the energy efficiency
of ARM7TMDI, for example, has improved more than 30-fold between 0.35 and 0.13
μm CMOS processes [5]. Obviously, processor developments cannot explain why the
energy efficiency of voice calls has not improved, but we need to analyze the system
implementations.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 142–151, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Observations on Power-Efficiency Trends in Mobile Communication Devices 143

Table 1. Talk-times of three mobile phones from the same manufacturer

Year Phone model Talk-time Stand-by-time Battery capacity

1995 2110 2 h 40 min 30 h 550 mAh
1998 6110 3 h 270 h 900 mAh
2003 6600 3 h 240 h 850 mAh

Table 2. Past and projected CMOS process development

Design rule (nm) Supply voltage (V) Normalized power*delay/gate

800 (1995) 3.15 30
500 (1998) 2.85 12
130 (2003) 1.5 1
60 (2010) 1 0.35

DSPSRAM

MCU

LOGIC

SRAM

1995

BB ASIC

DSPRO
M

MCU

LOGIC

External
memory

cache

1998

BB ASIC

DSPSRAM

MCU

LOGIC

External
memory

cache

cache

2003

Mixed
signal

BB

External
memory

Keyboard

Display

RF

Fig. 1. Typical implementations of mobile phones from 1995 to 2003

Figure 1 depicts streamlined block diagrams of base band solutions of three product
generations of GSM mobile phones. The DSP processor runs radio modem layer 1 [6]
and the audio codec, whereas the microcontroller (MCU) processes layers 2 and 3 of
the radio functionality and takes care of the user interface. During voice calls, both the
DSP and MCU are active, while the UI introduces an almost insignificant load.

The base band signal processing ranks second in power consumption after RF during
a voice call. Its implementation in 1995 was based on the periodically scheduled soft-
ware architecture that has almost no overhead, a solution dictated by the performance
limitations of the processor used. Hardware accelerators were used without interrupts by
relying on their deterministic latencies; this was an inherently efficient and predictable
approach. On the other hand, highly skilled programmers, who understood the hard-
ware in detail, were needed. This approach had to be abandoned after the complexity of
DSP software and the developer population grew.

In 1998, the DSP and the microcontroller of the user interface were integrated on
to the same chip, and the faster DSP processors eliminated some hardware accelera-
tors [7]. Speech quality was enhanced at the cost of additional processing on the DSP,
while middleware was introduced on the microcontroller side. The implementation of

144 O. Silvén and K. Jyrkkä

2003 employs a pre-emptive operating system in the microcontroller. Basic voice call
processing is still on a single DSP processor that now has a multilevel memory sys-
tem. Improved voice call functionality and lots of other features were supported, and
the number of hardware accelerators increased due to higher data rates. The accelera-
tors were synchronized with DSP tasks via interrupts. The architecture is ideal for large
development teams, but the new functionalities cause some energy overhead.

The need for better software development processes has increased with the growth
in the number of features in the phones. Consequently, the developers have endeavoured
to preserve the active usage times of the phones at a constant level (around three hours)
and turned the silicon level advances into software engineering benefits.

2 Modern Mobile Computing Tasks

Mobile computing is about to enter an era that requires the integration of wireless wide-
band data modems, video cameras, and phones into small packages with long battery
powered operation times. Even the small size of phones is a design constraint as the
sustained heat dissipation should be kept below 3W [8]. In practice, more than the ca-
pabilities of laptop PCs is expected using less than 10% of their energy and space, and
at a fraction of the price. To understand how the expectations could be met, we briefly
consider the characteristics of video encoding and 3GPP signal processing. These have
been selected as representatives of soft and hard real time applications, and of differing
hardware/software partitioning challenges.

2.1 Video Encoding

Table 3 below illuminates the approximate costs and processing requirements of cur-
rent common video coding standards when applied to a sequence of 640-by-480 pixel
(VGA) images captured at 30 frames/s. The “future standard” has been linearly extrap-
olated based on those of the past. If a software implementation on an SISD processor is
used, MPEG-4 encoding requires the fetching and decoding of at least 200-300 times
more instructions than pixel data. This can be used as a basis for comparing implemen-
tations on different programmable processor architectures.

Figure 2 illustrates the Mpixels/s per silicon area (mm2) and power (W) efficiencies
of SISD, VLIW, SIMD, and the monolithic accelerator implementations of high quality
(>34dB PSNR) MPEG-4 ASP (Advanced Simple Profile) VGA video encoders. Due
to the quality requirement the greediest motion estimation algorithms are not applica-
ble. The search area was set to 48-by-48 pixels which fits into the on-chip RAMs of

Table 3. Encoding requirements for 30 frames/s VGA video

video standard operations/pixel processing speed (GOPS)

MPEG-4 200-300 2-3
H.264-AVC 600-900 6-10
“future” 2000-3000 20-30

Observations on Power-Efficiency Trends in Mobile Communication Devices 145

Energy
efficiency

Area efficiency

100

Gap in power efficiency

A SIMD flavoured mobile signal processor

A VLIW media processor

A mobile microprocessor

Mobile processor with a monolithic accelerator

200 300 400 500 600

1

2

3

4

Fig. 2. Area (Mpixels/s/mm2) and energy efficiencies (Mpixels/s/W) of comparable MPEG-4
encoder implementations

each processor. In the figure the implementations have been normalized to an expected
low power 1V 60nm CMOS process. The scaling rule roughly assumes that power con-
sumption is proportional to the supply voltage squared and the design rule, while the
die size is proportional to the design rule squared.

The encoder software for the SISD is a commercial one, while for VLIW and SIMD
the motion estimators of commercial MPEG-4 ASP codecs were replaced by iterative
full search algorithms [9][10]. Unfortunately, we are unable to name the processors in
this paper. The monolithic accelerator is an IP block [11] with an ARM926 core.

We notice that around 40mW of power is needed for encoding 10Mpixels/s using
the SIMD extended processor, while the monolithic accelerator requires only 16mW.
In reality, the efficiency gap is even larger as the data points have been determined
using only a single task on each processor. In practice, the processors switch contexts
between tasks and serve hardware interrupts, reducing the hit rates of instruction and
data caches. This drops the actual processing throughput and energy efficiency.

The sizes of the control units and instruction fetch rates needed for video encoding
appear to explain the data points of the programmed solutions. SISD and VLIW have
the highest fetch rates, while the SIMD has the lowest one, contributing to energy ef-
ficiency. The monolithic accelerator is controlled via a finite state machine, and needs
processor services only once every frame. Its hardwired control gives good silicon ef-
ficiency: around 5mm2 is needed for achieving real-time video encoding. The relative
size of the SISD processor control unit is the largest in comparison to the execution
unit, and results in the worst silicon efficiency for this application.

2.2 3GPP Base Band Signal Processing

The 3GPP base band signal processing chain is an archetypal hard real-time application
that is further complicated by the heavy computational requirements shown in Table 4
for the receiver. The values in the table are for solutions employing Turbo-decoding
and they do not include chip level decoding and symbol level combining that further
increase the processing needs. The requirements of the HSDPA (High Speed Downlink
Packet Access) channel characterize currently acute implementation challenges.

Figure 3 shows the organization of the 3GPP receiver processing. The receiver data
chain has time critical feedback loops implemented in the software; for instance, the

146 O. Silvén and K. Jyrkkä

Table 4. 3GPP receiver requirements for different channel types

Channel type Data rate processing speed (GOPS)

Release 99 DCH channel 0.384 Mbit/s 1-2
Release 5 HSDPA channel 14.4 Mbit/s 35-40
“future 3.9G” OFDM channel 100 Mbit/s 210-290

Release 99 data and control channel (DSCH)

HSDPA data channel (HS-DSCH)

HSDPA control channel (HS-SCCH)
finger

combiner rate dematcher

deinterleaver rate
dematcher

deinterleaver rate
dematcher

Viterbi
decoder

Turbo
decoder

Turbo
decoder

combiner

combiner

finger

finger

finger

finger

finger

RF

Spreading
and

modulation

Encoding
and

interleaving

Power control 1500 Hz HSDPA data channel control 1000 Hz

Chip rate
(3.84 MHz)

Symbol rate
(15-960 kHz) Block rate (12.5-500 Hz)

Data processing

Hardware

Software

Fig. 3. Receiver for a 3GPP mobile terminal

control channel HS-SCCH is used to control what is received, and when, on the HS-
DSCH data channel. Another example is the power control information decoded from
“release 99 DSCH” channel that is used to regulate the transmitter power 1500 times per
second. The channel code rates, channel codes and interleaving schemes may change
anytime, requiring software control for reconfiguring hardware blocks of the receiver,
although for clarity this is not indicated in the diagram.

The computing power needs of 3GPP signal processing have so far been satisfied
only by hardware at an acceptable energy efficiency level. Software implementations
for turbo decoding that meet the speed requirement do exist, but falling short of the
energy efficiency needed in phones they are more suitable for base stations [12].

For energy efficiency, battery powered systems have to rely on hardware, while the
tight timings demand the employment of fine grained accelerators. A resulting large
interrupt load on the control processors is an undesired side effect. Coarser grain hard-
ware accelerators could reduce this overhead, but this approach is risky, if the channel
specifications have not been completely frozen, when the development must begin.

3 Analysis of the Observed Development

Based on our understanding, there is no single action that could improve the talk times
of mobile phones and usage times of future applications. Rather there are multiple in-

Observations on Power-Efficiency Trends in Mobile Communication Devices 147

teracting issues for which balanced solutions must be found. In the following, we point
out some of the factors considered to be essential.

Voice Call Application. The voice codec in 1995 required around 50% of the operation
count of the more recent codec that provide improved voice quality. As a result, the
computational cost of a GSM voice call may have even doubled [13], using part of the
performance improvement obtained through advances in semiconductor processes. It is
likely that the computational costs of voice calls will increase even in the future with
advanced features.

Pre-emptive Real-Time Operating Systems. The dominating scheduling principle
used in embedded systems is rate monotonic analysis (RMA) that assigns higher static
priorities for tasks that execute at higher rates. When the number of tasks is large, uti-
lizing the processor at most up to 69% guarantees that all deadlines are met [14]. If
more processor resources are needed, then more advanced analysis is needed to learn
whether the scheduling meets the requirements.

Both our application examples are affected by this law. A video encoder, even when
fully implemented in software, is seldom the only task in the processor, but shares its
resources with a number of others. The 3GPP base band processing chain consists of
several tasks due to time critical hardware software interactions.

With RMA, the processor utilization limit alone may demand even 40% higher clock
rates than apparently necessary. We cannot return to static cyclic scheduling as it is
unsuitable for providing responses for sporadic events within a short fixed time, as
required by the newer features of the phones. The use of dynamic priorities and Earliest-
Deadline-First or Least Slack algorithm [15] could improve processor utilization over
RMA, although at the cost of higher scheduling overheads.

Context Switches and the Cache and Processor Performance. The instruction and
data caches of modern processors improve energy efficiency, when they perform as in-
tended. However, when the number of tasks and the frequency of context switches is
high, the cache-hit rates may suffer. Both video encoder and 3GPP base band appli-
cations may operate in an environment that executes even up to tens of thousands of
interrupts and context switches in a second.

Experiments [18] carried out using the MiBench [16] embedded benchmark suite
revealed that with a 16kB 4-way set associative instruction cache the hit-rate averaged
78% immediately after context switches and 90% after 1000 instructions, while 96%
was reached after the execution of 10000 instructions. The performance impact can be
significant. If the processor operates at 150MHz with a 50 ns main memory and an 86%
cache hit rate, the execution time of a short task slice (say 2000 instructions) is almost
double of the minimum. The time may fluctuate from activation to activation, causing
scheduling and throughput complications, and may force to increasing the processor
clock rate.

Hardware/Software Interfaces. The designers of mobile phones aim to create com-
mon platforms for product families [7]. They define application programming inter-
faces that remain the same, regardless of system enhancements and changes in hard-
ware/software partitioning. This has made middleware solutions attractive.

148 O. Silvén and K. Jyrkkä

fetch decode execute
Write
back

Fetch
ISE

Decode
ISE

execute
ISE

WB
ISE

fetch decode execute
Write
back

Cycle

In
s
tru

c
tio

n
s

1 2 3 4

1

2

3

Connectivity model of a simple RISC processor

ALU
&

Memor
y

Source
operand
registers
and their

connectivity

Register
file

FU for ISE

Added memory complexity

Added complexity
to bybass logic

Pipeline stall

RISC with instruction set extension Pipeline stall due to resource conflict

Fig. 4. Hardware acceleration via instruction set extension

Hardware accelerators

time

1

2

3

5

7 8

9

11

12

OS kernel

Interrupt dispatcher

User interrupt handlers

User prioritized tasks

Hardware abstraction4 6

Interrupt HW
2,8,11 = Run OS scheduler
7 = Send OS message to high priority task
3, 4 = Find reason for hardware interrupt
5,6 = Interrupt service and acknowledge interrupt to HW
9,10 = High priority running due to interrupt
1,12 = Interrupted low priority task

10

Priority level

...

Fig. 5. Controlling an accelerator interfaced as a peripheral device

Two approaches are available for interfacing hardware accelerators to software.
First, a hardware accelerator can be integrated into the system as an extension to the
instruction set, as illustrated with Figure 4. The latency of the extension should be in
the same range as the standard instructions, or, at most, within a few instruction cycles,
otherwise the interrupt response time may suffer. Short latency often implies large gate
count and high bus bandwidth needs that reduce the economic viability of the approach.

Second, an accelerator may be used in a peripheral device that generates an interrupt
after completing its task. This principle is demonstrated in Figure 5, which also shows
the role of middleware in hiding details of hardware. If the code in the middleware is not
integrated into the task, calls to middleware functions are likely to reduce the cache hit
rate and energy efficiency. Against this fact, it is logical that the monolithic accelerator
turned out to be the most energy efficient solution for video encoding in Figure 2. From
the point of view the 3GPP base band a key to energy efficient implementation in a
given hardware lies in pushing down the latency overheads.

Observations on Power-Efficiency Trends in Mobile Communication Devices 149

Anything in between 1-2 cycle instruction set extensions and peripheral devices
executing thousands of cycles appears to result in inefficient software. If the interrupt
latency in the operating system environment is around 300 cycles and 50000 interrupts
are generated per second, 10 % of the 150 MHz processor resources are swallowed by
the this overhead alone, and on top of this we have middleware costs. This bottleneck
area falls between hardware and software, architectures and mechanisms, and systems
and components.

Processor and Application Compatibility. Current DSP processor execution units are
deeply pipelined to increase instruction execution rates. However, DSP processors are
often used as control processors and have to handle large interrupt and context switch
loads. The result is a double penalty: The utilization of the pipeline decreases and the
control code is inefficient due to the long pipeline. For instance, if a processor has a
10 level pipeline and 1/50 of the instructions are unconditional branches, almost 20 %
of the cycles are lost. Improvements offered by the branch prediction capabilities are
diluted by the interrupts and context switches.

Summary of Relative Performance Degradations. When the components of the above
analysis are combined, they result in an efficiency degradation factor of at least 6. If we
add the jitter of code execution times, the factor is easily around 10 or more; and we
haven’t yet considered programming language and paradigm issues. The result illus-
trates the traded-off efficiency gains at the processing system level as the approaches in
system development have been dictated by the needs of software development.

4 Directions for Research and Development

Looking back to the phone of 1995 in Table 1, we may consider what should have been
done to improve energy efficiency at the rate of silicon process improvement. Obvi-
ously, due to the choices made, many of the factors that degrade the relative energy
efficiency are software related. However, we do not demand changes in software de-
velopment processes or architectures that are intended to facilitate human effort. So
solutions should be sought from the software/hardware interfacing domain, including
compilation, and hardware solutions that enable building energy efficient software sys-
tems.

To reiterate, the early base band software was effectively multi-threaded, and even
simultaneously multi-threaded with hardware accelerators executing parallel threads,
without interrupt overhead, as shown in Figure 6. In principle, a suitable compiler could
have replaced manual coding in creating the threads, as the hardware accelerators had
deterministic latencies. However, interrupts were introduced and later solutions em-
ployed additional means to hide the hardware from the programmers.

Having witnessed the past choices, their motivations, and outcomes, we need to ask
whether compilers, and hardware support for simultaneous multithreading, could be
used to hide implementation details in addition to APIs and middleware. This could cut
down the number of interrupts, reduce the number of tasks and context switches, and
improve code locality; all improving processor utilization and energy efficiency. Hard-
ware accelerator aware compilation would bridge the software efficiency gap between

150 O. Silvén and K. Jyrkkä

Viterbi
 equalizer HW

time

User interrupt handlers

User prioritized tasks

Hardware abstraction

S
ta

rt H
W R

e
ad

re
s

ul
ts

1 = Bit equalizer algorithm
2 = Speech encoding part 1
3 = Channel decoding part1
4 = Speech encoding part2
5 = Channel encoder
6 = Channel decoder part2
7 = Speech decoder

Priority level

S
ta

rt H
W

TX modulator HW Hardware thread 2

S
ta

rt H
W

Viterbi
decoder HW

R
e

ad
re

s
ul

ts

Hardware thread 1

1 2 3 4 5 6 7

Fig. 6. The execution threads of an early GSM mobile phone

instruction set extensions and peripheral devices, making “medium latency” accelera-
tors attractive. This would help in cutting the instruction fetch and decoding overheads.

A big issue is the paradigm change. Compilers have so far been developed for pro-
cessor cores; now they would be needed for complete embedded systems. Whenever the
platform changes, the compiler would need to be upgraded, while currently the changes
are concentrated on the hardware abstraction functionality.

Another approach that could improve energy efficiency is the employing of several
small processor cores for controlling hardware accelerators, rather that a single power-
ful one. This simplifies real-time system design and reduces the penalty from interrupts,
context switches and execution time jitter.

5 Summary

The energy efficiency of mobile phones has not improved at the rate that might have
been expected from the advances in silicon processes, but it is obviously at a level that
satisfies most users. Higher data rates and multimedia applications require significant
improvements, and encourage us to reconsidering the ways software is designed, run,
and interfaced with hardware.

Significantly improved energy efficiency might be possible even without any changes
to hardware by using software solutions that reduce overheads and improve processor
utilization. Large savings can be expected from applying architectural approaches that
reduce the volume of instructions fetched and decoded.

Acknowledgements

This paper is based on the contributions of numerous people. In particular, we wish to
thank Dr. Lauri Pirttiaho and Prof. Yrjö Neuvo, both from the Nokia Corporation.

References

1. GSM Association: TW.09, Battery Life Measurement Technique. (1998)
2. Nokia: Phone models. In: www.nokia.com. (2004)

Observations on Power-Efficiency Trends in Mobile Communication Devices 151

3. Anis, M., Allam, M., Elmasry, M.: Impact of technology scaling on CMOS logic styles.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 49
(2002) 577–588

4. Frantz, G.: Digital Signal Processor Trends. IEEE Micro 20 (2000) 52–59
5. ARM: The ARM foundry program. In: www.arm.com. (2004)
6. 3GPP: TS 05.01, Physical Layer on the Radio Path. In: www.3gpp.org. (2004)
7. Jyrkkä, K., Silven, O., Ali-Yrkkö, O., Heidari, R., Berg, H.: Component-based development

of DSP software for mobile communication terminals. Microprocessors and Microsystems
26 (2002) 463–474

8. Neuvo, Y.: Cellular phones as embedded systems. In: Solid-State Circuits Conference.
Volume 1. (2004) 32–37

9. Gao, X., Duanmu, C., Zou, C.: A multilevel successive elimination algorithm for block
matching motion estimation. IEEE Transactions on Image Processing 9 (2000) 501–504

10. Wang, H., Mersereau, R.: Fast Algorithms for the Estimation of Motion Vectors. IEEE
Transactions on Image Processing 8 (1999) 435–438

11. Hantro Products: 5250 VGA encoder. In: www.hantro.com. (2004)
12. Loo, K., Alukaidey, T., Jimaa, S.: High Performance Parallelised 3GPP Turbo Decoder.

In: 5th European Personal Mobile Communications Conference. Volume 492., IEE (2003)
337–342

13. Salami, R., Laflamme, C., Bessette, B., Adoul, J.P., Jarvinen, K., , Vainio, J., Kapanen, P.,
Honkanen, T., Haavisto, P.: Description of GSM enchanced full rate speech codec. In: IEEE
International Conference on Communications. Volume 2. (1997) 725–729

14. Klein, M., Ralya, T., B.Pollak, Obenza, R.: A practitioner’s handbook for real-time analysis.
Kluwer (1993)

15. Spuri, M., Buttazzo, G.: Efficient aperiodic service under earliest deadline scheduling. In:
Real-Time Systems Symposium. (1994) 2–11

16. Gathaus, M., Ringenberg, J., Ernst, D., Austen, T., Mudge, T., Brown, R.: MiBench: a free
commercially representative embedded benchmark suite. In: IEEE 4th Annual Workshop on
Workload Characterization. (2001) 3–14

CORDIC-Augmented Sandbridge Processor
for Channel Equalization

Mihai Sima1, John Glossner2,3, Daniel Iancu2, Hua Ye2, Andrei Iancu4,2,
and A. Joseph Hoane2

1 University of Victoria, Department of Electrical and Computer Engineering,
P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6, Canada

msima@ece.uvic.ca
2 Sandbridge Technologies, Inc., 1 North Lexington Avenue, White Plains, NY 10601, USA

{JGlossner, DIancu, HuaYe, AIancu, JHoane}@sandbridgetech.com
3 Delft University of Technology,

Department of E.E.M.C.S., Delft, The Netherlands
4 Rochester Institute of Technology, Computer Science Department, Rochester, NY, USA

Abstract. In this paper we analyze an architectural extension for a Sandbridge
processor which encompasses a CORDIC functional unit and the associated in-
structions. Specifically, the first instruction is CFG CORDIC that configure the
CORDIC unit in one of the rotation and vectoring modes for circular, linear,
and hyperbolic coordinate systems. The second instruction is RUN CORDIC that
launches CORDIC operations into execution. As case study, we consider chan-
nel estimation and correction of the Orthogonal Frequency Division Multiplexing
(OFDM) demodulation. In particular, we propose a scheme to implement OFDM
channel correction within the extended instruction set. Preliminary results indi-
cate a performance improvement over the base instruction set architecture of more
than 80% for doing channel correction, which translates to an improvement of
50% for the entire channel estimation and correction task.

1 Introduction

A common trade-off in the design of computing engines involves the balance between
efficiency and flexibility. Although Application-Specific Integrated Circuits (ASIC’s)
are highly efficient, they are often not flexible enough to support the variations of to-
day’s rapidly evolving standards. On the other hand, DSP processors, although fully
programmable, may not achieve the high performance required for future generations of
wireless systems. An architectural solution, Application-Specific Instruction set Proces-
sors, combines the efficiency of ASIC’s and flexibility of DSP’s. Typically, ASIP’s are
heterogenous platforms composed of programmable processor cores and customized
hardware modules. Considering the Sandbridge processor [1, 2, 3] and CORDIC algo-
rithm [4, 5], two general questions may be raised:

– What is the influence of a CORDIC functional unit on the performance of a
Sandbridge processor?

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 152–161, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

CORDIC-Augmented Sandbridge Processor for Channel Equalization 153

– What are the architectural changes needed for incorporating a CORDIC unit into a
Sandbridge processor core?

In order to evaluate the potential performance of the CORDIC-augmented Sand-
bridge processor, we address as an example channel equalization, which is one of the
most challenging baseband wireless algorithms for an Orthogonal Frequency Division
Multiplexing (OFDM) demodulation task. In particular, we present the implementation
strategy of the channel correction on an ASIP comprising a Sandbridge processor and
a CORDIC unit.

The extension of the Sandbridge Instruction Set Architecture (ISA) encompasses a
CORDIC functional unit and two associated instructions: CFG CORDIC that configures
the CORDIC unit, and RUN CORDIC that launches CORDIC operations into execution.
With these instructions, a large number of transcendental functions can be computed
in pipelined and SIMD fashion, which translates into a significant reduction in cycle
count. In particular, modulus, division, sine, cosine, and arctangent will benefit from
CORDIC support when doing channel equalization.

The paper is organized as follows. For background purposes, we outline the CORDIC
algorithm in Section 2 and OFDM channel equalization in Section 3. Section 4 de-
scribes briefly the architecture of the Sandbridge processor. The architectural extension
including CORDIC instructions is introduced in Section 5. The execution scenario of
channel correction within the extended instruction set is discussed in Section 6, while
experimental results are presented in Section 7. Section 8 completes the paper with
some conclusions and closing remarks.

2 Coordinate Rotation Digital Computer

A Givens transformation [6] is a 2-by-2 orthogonal matrix R(θ) of the form described in
Equation (1). It can be observed that multiplication by R(θ) of a vector [x,y]T amounts
to a counterclockwise rotation of θ radians in plane.

R(θ) ·
[

x
y

]
≡
[

cosθ sinθ
−sinθ cosθ

]
·
[

x
y

]
=
[

x′
y′

]
(1)

Historically, the Givens transformation has been used in QR factorization [7], since
it can zero matrix elements selectively. Clearly, by setting

cosθ =
x√

x2 + y2
, sinθ =

y√
x2 + y2

(2)

it is possible to force the second entry in the vector [x,y]T to zero:[
cosθ sinθ
−sinθ cosθ

]
·
[

x
y

]
=
[√

x2 + y2

0

]
(3)

The Givens transformation is computationally demanding. For example, given an
arbitrary angle θ, the direct evaluation of the rotation (Equation (1)) requires four mul-
tiplications, two additions, and a large memory storing the cosine and sine tables. Also,

154 M. Sima et al.

finding the angle θ which satisfies the trigonometric Equations (2), translates to a se-
quence of multiplications, additions, and memory look-up operations if the common
Taylor series expansion is employed.

COordinate Rotation DIgital Computer (CORDIC) is an iterative method perform-
ing vector rotations by arbitrary angles using only shifts and additions. The main idea
is to first split the rotation angle θ into a sequence of subrotations of angles θ(n), where
the rotation for iteration n is[

x(n+1)
y(n+1)

]
=
[

cosθ(n) sinθ(n)
−sinθ(n) cosθ(n)

]
·
[

x(n)
y(n)

]
(4)

Then, the rotation matrix R(θ(n)) is written as

R(θ(n)) = cosθ(n) ·
[

1 tanθ(n)
− tanθ(n) 1

]
(5)

and the rotation angles are restricted so that tanθ(n) =±2−n. This way, the multiplica-
tion by the tangent factor is reduced to simple shift operations.

Arbitrary rotation angles can be obtained by performing a series of successively
smaller elementary rotations. If the decision at each iteration, n, is which direction to
rotate rather than whether or not to rotate, then the factor cosθ[n] becomes a constant
for the current iteration (since cosθ[n] = cos(−θ[n])). Then, the product of all these
cosine values is also a constant and can be applied anywhere in the system or treated as
system processing gain.

The angle of a composite rotation is uniquely defined by the sequence of the di-
rections of the elementary rotations. That sequence can be represented by a decision
vector. The set of all possible decision vectors is an angular measurement system based
on binary arctangents. Conversions between this angular system and any other can be
accomplished using an additional adder-subtractor that accumulates the elementary ro-
tation angles at each iteration. The elementary angles are supplied by a small look-up
table (one entry per iteration), or are hardwired, depending on the implementation. The
angle accumulator adds a third difference equation to the CORDIC algorithm.

z(n+1) = z(n)−d(n)arctan
(
2−n) (6)

The CORDIC rotator is operated in one of two modes: rotation or vectoring [4].

– In rotation mode, the angle accumulator is initialized with the desired rotation
angle. The rotation decision at each iteration is made to diminish the magnitude of
the residual angle in the angle accumulator.

– In vectoring mode, the CORDIC unit rotates the input vector through whatever an-
gle is necessary to align the result vector with the x axis. The result of the vectoring
operation is a rotation angle and the scaled magnitude of the original vector (the x
component of the result).

Using CORDIC, a large number of transcendental functions, e.g., polar to cartesian
or cartesian to polar transformations, can be calculated with the latency of a serial mul-
tiplication. By providing an additional parameter, the basic CORDIC method can be

CORDIC-Augmented Sandbridge Processor for Channel Equalization 155

generalized to perform rotations in a linear or hyperbolic coordinate system [5], thus
providing a more powerful tool for function evaluation. Of particular importance for
this paper is CORDIC operating in vectoring mode in the linear coordinate system,
since it provides a method for evaluating ratios.

3 OFDM Channel Equalization

Due to its robustness to multi-path propagation conditions and support for high data
rates, coded Orthogonal Frequency Division Multiplexing (OFDM) has become one of
the most popular modulation techniques for indoor and outdoor broadband wireless data
transmission [8]. OFDM has been adopted in many wireless worldwide standards such
as wireless LAN 802.11a/g, HIPERLAN/2, Digital Audio Broadcasting (DAB), Digi-
tal Video Broadcasting Terrestrial (DVB-T), Digital Video Broadcasting for Handheld
(DVB-H), WirelessMAN 802.16, and Broadband Wireless Access.

Consider DVB-T/H [9]: the transmitted signal is organized in frames, and each
frame consists of 68 OFDM symbols. Each symbol contains both data and reference
information, and is constituted by a set of 6817 carriers in the 8K mode and 1705 car-
riers in the 2K mode. Due to phase and amplitude variations in the channel transfer
function, received complex data symbols appear not only rotated in the complex do-
main, but also attenuated or enhanced. Under these conditions the amplitude and phase
of each carrier is distorted. If the receiver is to coherently demodulate the signal, it
needs to equalise the phase and amplitude of each carrier. This process, which is known
as Channel Equalisation, is comprised of an estimation phase and a correction phase.

Channel estimators usually employ pilot information as a point of reference. A fad-
ing channel requires constant tracking, so pilot information has to be transmitted con-
tinuously. An efficient way of allowing a continuously updated channel estimate is to
transmit pilot symbols instead of data at certain locations of the OFDM time-frequency
lattice. This technique is referred to as Pilot-Assisted Transmission (PAT).

Most OFDM receivers, such as DVB-T/H [9], are PAT systems. The channel esti-
mation and correction is performed for the current OFDM symbol using a set of pilot
carriers [10, 11, 12]. In the following, we describe at a high level the channel estimation
we used for our DVB-T/H implementation. For each OFDM symbol, the scattered pi-
lots are spaced 12 carriers apart. The first step is the estimate of the Channel Transfer
Function (CTF) samples on the scattered pilot positions for the current OFDM symbol.
The second step in channel estimation is to perform interpolation in time domain for
three virtual pilot groups [8]. The third step in channel estimation is to perform inter-
polation in frequency domain. This is done to estimate the remaining two CTF samples
in between each virtual pilot pairs for the current symbol. Once CTF samples for the
carriers are estimated, channel correction can be readily performed to get the corrected
received carriers that are ready to be fed to further processing such as QAM demapping
and TPS decoding [9].

The correction algorithm is a so called derotation. Assuming the channel estimation
yields an error vector eI + jeQ for a particular carrier, the corrected vector for that
particular carrier is obtained by the complex division

156 M. Sima et al.

cI + jcQ =
rI + jrQ

eI + jeQ
=

(rI + jrQ)(eI− jeQ)
e2

I + e2
Q

(7)

where cI and cQ are the corrected values for the real and imaginary part of a particular
carrier, and rI and rQ are the real and imaginary parts of the received carrier. Each
carrier must go through the computationally-intensive derotation process described in
Equation 7.

4 Overview of the Sandbridge Processor

In this section we describe the most important issues of the Sandbridge architecture and
microarchitecture. In particular, our emphasis will be on the multi-threading capability
and SIMD-style Vector Unit.

4.1 Sandbridge Processor

Sandbridge Technologies has designed a multithreaded processor capable of execut-
ing DSP, embedded control, and Java code in a single compound instruction set opti-
mized for handset radio applications [1, 2, 3]. The Sandbridge Sandblaster design over-
comes the deficiencies of previous approaches by providing substantial parallelism and
throughput for high-performance DSP applications, while maintaining fast interrupt re-
sponse, high-level language programmability, and low power dissipation.

The Sandbridge processor [1, 2, 3] is partitioned into three units; an instruction fetch
and branch unit, an integer and load/store unit, and a SIMD-style vector unit. The de-
sign utilizes a unique combination of techniques including hardware support for multi-
ple threads, SIMD vector processing, and instruction set support for Java code. Program
memory is conserved through the use of powerful compounded instructions that may
issue multiple operations per cycle. The resulting combination provides for efficient
execution of DSP, control, and Java code. The instructions to speed up CORDIC oper-
ations are executed in the Sandbridge Vector Unit described in Subsection 4.4.

4.2 Sandbridge Pipeline

The pipelines are different for various operations as shown in Figure 1. The Load/Store
(Ld/St) pipeline has nine stages. The integer and load/store unit has two execute stages
for Arithmetic and Logic Unit (ALU) instructions and three execute stages for integer
multiplication (I MUL) instructions. A Wait stage for the ALU and I MUL instructions
causes these instructions to read from the general-purpose register file one cycle later
than Ld/St instructions. This helps reduce the number of register file read ports. The
vector multiplication (V MUL) has four execute stages – two for multiplication and
two for addition. It should be noted that once an instruction from a particular thread
enters the pipeline, it runs to completion. It is also guaranteed to write back its result
before the next instruction from the same thread reads the result.

4.3 Sandbridge Multithreading

The Sandblaster architecture supports multiple concurrent program execution by the use
of hardware thread units. Multiple copies (e.g., banks and/or modules) of memory are

CORDIC-Augmented Sandbridge Processor for Channel Equalization 157

Ld/St Inst RF Agen XFer Int Mem Mem Mem WB
Dec Read Ext 0 1 2

ALU Inst Wait RF Exec Exec XFer WB
Dec Read 1 2

I Mul Inst Wait RF Exec Exec Exec XFer WB
Dec Read 1 2 3

V Mul Inst VRF Mpy1 Mpy2 Add1 Add2 XFer VRF
Dec Read WB

Fig. 1. Sandbridge pipeline

available for each thread to access. The Sandblaster processor uses the Token Triggered
Threading (T3) form of interleaved multithreading [2], in which each thread is allowed
to simultaneously execute an instruction, but only one thread may issue an instruction
on a cycle boundary. The microarchitecture currently supports up to eight concurrent
hardware threads. Multi-threading effectively hides true dependencies which typically
occur in connection with long-latency operations.

V Mul Inst VRF Mpy1 Mpy2 Add1 Add2 XFer WB
Dec Read

V Mul Inst VRF Mpy1
Dec Read

Fig. 2. Two consecutive Vector Multiply instructions that issue from the same thread

4.4 The Vector Processing Unit

The Vector Processing Unit (VPU) consists mainly of four Vector Processing Elements
(VPEs), which perform arithmetic and logic operations in SIMD fashion on 16-bit, 32-
bit, and 40-bit fixed-point data types. High-speed 64-bit data busses allow each PE to
load or store 16 bits of data each cycle in SIMD fashion. Support for SIMD execution
significantly reduces code size, as well as power consumption, since multiple sets of
data elements are processed with a single instruction [13].

Most SIMD vector instructions go through eight pipeline stages. For example, a vec-
tor MAC (V MAC) instruction goes through the following stages: Instruction Decode,
Vector Register File (VRF) Read, Mpy1, Mpy2, Add1, Add2, Transfer, and Write Back.
The Transfer stage is needed due to the long wiring delay between the bottom of the
VPU and the VRF. Since there are eight cycles between when consecutive instructions
issue from the same thread, results from one instruction in a thread are guaranteed to
have written their results back to the VRF by the time the next instruction in the same
thread is ready to read them. Thus, the long pipeline latency of the VPEs is effectively
hidden, and no data dependency checking or bypass hardware is needed. This is illus-
trated in Figure 2, where two consecutive vector multiply instructions issue from the
same thread. Even if there is a data dependency between the two instructions, there
is no need to stall the second instruction, since the first instruction has completed the
Write Back stage before the second instruction enters the VRF Read stage.

158 M. Sima et al.

5 An Architectural Extension for Sandbridge Processor

The instructions investigated are CFG CORDIC that configures the CORDIC unit in one
of the execution modes (rotation, vectoring) and one of the coordinate systems (cir-
cular, linear, hyperbolic), and RUN CORDIC which launches the configured CORDIC
operation. Assuming that 16-bit precision is needed (it is usually the case in OFDM
demodulation), then the CORDIC algorithm reads in two 16-bit arguments and pro-
duces two 16-bit results. If not all the CORDIC iterations can be performed by a single
RUN CORDIC call, then the angle and iteration number must be saved between successive
RUN CORDIC calls.

The proposed RUN CORDIC instruction is a vector instruction that goes through
eight pipeline stages; that is, the execution itself has a latency of 4 thread cycles. The
CORDIC functional unit can perform 2 CORDIC iterations in a thread cycle (two ad-
ditions and two shifts), and is shared by four SIMD units. Consequently, RUN CORDIC
will execute 8 times, i.e., it will take up 8 instruction cycles, for a 16-bit precision, and
will perform 4 conversions in SIMD style.

This is the result where the CORDIC unit is added to the vector unit by adding one
adder, one shifter, a comparator and some control logic to the existing pipeline. De-
ploying an autonomous CORDIC unit for each SIMD unit of each thread will translate
into both a memory bandwidth problem and a hardware problem, i.e., too much added
hardware (32 adders, 32 shifters, 32 comparators), and the operands cannot be fetched
from, or the results cannot be stored back to memory anyway.

The CORDIC instructions are defined as follows.

– CFG CORDIC
for(i=0; i<4; i++) {
• Read 8 bits of configuration data
• Configure the CORDIC unit:

∗ Mode (1 bit): rotation or vectoring
∗ Coordinate system (2 bits): circular, linear, or hyperbolic
∗ Iteration Identifier (5 bits): ranges from 0 to 31

}

– RUN CORDIC
for(i=0; i<4; i++) {
• Reads in the first 32-bit vector register packing:

∗ 16-bit modulus and 16-bit angle for rotation mode
∗ 16-bit x-value and 16-bit y-value for vectoring mode

• Reads in the second 32-bit vector register storing:
∗ 16-bit angle for vectoring mode

• Performs two CORDIC iterations (two additions and shiftings)
• Writes back one 32-bit vector register packing:

∗ 16-bit x-value and 16-bit y-value for rotation mode
∗ 16-bit modulus and 16-bit angle for vectoring mode

}

CORDIC-Augmented Sandbridge Processor for Channel Equalization 159

6 Channel Correction Execution Scenario

As mentioned in Section 6, the channel correction involves essentially a complex divi-
sion. The strategy we implemented for channel correction is to express complex num-
bers in trigonometric form and to use the CORDIC algorithm to perform the computa-
tion. Briefly, this strategy can be summarized as follows:

1. Express the numerator of Equation 7 in trigonometric form by using CORDIC (vec-
toring mode, circular rotations).

2. Express also the denominator of Equation 7 in trigonometric form by using CORDIC
(vectoring mode, circular rotations).

3. Perform the division using CORDIC (vectoring mode, linear rotations).
4. Express the result back in algebric form also using CORDIC (rotation mode, circu-

lar rotations)

Assume 16-bit precision: it requires 16 vector instructions to complete a CORDIC
rotation. Therefore, 64 vector instructions are used to perform the derotation. The com-
puting performance according to this scenario has been evaluated for a pure software
solution and also when CORDIC operation benefits from customized instruction set.
The experimental results are presented in the next section.

7 Experimental Results

The Sandbridge integer ALU (non-vectorized) takes 9× 16 = 144 instructions to do a
rotate. This implies 144×4 = 576 instructions are needed to do a derotate. The Vector-
ized loop takes 8×16 = 128 instructions to do 4 rotates, which implies 128×4 = 512
instructions for 4 derotates. The ALU takes 1 instruction longer because the ALU has
no MAC instruction and must use conditional jump. If the ALU had a CORDIC instruc-
tion, it would take 0.5×16 instructions to do 1 rotate. If the Vector Unit had a CORDIC
instruction, it would take 0.5×16 instructions to do 4 rotates. The figures are presented
in Table 1.

Although CORDIC is essentially a sequential algorithm (it can compute a number
of functions in a serial way, one bit per iteration), it has the very important property of
being vectorizable and pipelineable. This explains the very good performance provided

Table 1. Derotation figures per carrier

Implementation style 1 thread 8 threads
(instructions) (cycles)

ALU using emulated division 96 96

ALU using emulated CORDIC 4×9×16 = 576 576
ALU using hardware CORDIC 4×16 = 64 64

Vector using emulated CORDIC 4× (8×16)/4 = 128 128
Vector using hardware CORDIC (4×16)/4 = 16 16

160 M. Sima et al.

by the 4-way CORDIC unit when doing derotation (16 cycles per carrier) over the non-
vectorized ALU solution (96 cycles per carrier).

Experiments which have been carried out on a cycle-accurate simulator provide
for the following numerical figures. Channel equalization total cycle count per OFDM
symbol is 319634 cycles, out of which the complex division (that is, the derotation)
in Equation 7 counts for 209388 cycles. Given the fact that the CORDIC-based so-
lution provides for a cycle count reduction of (96− 16)× 100/96 = 83%, the global
improvement for channel estimation is 0.83×209388×100/319634 = 54%. Given the
fact that Sandbridge is a multi-threaded DSP-oriented processor, such an improvement
within wireless processing domain indicates that extending the Sandbridge instruction
set with CORDIC instructions is a promising approach.

8 Conclusions

We have proposed an architectural extension for the Sandbridge processor which en-
compasses a CORDIC functional unit and the associated instructions: CFG CORDIC
and RUN CORDIC. Configuring the CORDIC unit in one of the two modes and three
coordinate systems is performed under the command of the CFG CORDIC, while the
RUN CORDIC instruction launches into execution CORDIC operations. Preliminary re-
sults indicate a performance improvement over the base instruction set architecture of
more than 80% for doing channel correction, which translates to an improvement of
more than 50% for the entire channel estimation and correction task. As future work,
we intend to address the entire DVB-T processing chain and to evaluate the overall
system improvement from the CORDIC-augmented Sandbridge processor.

References

1. Glossner, J.C., Hokenek, E., Moudgill, M.: Multithreaded Processor for Software Defined
Radio. In: Proceedings of the 2002 Software Defined Radio Technical Conference. Vol-
ume I., San Diego, California (2002) 195–199

2. Schulte, M.J., Glossner, J.C., Mamidi, S., Moudgill, M., Vassiliadis, S.: A Low-Power Mul-
tithreaded Processor for Baseband Communication Systems. In Pimentel, A.D., Vassiliadis,
S., eds.: Proceedings of the Third and Fourth International Annual Workshops on Systems,
Architectures, MOdeling, and Simulation (SAMOS). Volume 3133 of Lecture Notes in Com-
puter Science., Samos, Greece, Springer (2004) 393–402

3. Glossner, J.C., Schulte, M.J., Moudgill, M., Iancu, D., Jinturkar, S., Raja, T., Nacer, G.,
Vassiliadis, S.: Sandblaster Low-Power Multithreaded SDR Baseband Processor. In: Pro-
ceedings of the 3rd Workshop on Applications Specific Processors (WASP’04), Stockholm,
Sweden (2004) 53–58

4. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Transactions on Elec-
tronic Computers EC-8 (1959) 330–334

5. Walther, J.: A unified algorithm for elementary functions. In: Proceedings of the Spring
Joint Computer Conference of the American Federation of Information Processing Societies
(AFIPS). Volume 38., Arlington, Virginia, U.S.A., AFIPS Press (1971) 379–385

6. Golub, G.H., van Loan, C.F.: Matrix Computations. 3rd edn. The Johns Hopkins University
Press (1996)

CORDIC-Augmented Sandbridge Processor for Channel Equalization 161

7. Strang, G.: Introduction to Linear Algebra. 3rd edn. Wellesley-Cambridge Press (2003)
8. van Nee, R.D., Prasad, R., eds.: OFDM for Wireless Multimedia Communications. Artech

House Publishers (2000)
9. European Telecommunications Standards Institute: Digital Video Broadcasting (DVB);

Framing structure, channel coding and modulation for digital terrestrial television (2004)
10. Speth, M., Fechtel, S., Fock, G., Meyr, H.: Optimum Receiver Design for OFDM-Based

Broadband Transmission – Part II: A Case Study. IEEE Transactions on Communications
49 (2001) 571–578

11. Frescura, F., Pielmeier, S., Reali, G., Baruffa, G., Cacopardi, S.: DSP-Based OFDM Demod-
ulator and Equalizer for Professional DVB-T Receivers. IEEE Transactions on Broadcasting
45 (1998) 323–332

12. Tong, L., Sadler, B.M., Dong, M.: Pilot-Assisted Wireless Transmissions: General Model,
Design Criteria, and Signal Processing. IEEE Signal Processing Magazine 21 (2004) 12–25

13. Sebot, J., Drach, N.: SIMD ISA Extensions: Reducing Power Consumption on a Superscalar
Processor for Multimedia Applications. In: IEEE Symposium on Low-Power and High-
Speed Chips (Cool Chips) IV, Tokyo, Japan (2001)

Power-Aware Branch Logic: A Hardware Based
Technique for Filtering Access to Branch Logic�

Sunghoon Shim1, Jong Wook Kwak1, Cheol Hong Kim1, and Sung Tae Jhang2,
and Chu Shik Jhon1

1 School of Electrical Engineering and Computer Science,
Seoul National University, Seoul, Korea

{shshim, leoniss, kimch, csjhon}@panda.snu.ac.kr
2 Department of Computer Science, The University of Suwon,

Suwon, Gyeonggi-do, Korea
stjhang@suwon.ac.kr

Abstract. In this paper, we propose a power-aware branch logic for high per-
formance embedded processors by filtering access to BTB and branch predictor.
The proposed scheme reduces the energy consumed in BTB and branch predic-
tor. For reducing the energy consumption in the BTB and the branch predictor, we
present an aggressive hardware-based scheme that reduces the number of access
to the BTB and the branch predictor. Moreover, compared with general branch
logic, the proposed branch logic has no performance degradation. This scheme
reduces the number of access to the BTB and the branch predictor by 21% - 50%
and reduces the energy consumption in the BTB and the branch predictor by
15% - 41%.

1 Introduction

Design of embedded processors has focused on low power consumption than high per-
formance compared with general-purpose processors, since the embedded processors
have been mainly used for application-specific devices. However, the exclusive growth
of multi-functional hand-held devices like PDAs and some mobile multimedia devices
requires not only low power consumption but also high computing power in the embed-
ded processors.

In order to achieve high performance, several schemes have been proposed in the
processor design. The parallelizing program is one of them. The technique has been
generally adapted in many processor architectures including embedded processors and
general-purpose processor. In the technique, branch is a significant impact on the pro-
gram parallelization. As a means of mitigating this effect, several techniques have been
suggested for the processor design.

Branch Target Buffer(BTB) and branch predictor are the techniques for alleviat-
ing of the branch effect[1]. More complicated branch predictor and larger size of BTB

� This work was supported by the Brain Korea 21 Project.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 162–171, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Power-Aware Branch Logic: A Hardware Based Technique 163

have been used, since the accuracy of the branch prediction affects the program par-
allelization and performance. In addition to more complex branch predictor and larger
BTB, it is considered to access the branch logic(we define that a branch logic is com-
posed of a BTB and a branch predictor in this paper) in the fetch stage of pipeline for
more performance improvement. However, more complex branch predictor, larger BTB
and accessing the branch logic every cycle cause significant energy consumption in the
branch logic. The energy consumption in the branch logic accounts for over 10% of the
total processor energy consumption[2].

In general, branch instructions occupy over 10% of total instructions in a program[2].
The branch logic is needed for only branch. It means that the accessing the branch logic
of 90% isn’t needed. Therefore over 90% of the energy consumption for accessing the
branch logic is dissipated, since the branch logic is accessed every cycle, regardless of
whether the instruction that is being fetched is a branch or not. If an instruction that is
fetched next cycle becomes known whether the instruction is a branch or not before be-
ing fetched, the access to the branch logic can be reduced dramatically. Consequently,
the energy consumption in the branch logic can decrease corresponding on the reduced
number of access to the branch logic.

In this paper, we propose an power-aware branch logic that filters access to branch
logic without any performance degradation compared with general branch logic. The
proposed scheme can identify non-branch instructions before the instruction is fetched. It
is based on not compiler-help, but hardware. Our proposed scheme can filter the accesses
to the branch logic, resulting in reducing energy consumption in the branch logic.

The rest of this paper is organized as follows. Section 2 describes the previous
works. Section 3 presents our proposed scheme. Section 4 describes our simulation
methodology and shows detailed experimental results. Finally, Section 5 concludes this
paper.

2 Related Works

2.1 Branch Target Buffer and Branch Predictor

Control instructions such as branch instructions cause the performance degradation of
programs, since the right sequence of instruction execution isn’t known until the branch
instruction is executed. Branch logic(branch target buffer(BTB) and branch predictor)
has proposed to alleviate the performance loss due to the branch. The technique is based
on predicting branch result. The branch logic is looked up by Program Counter(PC) in
the fetch stage. If a matching of entry happen in the BTB, the target address in the BTB
is used for fetching next instruction according to the result of the branch prediction.
The branch predictor determines the direction of the next instruction. If the prediction
is taken, the next instruction is the instruction of target address. If the prediction is
not-taken, the next instruction to be fetched is the fall-through instruction.

2.2 Reducing Energy of Branch Prediction

Many works have been proposed for low power branch prediction. Pipeline gating was
proposed by Manne et al. as an efficient technique to prevent mis-speculated instruc-

164 S. Shim et al.

tions from entering the pipeline and wasting energy while imposing only a negligible
performance loss[3]. Chaver et al. proposed a methodology to reduce the energy con-
sumption of the branch predictor by characterizing prediction demand using profiling
and dynamically adjusting predictor resources accordingly[4]. In the technique, com-
ponents of the hybrid direction predictor are disabled and the branch target buffer is
resized for low power consumption. Monchiero et al. presented power-aware branch
prediction techniques based on a compiler hint mechanism to filter the access to the
branch predictor[5].

To reduce the power consumption in branch predictors, several processors exploit
the pre-decode bits to detect whether the instruction is a branch or not, resulting in se-
lective access to the branch predictor only when the instruction is a branch. In this case,
the access to the branch predictor should be preceded by the access to the instruction
cache. However, if the fetch stage is timing-critical, the sequential access incurs signifi-
cant performance loss. PPD(Prediction Probe Detector) scheme is proposed to mitigate
the access time[2]. The scheme uses pre-decode bits to entirely eliminate unnecessary
accesses to branch logic.

Petrov et al. presented a scheme for low-power BTB for application-specific embed-
ded processors based on compiler hints[6]. The technique utilizes application-specific
information regarding the control-flow structure of the program major loops. The infor-
mation is extracted during compile time and transferred to the Application-Customizable
Branch Target Buffer(ACBTB). The scheme needs to profile each application before
executed and extra load parts in each application for loading information about branch
produced by compiler. Furthermore, the data in ACBTB can’t be modified during run-
time.

3 Power-Aware Branch Logic

3.1 Branch Functional Overview

The basic block is a straight-line code sequence with no branches in except to the entry
and no branches out except at the exit, as shown Fig.1 (a) [7]. Figure 1 (b) shows an
example of general control flow of a program. The program is composed of some basic
blocks. The number in each basic block represents the total number of instructions in
each basic block. For example, the total number of instructions is 10 in basic block 3. At
the end of basic block 1, the next instruction to be fetched is determined by the result of
the branch prediction. If the branch in basic block 1 is taken-branch, the next instruction
to be fetched is the first instruction in basic block 3. Then, the rest of instructions in the
basic block 3 are fetched in sequence until the end of the basic block 3. However, if the
branch in basic block 1 is not-taken-branch, the next instruction to be fetched is the first
instruction in basic block 2. Then, the rest of instructions in basic block 2 are fetched
and executed in sequence until the end of the basic block 2. In case of the taken-branch
in basic 1, the number of access to the branch logic for basic block 3 is 10, since the
number of instructions in basic block 3 is 10 and the branch logic is accessed whenever
instructions in basic block 3 are fetched. However, fetching of the rest 9 instruction
except for an branch instruction in the basic block 3 doesn’t need to access the branch
logic. The unnecessary 9 accesses to the branch logic are caused by no information for

Power-Aware Branch Logic: A Hardware Based Technique 165

identifying branch instruction. If there is a scheme for identifying branch instructions,
it isn’t needed to access the branch logic every cycle. Accordingly, the energy to access
the branch logic can be reduced dramatically.

Sequential
instructions

(6)

Basic block 1 :

Branch instruction

Sequence
instructions

(15)

Sequential
instructions

(5)

Sequential
instructions

(10)

Branch instruction

Branch instruction

Branch instruction

L.D F0,0(R1)
ADD.D F6,F0,F8
ADD.D F4,F0,F2
SUB.D F6,F4,F6
S.D F6,0(R1)
BNE R1,R6,LABLE1

Basic block 2 :

Basic block 3 :

Basic block 4 :

Fig. 1. (a) example of a basic block and (b) control of basic blocks

3.2 Design of Branch Logic

Figure 2 shows an overview of the proposed hardware-based power-aware branch logic
that filters the accesses to the branch logic. For filtering access, our power-aware branch
logic uses the size of basic block to be fetched. The proposed branch logic is composed
of four parts. One is general branch logic, the others are additional three parts, 1)filtering
access to branch logic, 2)two tables for storing size of next basic block, 3)computing
size of basic block.

The A(filtering Access to Branch Logic) in Fig.2 is a part for recognizing whether
an instruction to be fetched is a branch or not. For identifying branch instruction, A
part uses the size of basic block to be fetched. A basic block is composed of sequential
non-branch instructions and a branch as shown in Fig. 1 (a). Before fetching next basic
block, the size of the next basic block is loaded into count register, and whenever a
instruction in the next basic block is fetched, the value in the count register is decreased
by 1, if the value is 0, the instruction which will be fetched is identified as a branch
instruction. Accordingly, the value in the count register is compared with 0 every cycle
before the branch logic is accessed. The value in the count register which is 0 denotes
that the instruction to be fetched is a branch instruction, or there is no information
about the instruction. Only when the value in the count register is 0, the branch logic
is accessed such as normal branch logic, and new size of next basic block which will
be fetched is loaded from the Taken Count Table(TC Table) or the Not-Taken Count
Table(NTC Table) into the count register according to result of the branch prediction.
After executing the branch instruction, if the branch prediction is incorrect, the value in
the count is reset to 0.

166 S. Shim et al.

The B(Both tables for count value) in Fig. 2 is a part for storing size(the number
of instructions) of the next basic block to be fetched. The part is composed of two
small tables. One is the Not-Taken Count Table(NTC Table) for preserving the size(the
number of instructions) of the fall through basic block which will be fetched when
the branch prediction is not-taken. The other is the Taken Count Table(TC Table) for
preserving the size(the number of instructions) of the target basic block which will be
fetched when the branch prediction is taken. The number of entry in the two tables is
equal to that of entry in the BTB. The size of an entry is the same as that of the count
register. When the BTB is hit, data from the TC Table and the NTC Table is read, and
then only one value is transferred into the count register according to the result of branch
prediction. If the branch prediction is taken, the value from the TC Table is moved to the
count register. Otherwise, the value from the NTC Table is moved to the count register.
The value of all entry in the two tables is initialized to 0. Whenever the BTB and the
branch predictor is updated, an entry in the TC table or NTC Table corresponding to
the updated entry of the BTB is set with value from part C. The BTB is updated only
when the branch is taken, however TC Table is updated when the branch which makes
the BTB updating is not-taken, and NTC table is updated when the branch is not-taken.

The C(Computing part for value of count) in Fig. 2 is a part for computing the
size(the number of instructions) of the basic block. The part is constituted by 5 subcom-
ponents. First subcomponent is a Last Committed Branch Address Register(LCBAR).
The LCBAR is a register for storing the address of last committed branch(Nth branch).
Second subcomponent is composed of a Previous Committed Branch Target Address
Register(PCBTAR) and a subtractor for computing difference between value of LCBAR
and value of PCBTAR. The PCBTAR is a register for storing target address of previ-

PC(Nth branch)

Count
Reg.

No

Count ==
0

Yes

Count - 1

reset

A

Nth branch

(N-1)th branch

Predicted PC of Nth
branch

Predicted PC of (N-
1)th branch

:
:
:
:

:
:
:
:

= ?

No

PC

To branch
 prediction circuit

Branch
Target Buffer

Instruction is not
predicted to be

branch; proceed
normally

Taken
Count table

Not_Taken
Count table

Result of Branch Predictor

Count(
Nth)

Count((
n-1)th)

Count(
Nth)

Count((
n-1)th)

Branch Result
Register

(Taken or Not
taken)

Previous
Committed

Branch
Target

Address
Register

(PCBTAR)

Previous
Committed

Branch
Address
Register
(PCBAR)

Misprediction?

B
C

Previous
branch

information
register

D
Last

Committed
Branch

Address
Register
(LCBAR)

(LCBAR - PCBTAR)/4 (LCBAR - PCBAR)/4

Fig. 2. An overview of the power-aware Branch Logic architecture

Power-Aware Branch Logic: A Hardware Based Technique 167

ous committed branch((N-1)th branch). The difference means the size(the number of
instructions) of the target basic block of previous committed branch((N-1)th branch).
Third subcomponent is composed of a Previous Committed Branch Address Regis-
ter(PCBAR) and a subtractor for computing difference between value of LCBAR and
value of PCBAR. The PCBAR is a register for storing address of previous committed
branch((N-1)th branch). The difference means the size(the number of instructions) of
the fall through basic block of previous committed branch((N-1)th branch). When the
difference is over the bit-size of an entry of the TC Table or NTC Table, only value
corresponding to the bit-size of an entry in the Tables is moved to the entry. Forth sub-
component is a Previous Committed Branch Information Register(PCBIR). The value
in the PCBIR is used to store the result of computation in the TC Table or the NTC
Table for previous committed branch((N-1)th branch). Last subcomponent is a register
for result of previous committed branch((N-1)th branch). According to the result, the
value for storing in TC or NTC Table is determined. If the result is true(it means that
previous committed branch((N-1)th branch) is a taken-branch), the difference(size of
target basic block) between value of LCBAR and value of PCBTAR is stored in the TC
Table. Otherwise, the difference(the size of fall-through basic block) between value of
LCBAR and value of PCBAR is stored in the NTC Table.

No

Yes

Yes

No

Access Taken
Count Table

and Not-Taken
Count Table

both

Prediction is
taken?

Change count
register to data

from Taken
Count Table

Change count
register to data
from Not-Taken

Count Table

PC(Nth
branch)

Count == 0
?

Searching BTB
and branch

predictor with
PC

Exist entry?

Branch!
Next PC is
target PC

Count - 1

Next PC <=
Current PC + 4

Fetch next
instruction

Normal
instruction
execution

Yes

No

Exist entry?

Yes

No

Do nothing

PC of Nth branch -
Predicted PC of (N-

1)th branch

Save A value at a
entry of Taken
Count Table

corresponding to (N-
1)th branch index

Update Taken Count
table

PC of Nth branch -
PC of (N-1)th

branch

Save B value at a
entry of Not-Taken

Count Table
corresponding to

(N-1)th branch
index

Update Not- Taken
Count Table

Last branch is
taken?

Yes No

A B

(a) (b)

Fig. 3. Flow-chart for filtering access to branch logic

Figure 3 (a) depicts the flow control of the proposed scheme for low power con-
sumption. Figure 3 (a) explains the mechanism for filtering accesses to the branch logic.
Figure 3 (b) describes the process of computing count and updating count table. The
number of instructions for TC Table and NTC Table are calculated during the commit
phase in pipeline stage.

168 S. Shim et al.

4 Experimental Results

4.1 Experimental Framework

Our simulation is based on the Wattch simulator[8] originated from SimpleScalar[9].
We modified the Wattch simulator for our scheme. The processor is in-order 2 issues
processor. Table 1 shows the base configuration for our simulation systems. This model
is similar to the next ARM processor[10].

We simulated 20 applications from SPEC2000 benchmarks, 10 benchmarks from
SpecINT 2000 and 10 benchmarks from SpecFP 2000[11]. We simulated both base
scheme and our proposed scheme. The base scheme is a conventional BTB and gshare-
branch predictor scheme. We simulated the two count tables having various entry
size(bits) from 10 bits to 3 bits and count register.

4.2 Access to Branch Logic

Figure 4 depicts the reduced rate of access to the branch logic compared with normal
branch logic. In normal branch logic, whenever instructions are fetched, the branch
logic is accessed. However, in our proposed scheme, many accesses to the branch logic
is filtered by identifying branch instructions.

In Fig. 4, the bars of each benchmark show the reduced access rate various size
of the count register. The sizes are from 3 bits(leftmost bar) to 10 bits(rightmost bar).
The sizes represent the size of the count register and the size of an entry in the TC
and the NTC Table. The maximum number of instructions to be filtered is determined
according to the bit size. If the size is 3 bits, 7 is the maximum number of instructions
not to access the branch logic, even though the number of instructions in the basic
block is 15. Similarly, 10 bits means that 1024 is the maximum number of instructions

Table 1. System configuration parameters

Processor Core

Issue width 2 issues per cycle, inorder issue
2 Int ALU, 1 Int mult/div
2 FP ALU, 1 FP mult

Memory Hierarchy

L1 I-cache 32KB, 2-way, 32 byte blocks, 1 cycle latency
L1 D-cache 32KB, 4-way, 32 byte blocks, 1 cycle latency, WB
L2 cache unified, 4-way, 256 KB, 64 byte blocks, 8 cycle latency
Memory latency 64 cycle latency

Branch Predictor

Branch predictor Gshare, 4096 entry in the level 1
Branch Target Buffer 512 entry, 1-way

Added Part for Filtering Access to BTB

Table for count value 512 entry in Taken Count Table
512 entry in Not-Taken Count Table
3 - 10 bit size of an entry

Power-Aware Branch Logic: A Hardware Based Technique 169

0
10
20
30
40
50

60
70
80
90

100

gc
c

gz
ip

bz
ip

2

m
cf

pa
rs

er

vo
rt

ex

cr
af

ty eo
n

ga
p

tw
ol

f

am
m

p ar
t

eq
ua

ke

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

ga
lg

el

lu
ca

s

ap
si

av
er

ag
e

ra
te

 o
f

re
du

ce
d

nu
m

be
r

of
 a

cc
es

s
to

 b
ra

nc
h

lo
gi

c
(%

)

3bit 4bit 5bit 6bit 7bit 8bit 9bit 10bit

Fig. 4. Rate of reduced number of access to branch logic

-5

5

15

25

35

45

55

65

75

85

95

gc
c

gz
ip

bz
ip

2

m
cf

pa
rs

er

vo
rt

ex

cr
af

ty

eo
n

ga
p

tw
ol

f

am
m

p

ar
t

eq
ua

ke

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

ga
lg

el

lu
ca

s

ap
si

av
er

ag
eR
ed

uc
ed

 e
ne

rg
y

co
ns

um
pt

io
n

in
 b

ra
nc

h
lo

gi
c

(%
)

3bit 4bit 5bit 6bit 7bit 8bit 9bit 10bit

Fig. 5. Reduced energy consumption in branch logic

that don’t need to access the branch logic. As shown Fig. 4, the accesses to the branch
logic are reduced by 21% - 50%, on average. The figure shows that large bit size can
reduce more accesses than small bit size. However, in almost benchmarks, using large
bit size over a certain bit has no impact on reduced rate of accesses, since the certain
bit size can cover the size of each basic block in the benchmarks. For examples, in
bzip2, the reduced access rate increases until 6 bits, and then there are no change over
7 bits. It is caused by the size of the largest basic block in the bzip2. 72 are the number
of instructions in the largest basic block, and 72 can be indicated by 7 bits. Another
benchmarks have similar characteristic.

In Fig. 4, the results of SpecFP(right part) is similar to results of SpecINT(left part).
The size of basic blocks in the SpecFP are relatively larger than that of the SpecINT,
from 129 to 807. Accordingly, the difference of reduced access rate in SpecFP between
using large bit and using small bit is larger than that of SpecINT.

4.3 Reduction in Branch Logic Energy

Figure 5 shows the reduced energy consumption of the proposed branch logic. In our
proposed scheme, the extra energy consumption is added to the normal branch logic
system. The extra energy is mainly consumed by the TC Table, the NTC table. However,

170 S. Shim et al.

the energy consumption is very smaller than the reduced energy consumption. In Fig. 5,
the energy consumption of the branch logic is reduced by 15% - 41%, on average.

Using large bit size can reduce more accesses to the branch logic than using small
bit size as shown in Fig. 4. However, larger bits need higher energy consumption(i.e. 3
bit vs. 10 bit), since it requires large size of TC Table and NTC Table. In the SpecINT,
the size(numbers of instructions) of each basic block are mainly between 33 and 128.
Accordingly, using 8, 9, 10 bits size is required more energy than using 5, 6, 7 bit size,
since the size of TC Table and NTC Table become large, and using 3, 4 bit size reduces
less access than using 5, 6, 7. Consequently, most SpecINT benchmarks in left side of
Fig. 5 show that using middle size bits, i.e. 5, 6 and 7 bit size, can reduce more energy
consumption of the branch logic than using 3, 4, 8, 9 and 10 bit size.

The SpecFP benchmarks in right side of Fig. 5 shows different aspects of results
compared with the SpecINT benchmarks as shown in left side of Fig. 5. The figure
depicts that using large bit size(9, 10 bit) reduces more energy consumption than using
small bit size. It is caused by characteristic of SpecFP. In general, a basic block in
SpecFP has more instructions than that in the SpecINT. Therefore, the gap of energy
reduction rate in SpecFP between using small bit size and using large bit size is bigger
than that of energy reduction rate in the SpecINT.

5 Conclusions

The energy consumption in a branch logic is getting higher, since high performance,
program parallelizing and high accuracy of branch prediction are needed for proces-
sor design. In this paper, we proposed power-aware branch logic by filtering access to
branch logic in high performance embedded processor. For filtering access to the branch
logic, our proposed scheme uses information about identifying branch instructions. The
information is size of next basic block to be fetched. The size is extracted by hardware
during runtime, it doesn’t need compiler hints or compiler help. The proposed scheme
can reduce a lot of accesses to the branch logic and also reduce energy consumption in
the branch logic without any performance degradation. The accesses to the branch logic
are reduced by 21% - 50%. The energy consumption is reduced by 15% - 41% in the
branch logic.

References

1. Perleberg, C.H., Smith, A.J.: Branch target buffer design and optimization. IEEE transactions
on computers 42 (1993) 396–412

2. Parikh, D., Skadron, K., Zhang, Y., Barcella, M., Stan, M.R.: Power issues related to branch
prediction. In: In proceedings of the 8th international symposium on High-Performance
Computer Architecture. (2002) 233–246

3. Manne, S., Klauser, A., Grunwald, D.: Pipeline gating: speculation control for energy reduc-
tion. In: In Proceedings of the 25th Annual International Symposium on Computer Archi-
tecture. (1998) 132–141

4. Chaver, D., Pinuel, L., Prieto, M., Tirado, F., Huang, M.C.: Branch prediction on demand: an
energy-efficient solution. In: In proceedings of the International Symposium on Low Power
Electrinics and Design ’03. (2003) 390–395

Power-Aware Branch Logic: A Hardware Based Technique 171

5. Monchiero, M., Palermo, G., Sami, M., Silvano, C., Zaccaria, V., Zafalon, R.: Power-aware
branch prediction techniques: a compiler-hints based approach for vliw processors. In: ACM
Great Lakes Symposium on VLSI 2004. (2004) 440–443

6. Petrov, P., Orailoglu, A.: Low-power branch target buffer for application-specific embedded
processors. In: Proceedings of the Euromicro Symposium on Digital System Design. (2003)
158–165

7. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach. 3 edn.
Morgan Kaufmann (2003)

8. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power
analysis and optimizations. In: In Proceedings of the 27th Annual International Symposium
on Computer Architecture. (2000) 83–94

9. Burger, D.C., Austin, T.M.: The simplescalar tool set,version 2.0. Computer Architecture
News 25 (1997) 13–25

10. (2004) http://www.arm.com/miscPDFs/6871.pdf.
11. Standard Performance Evaluation Corporation: SPEC CPU2000 Benchmarks. (2000)

http://www.specbench.org/osg/cpu2000.

Exploiting Intra-function Correlation
with the Global History Stack

Fei Gao and Suleyman Sair

Department of Electrical and Computer Engineering,
NC State University, Raleigh, NC 27695, USA

{fgao, ssair}@ece.ncsu.edu

Abstract. The demand for more computation power in high-end embedded sys-
tems has put embedded processors on parallel evolution track as the RISC pro-
cessors. Caches and deeper pipelines are standard features on recent embedded
microprocessors. As a result of this, some of the performance penalties associ-
ated with branch instructions in RISC processors are becoming more prevalent
in these processors. As is the case in RISC architectures, designers have turned
to dynamic branch prediction to alleviate this problem. Global correlating branch
predictors take advantage of the influence past branches have on future ones.
The conditional branch outcomes are recorded in a global history register (GHR).
Based on the hypothesis that most correlation is among intra-function branches,
we provide a detailed analysis of the Global History Stack (GHS) in this paper.
The GHS saves the global history in the return address stack when a call instruc-
tion is executed. Following the subsequent return, the history is restored from the
stack. In addition, to preserve the correlation between the callee branches and
the caller branches following the call instruction, we save a few of the history
bits coming from the end of the callee’s execution. We also investigate saving
the GHR of a function in the Branch Target Buffer (BTB) when it returns so
that it can be restored when that function is called again. Our results show that
these techniques improve the accuracy of several global history based prediction
schemes by 4% on average. Consequently, performance improvements as high as
13% are attained.

1 Introduction

With an ever growing number of uses and applications, the computation demand on
embedded systems has reached new heights. To meet these challenges, embedded mi-
croprocessor designers started introducing microarchitectural features such as caches
and pipelining which are not common in the cost-conscious embedded domain. Newly
released high-end processors routinely feature these techniques [1, 2, 3]. One of the
major performance bottlenecks due to pipelining is the branch misprediction penalty.
When considering the fact that these high end processors can execute multiple instruc-
tions every cycle, branch mispredictions can potentially induce a considerable waste of
execution resources (both cycles and power). Furthermore, if the branch depends on a
long latency instruction such as a divide or a load that misses in the data cache, the
branch resolution time can grow even longer. As a result, accurate branch prediction is
the key factor in eliminating this penalty.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 172–181, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Exploiting Intra-function Correlation with the Global History Stack 173

Global predictors exploit the influence of past branch instructions on future ones.
In a typical global predictor, a Global History Register (GHR) establishes the correla-
tion between branches. The GHR records conditional branch outcomes and becomes
part of the index into the branch prediction table. Consequently the number of history
bits held in the GHR is of critical importance in the accuracy of a correlating branch
predictor [4]. This is especially true for global predictors that have special features to
eliminate negative interference in the prediction tables [4, 5, 6, 7, 8, 9].

One aspect of applications that reduce the effective GHR width is function calls.
When a parent function calls one of its children functions, the GHR of the parent is
overwritten by the branches in the child. By the time we return back to the parent, the
branch outcomes that the ensuing parent branches are most likely correlated with have
been wiped out of the GHR. Calder et al. found that on average, C functions execute
133.6 instructions over a wide range of applications [10]. Furthermore, they report that
one out of every 9.3 instructions in these programs is a conditional branch. From these
numbers we can deduce that approximately 15 conditional branches execute each time
a function call takes place. Considering the fact that most branch predictor implemen-
tations have GHRs with 16 or fewer bits, a function call overwrites all but one bit of
the branch outcomes belonging to the parent. This problem is exacerbated in embedded
microprocessors. First, embedded applications feature many more function calls than
typical desktop applications. Additionally, embedded processors have relatively shorter
(8-bits or less) GHRs.

This paper proposes saving the GHR of the parent function in the return address
stack when a function call occurs. Subsequently we restore the GHR using the value in
the return address stack upon returning from the callee. This ensures that the conditional
branch outcomes generated before the call are still available in the GHR after returning
from the call. In case a few of the trailing branches in the callee function influence
branches in the caller, we also investigate saving their values instead of clobbering
them. Additionally, we evaluate storing the GHR of a function in the Branch Target
Buffer (BTB) when it returns and restoring the GHR when the function is called again
to look for branch correlation between its consecutive instances.

The contributions of this paper are:

– Analyze the sources of correlation among branches separated by function calls
– Examine correlation between branches in different instances of a function
– Investigate several low cost, low overhead techniques to exploit these two types of

correlation
– Provide a detailed performance analysis of these designs and quantify their impact

on branch prediction accuracy

The rest of this paper is organized as follows. We show a couple of code exam-
ples illustrating why intra-function correlation is hindered by function calls and how
correlation across function instances exists in Section 2. Section 3 presents some back-
ground into global branch prediction. Section 4 introduces the different mechanisms we
employ to preserve and improve intra-function correlation. Next, we describe our sim-
ulation methodology and the details of the chosen benchmarks in Section 5. We then
discuss the impact of the proposed schemes on prediction accuracy and performance in
Section 6. Finally, Section 7 summarizes our findings and concludes.

174 F. Gao and S. Sair

2 Motivation

There are many techniques that take advantage of correlation among branches [11, 12,
13, 14, 15]. In these schemes, the predictor stores past branch outcomes either in a single
register or in a separate entry of a PC-indexed table depending on whether the predictor
exploits local (i.e. among instances of the same branch) or global (i.e. among different
branches) correlation. Function calls do not pose a problem for local correlation because
each branch gets its own entry in the table and aside from interference, the history is
not perturbed by other branches. Global prediction accuracy however suffers when the
history register contents is lost across function calls. Figure 1 lists a code segment from
the SPEC’95 program gcc. This loop is within the function copy_rtx_if_shared in
the source file emit-rtl.c. The code includes two loops with many function calls
(including recursive ones) inside. The callee functions overwrite the GHR bits from
copy_rtx_if_shared and makes it very hard to correctly predict the for loops which
are normally very predictable. A means of recovering the GHR upon returning from a
call addresses this problem.

for (i = 0; i < GET_RTX_LENGTH(code); i++)
 {
 switch (*format_ptr++)
 {
 case 'e':
 XEXP(x, i) = copy_rtx_if_shared (XEXP(x, i));
 break;
 case 'E':
 if (XVEC(x, i) != NULL)
 {
 register int j;
 int len = XVECLEN(x, i);

 if (copied && len > 0)
 XVEC(x, i) = gen_rtvec_v(len, &XVECEXP(x, i, 0));
 for (j = 0; j < len; j++)
 XVECEXP(x, i, j) = copy_rtx_if_shared(XVECEXP (x, i, j));
 }
 break;
 }
 }

Fig. 1. Example code segment from the SPEC’95
gcc benchmark. This code exemplifies one problem
our paper aims to solve. There are two loops execut-
ing many function calls which completely overwrite
the GHR bits of the caller

 while (count>0)
 {
 c2=getranchar(c1,ran2());
 text_buffer[bufindex++]=c2 ;
 ...
 c1=c2;
 count--;
 }

Fig. 2. Loop from SPEC’95 benchmark
compress. getranchar function ben-
efits from correlation among branches
from different invocations of a function

Meanwhile, recursive calls also exhibit an interesting behavior. Even though there
may be correlation among instances of the function, in this particular case recursion hin-
ders the prediction process. Each recursive call results in a different loop trip count de-
pending on the length of the subexpressions being analyzed. This means there are many
GHR patterns at the end of these recursions and they each train completely different
entries in the predictor table, potentially causing destructive aliasing. Another source of
distant correlation is displayed in the getranchar function in Fig. 2. getranchar takes
a character and a random number as arguments and returns another character. This loop
is inside the function fill_text_buffer in source file harness.c. The while loop
forces the character generated in the previous iteration to be used as the starting point in
the current iteration. This results in branch outcomes of the previous iteration affecting
the branches in the current one. We can preserve this correlation if we can remember
the pattern in the GHR at the end of the previous iteration.

Exploiting Intra-function Correlation with the Global History Stack 175

3 Related Work

Recognizing the fact that the outcome of some branches depends heavily on other recent
branches, Yeh and Patt proposed the GAg scheme which uses a global history register
to index into the predictor table instead of the PC [16]. The global history consists of
a shift register updated with the outcome of each committed branch instruction. The
global history may not provide enough information to distinguish the current branch
however. For those branch instructions that do not benefit from global correlation, this
results in a worse performance than the bimodal predictor. To overcome this, McFarling
proposed the Gshare predictor hashing the branch PC with the global history to form
the index [12]. He found that the exclusive OR of the branch address with the global
history gives more information than either component alone when used as an index.

In general, branch predictor entries are not tagged. Consequently this results in en-
tries being shared by multiple branches. This is referred to as aliasing or interference.
When two branches with opposing biases alias, this results in poor branch prediction
accuracy for both branches. To eliminate this negative interference a Skew predictor
was proposed [5, 6]. This scheme uses three two-bit counter tables indexed with dif-
ferent hash functions. The intuition is that even if two branches alias in one table, they
will hopefully map to separate entries in the other two tables. Other “de-aliased” branch
predictors include the Bi-mode predictor [9], Agree predictor [7] and the YAGS predic-
tor [8]. In principal, the idea is to separate the predictor tables for mostly taken and
mostly not-taken branches so that any aliasing will result in neutral interference. The
Alpha EV8 processor implements an aggressive branch predictor in 2Bc-gskew [6, 4].
As most recent commercially implemented predictors, 2Bc-gskew is a hybrid predictor.
It combines bimodal prediction with a “de-aliased” skew predictor to further improve
its accuracy.

In addition to designing new global predictors, another way to improve prediction
accuracy is to enhance the correlation among branches. Nair proposed dynamic path-
based branch correlation [17] which forms a history of past branches addresses instead
of their outcomes. This information is able to represent the execution path resulting in
more accurate prediction. In [18], Jacobson et al. proposed a path-based next trace pre-
dictor to form sequences of traces to index a trace cache with. They also introduce the
return history stack (RHS). The operation of a return address stack (RAS) requires in-
formation on an instruction-level granularity. Since traces do not entail this much detail,
they can not utilize a RAS. The primary focus of RHS is compensating for the absence
of the RAS by improving the predictability of branches after a return. It uses a similar
stack like architecture to our GHS to restore global history contents following a return.
In this paper, we provide an in depth analysis of the effects of intra-function correlation
in the context of superscalar branch prediction in much more detail. Furthermore, we
propose an architectural extension to the BTB to store GHR values at the end of func-
tions and we evaluate the implications of preserving correlation across instances of the
same function.

Another scheme that potentially increases the effective correlation distance is [15].
In this technique Thomas et al. analyze the dynamic data-flow between instructions to
find the producers (direct and indirect) of the values used in branch instructions. Next,
they determine the branches that these producer instructions are control dependent on.

176 F. Gao and S. Sair

This process yields a set of branches called affectors that directly or indirectly affect the
computation of values consumed by branch instructions. Hence a particular branch is
most likely to be correlated with its affector branches.

4 Proposed Architectural Extensions

There are two aspects of intra-function that we can preserve: 1) the GHR of the parent
function through function calls, 2) the GHR of any function across different invocations.
We will now detail the mechanisms that we utilize to achieve these goals.

4.1 Global History Stack

In order to preserve the branch outcomes before a function call, we need a temporary
storage to save the GHR. The return address stack (RAS) fits this purpose perfectly as it
saves the return address under the exact conditions that we want the GHR maintained.
We can simply extend each RAS entry with a field to hold the pre-call GHR. This field
would be populated together with the return address field on a call and freed when the
RAS entry is popped following a return.

Let us illustrate the operation of the GHS with an example. Consider the code seg-
ment shown in Fig. 3, which shows three functions. The instruction marked as 1 causes
the call instruction at the return address (0x12004CA8) and the current GHR (the 10-bit
binary value 1000111101) to be pushed on to the next available entry in the RAS. This
operation is marked with circle 1 in Fig. 3. Subsequently when the second call instruc-
tion is executed, a similar series of events take place and the return address, history pair
of (0x12005F50,0100101110) is inserted into the RAS (operation 2 in Fig. 3). In the
function starting at address 0x12006684, there are two conditional branches of which
the first one is taken and the second one is not taken. With this assumption, the GHR has
the value 0010111010 by the time we reach the return instruction as shown in Fig. 3.
When the return instruction executes, we pop the RAS, obtaining the predicted target
of the return as well as the new value of the GHR (operation 3 in Fig. 3).

For functions that are called from multiple call sites different paths lead to the call
site. This results in a different GHR pattern each time the function is called from a
different call site. Especially when functions are relatively short, such as in C++ pro-
grams where on average there are 5 conditional branches per function invocation [10],
this hinders the predictability of these branches because separate two-bit counters need
to be trained for each different path. One approach to resolve this issue is clearing the
GHR each time a function is called. We call this zeroing.

Note that restoring the GHR to its pre-call state can actually hurt prediction accu-
racy if branches subsequent to returning from a function are dependent on some of the
branches in the callee. In this scenario, conditional branch instructions executed prior to
returning from the callee influence the return value of the function. Hence upon return-
ing from the callee, when the caller uses the return value as a predicate to conditional
branch instructions, it would find it beneficial to correlate with the branches that the
return value is control dependent on. These branches are called the affector branches
in [15]. For this purpose, we evaluate preserving a few of the most recent branch out-
comes of the callee function when we restore the GHR using the value in the RAS.

Exploiting Intra-function Correlation with the Global History Stack 177

0x 12004CA4 c a l l 0x 12005F 48
0x 12004CA8 . . .

0x 12005F 48 . . .
. . .
0x 12006F 4C c a l l 0x 12006684
0x 12006F 50 . . .

0x 12006684 l dq_u t 1, 0(a 0)
0x12016688 bne t 1, 0x12016690 / / t aken

0x 1201668c a ddq v 0, 0x 4, t 0
0x 12016690 l dq t 0, 8(v 0)
0x 12016694 a ddq v 0, 0x 8, v 0
0x 12016698 c mpbge z er o, t 0, t 1
0x1201669c beq t 1, 0x12016680 / / not t aken

0x 120166A4 s ubq z er o, t 1, t 2
0x 120166A4 r et

1

2

3

RAS GHS

1000111101

GHR

top

0x12004CA8 1000111101

RAS GHS

0100101110

GHR

top

0x12004CA8 1000111101

RAS GHS

0010111010

GHR

top

0x12004CA8 1000111101

1

2

3

0x12005F50 0100101110

RAS GHS

0100101110

GHR

top

0x12004CA8 1000111101

0x12005F50 0100101110

Fig. 3. Operation of GHS: Code example and the corresponding GHR and GHS values when the
code executed

4.2 Preserving GHR Values Across Function Invocations

Zeroing solves the problem of having different GHR values when a function is called
from different call sites. However, by clearing out the GHR on each call, it prevents
taking advantage of any correlation. We can improve the predictability of these branches
if we remember the GHR from the past invocation of that function.

As shown in Section 2 (recall Fig. 2), there are various examples of functions that
have loops and other conditional nests that can benefit from the history of previous in-
stances of these branches. The intermittent branch instructions between two invocations
of a function clobber the GHR however. This results in lost correlation opportunities.
To mitigate this problem we propose saving the GHR value in the BTB before return-
ing from a function. The next time the same function is called, we can restore the value
from the BTB and utilize the past history of branches in the function.

Recall the two for loops in Fig. 1. Remembering the histories from one instance
of the function to the next can improve the predictability of these loops by training
separate predictor entries to reflect the steady state behavior as well as the termination
of these loops. To this end, we add an old history field to the BTB. When we return from
a child function, we update the BTB entry corresponding to the parent’s call instruction
with the current GHR value. We can simply obtain the PC of the call instruction by
subtracting one (actually the size of one instruction) from the return address. The next
time that call instruction is fetched, we check the BTB. On a tag match, if the call bit
in the BTB is set, we will fill the GHR using the value in the old history field of the
BTB. Note that this technique associates the previous history with a particular call site,
not a function. In other words, if a function is called from multiple places, the history
that will be reloaded into the GHR will be coming from the previous instance of the
function when called from the same particular call site. We can store the beginning
PC of a function when we enter it in a temporary register and use that PC to store the
GHR before returning. But that would potentially introduce non-branch instructions

178 F. Gao and S. Sair

into the BTB and reduce its effective size. Instead of creating a separate table for saving
function GHR instances, we chose the simpler approach of adding a field to the BTB
and maintaining regular BTB semantics.

5 Methodology

The simulator used in this study was derived from the SimpleScalar/Alpha 3.0 tool
set [19], a suite of functional and timing simulation tools for the Alpha AXP ISA. The
timing simulator executes only user-level instructions. Simulation is execution-driven,
including execution down any speculative path until the detection of a fault, TLB miss,
or branch misprediction. Latency values for the caches and register files were obtained
using CACTI [20] for a 130nm process technology.

Table 1. Baseline misprediction rates

Benchmarks com gcc95 go ijpeg li vor95 crafty gcc2K twolf vor2K

% Mispred 18.9 10.6 27.6 13.2 6.1 5.4 10 12.2 15.2 5.4

To perform our evaluation, results were collected for 10 of the SPEC95 and
SPEC2000 integer benchmarks that were similar to typical embedded programs and
had higher than a 5% branch misprediction rate with a 4K entry gshare predictor (see
Table 1. These were compress, gcc, go, ijpeg, li, and vortex from SPEC95, and
gcc, twolf, and crafty and vortex from SPEC2000 suites respectively. The pro-
grams were compiled on a DEC Alpha AXP-21164 processor using the DEC C and
C++ compilers under OSF/1 V4.0 operating system using full compiler optimization
(-O4 -ifo). We skipped the initialization of each program by skipping 500 million in-
structions (except for gcc from SPEC’95 which executes for fewer than 500 million
instructions) and simulated for 100 million committed instructions. All benchmarks
were simulated using the ref inputs. We evaluate the effectiveness of the proposed intra-
function correlation enhancements on a gshare predictor. The predictor has 4K entries
and uses an 8-bit global history. The performance analysis models a next generation
embedded processor similar to the configuration of ARM11 [1]. The processor can ex-
ecute 4 instructions every clock cycle. It includes a 10 entry return address stack and a
512 entry BTB.

6 Results

We present the results of our experiments on the efficacy of the proposed techniques
in this section. All the results except for the baseline configuration utilize zeroing. In
these results GHS refers to adding a history field to the RAS to restore the GHR across
function calls. GHS+r6 is overwriting 6 most significant bits of the GHR (i.e. retaining
the last 2 bits) in addition to GHS. Results for the combination of GHS and adding an
old history field to the BTB in order to remember the GHR value from the previous

180 F. Gao and S. Sair

to its pre-call state, the opportunity to exploit this correlation is lost. We experimented
with longer retaining values for compress and found that prediction accuracy is restored
back to the same level as the baseline predictor. Despite the techniques working well on
some programs and worse on others, the average misprediction rate is reduced by 4%. To
attain best possible results, we are currently investigating adaptive application of GHS
techniques where the compiler determines which functions have access to the GHS.

We also measured the performance of these different schemes on a next generation
embedded processor with a gshare predictor. Figure 5 displays the number of commit-
ted instructions per cycle (IPC) for a 4K entry gshare predictor with 8 bits of history.
The last set of bars represent the harmonic mean of the IPC for all benchmarks. On aver-
age the GHS+BTB+r6 configuration improves performance by 5%. Individually, vortex
enjoys a performance boost of 13% from the GHS while compress suffers a slowdown
of 11% in the worst case.

7 Conclusions

Global branch prediction is a powerful tool in tolerating control related stalls in a
pipelined processor. Whether as a stand-alone predictor or as part of a hybrid predic-
tor, it is extensively used in current processor designs. In global prediction, correlation
is established through a Global History Register (GHR). The limited size of the GHR
causes callee functions to overwrite the GHR of the parent function, thrashing correla-
tion. Furthermore, branches from previous invocations of a function can influence the
direction branches in the current instance will take. Remembering the branch history
when the function was executed the last time can improve branch prediction accuracy
by cutting down on training time through providing a steady starting point for each
invocation of a function.

In this paper, we proposed several intra-function correlation preservation mecha-
nisms. The first of these, the Global History Stack (GHS), saves the history information
of the parent when it calls another function into the return address stack (RAS). When
the callee finishes and returns, we pop the history value from the RAS. We introduced
zeroing and retaining as means of providing stable starting points for functions and pre-
serving callee-to-caller correlation. Finally, to promote the inherent control dependence
across branches in consecutive instances of a function, we proposed saving the global
history register (GHR) at the time of the return in the BTB, only to be restored when
that function is called again.

The proposed techniques provide, on average, a 4% reduction in misprediction rate.
Absolute reduction in misprediction rates is as high as 3% in the case of go. Perfor-
mance improvements as high as 13% (for vortex95) are observed. In general, the fact
that some programs benefit from our techniques while others do not encourages future
research in application specific use of the GHS and the BTB extensions. One compiler
solution is identifying branches that benefit from intra-function correlation and apply
these techniques only to those functions. This can be done via profiling as was done
in [21]. Runtime techniques similar to the methods used in [15] can also help, where
we analyze the register and control dependencies to determine correlating branches.

Exploiting Intra-function Correlation with the Global History Stack 181

References

1. ARM Ltd.: ARM1136 Technical Reference Manual, Version r0p2. (2004) http://www.
arm.com.

2. Intel Corp.: The Intel(R) XScale(TM) Microarchitecture Technical Summary. (2000)
http://www.intel.com/design/intelxscale/.

3. Analog Devices Inc.: Analog Devices Blackfin Processor Data Sheet. (2005) http://www.
analog.com/processors/processors/blackfin/.

4. Seznec, A., Felix, S., Krishnan, V., Sazeides, Y.: Design tradeoffs for the Alpha EV8 condi-
tional branch predictor. In: Proc. Ann. Int. Symp. Comput. Architecture. (2002) 295–306

5. Michaud, P., Seznec, A., Uhlig, R.: Trading conflict and capacity aliasing in conditional
branch predictors. In: Proc. Ann. Int. Symp. Comput. Architecture. (1997)

6. Seznec, A., Michaud, P.: De-aliased hybrid branch predictors. Technical Report RR-3618,
Inria (1999)

7. Sprangle, E., Chappell, R., Alsup, M., Patt, Y.: The agree predictor: A mechanism for reduc-
ing negative branch history interference. In: Proc. Ann. Int. Symp. Comput. Architecture.
(1997) 284–291

8. Eden, A.N., Mudge, T.: The YAGS branch prediction scheme. In: Proc. Ann. ACM/IEEE
Int. Symp. Microarchitecture. (1998) 69–77

9. Lee, C.C., Chen, I.C., Mudge, T.N.: The bi-mode branch predictor. In: Proc. Ann.
ACM/IEEE Int. Symp. Microarchitecture, Research Triangle Park, NC (1997) 4–13

10. Calder, B., Grunwald, D., Zorn, B.: Quantifying behavioral differences between C and C++
programs. Journal of Programming Languages 2 (1994)

11. Yeh, T.Y., Patt, Y.: Two-level adaptive branch prediction. In: Proc. Ann. Int. Symp. Microar-
chitecture. (1991)

12. McFarling, S.: Combining branch predictors. Technical Report TN-36, Digital Equipment
Corporation, Western Research Lab (1993)

13. Sechrest, S., Lee, C.C., Mudge, T.: Correlation and aliasing in dynamic branch predictors.
In: Proc. Ann. Int. Symp. Comput. Architecture. (1996) 22–32

14. Evers, M., Patel, S.J., Chappell, R.S., Patt, Y.N.: An analysis of correlation and predictability:
What makes two-level branch predictors work. In: Proc. Ann. Int. Symp. Comput. Architec-
ture, Barcelona, Spain (1998) 52–61

15. Thomas, R., Franklin, M., Wilkerson, C., Stark, J.: Improving branch prediction by dynamic
dataflow-based identification of correlated branches from a large global history. In: Ann. Int.
Symp. Comput. Architecture, San Diego, CA (2003) 314–323

16. Yeh, T.Y., Patt, Y.: Alternative implementations of two-level adaptive branch prediction. In:
Proc. Ann. Int. Symp. Comput. Architecture. (1992)

17. Nair, R.: Dynamic path-based branch correlation. In: Proc. Ann. Int. Symp. Microarchitec-
ture. (1995) 15–23

18. Jacobson, Q., Rotenberg, E., Smith, J.E.: Path-based next trace prediction. In: Proc. Int.
Symp. Microarchitecture. (1997) 14–23

19. Burger, D.C., Austin, T.M.: The SimpleScalar tool set, version 2.0. Technical Report CS-
TR-97-1342, U. of Wisconsin, Madison, WI (1997)

20. Shivakumar, P., Jouppi, N.P.: Cacti 3.0: An integrated cache timing, power, and area model.
Technical Report (2001)

21. Stark, J., Evers, M., Patt, Y.N.: Variable length path branch prediction. In: Proc. Int. Conf.
Architectural Support for Programming Languages and Operating Systems. (1998) 170–179

Power Efficient Instruction Caches for Embedded
Systems

Dinesh C. Suresh, Walid A. Najjar, and Jun Yang

Department of Computer Science and Engineering, University of California,
Riverside, CA 92521, USA

{dinesh, najjar, junyang}@cs.ucr.edu

Abstract. Instruction caches typically consume 27% of the total power in mod-
ern high-end embedded systems. We propose a compiler-managed instruction
store architecture (K-store) that places the computation intensive loops in a scratch-
pad like SRAM memory and allocates the remaining instructions to a regular
instruction cache. At runtime, execution is switched dynamically between the
instructions in the traditional instruction cache and the ones in the K-store, by
inserting jump instructions. The necessary jump instructions add 0.038% on an
average to the total dynamic instruction count. We compare the performance and
energy consumption of our K-store with that of a conventional instruction cache
of equal size. When used in lieu of a 8KB, 4-way associative instruction cache,
K-store provides 32% reduction in energy and 7% reduction in execution time.
Unlike loop caches, K-store maps the frequent code in a reserved address space
and hence, it can switch between the kernel memory and the instruction cache
without any noticeable performance penalty.

1 Introduction

Low power is a very important design criterion in the design of a very large number
of embedded computing systems. Caches consume over 50% of the total energy of an
embedded system [11]. The energy consumed by the instruction cache is of particular
importance since an instruction is fetched every cycle. While numerous low-power in-
struction cache designs have been proposed in the literature, recent trends in research
[3][7][9] have been directed towards customizing caches for embedded system applica-
tions. Examples of such customized instruction cache architecture include loop-cache
like architectures [3][4] that place frequently executed loops on a special, smaller sized
instruction cache.

It is a well-known observation that a software program spends 90% of its execution
time in executing 10% of the code: a feature known as the 90–10 rule. The 90/10 (or
80/20) rule is even more relevant in embedded applications than desktop ones. In one
of our previous works [17], we identified and quantified the execution kernels in a large
number of embedded programs. The execution kernel is defined as a set of functions
and/or loops that together account for a substantial percentage of the overall execution
time. We found that the execution kernels often possessed a high execution density
(execution count per unit size). Table 1 summarizes the kernel sizes for applications

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 182–191, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Power Efficient Instruction Caches for Embedded Systems 183

Table 1. Kernel and Program sizes, in bytes, and Static and Dynamic contributions of the Kernel
for applications in the MediaBench and NetBench suites

Code Kernel Program Kernel Kernel
Size (B) Size (B) % static % dynamic

DRR 740 22511 03.28 45.12
Jpegencode 1996 102975 01.93 54.91
url 1688 11271 14.90 58.29
Unepic 2440 29727 08.20 59.40
Dh 1001 54563 01.83 66.51
Md5 7124 12895 55.24 66.57
G721enc 2470 250439 00.99 67.81
G721dec 2296 250439 00.91 68.67
Mpegencode 1576 96263 01.63 68.75
Tl 2336 20223 11.55 70.70
Mpegdecode 704 68035 01.03 79.12
Crc 584 7483 07.80 87.22
Adpcmencode 916 8091 11.32 96.17
Adpcmencode 1216 8192 14.84 97.12

from the MediaBench [8] and NetBench [10] benchmark suites. From the data reported
the vast majority of kernels were less than 4KB in size and most of these were less than
2KB which is well within the size of a scratchpad memory as is commonly available in
embedded processors [5]. Table 1 also shows the percentage contribution of the kernel
to the total program size (static) and to the execution time (dynamic).

Let us consider the frequently executed code for the Diffie-Hellman Key exchange
(DH) application [10] shown in Table 1. The kernel for this application constitutes
66.51% of the total dynamic instruction count and it contains a most frequent function
(NN DigitMult) that takes up nearly 35% of the total execution time. Hence, any loop-
cache like architecture executing such applications must cache both loops and function
calls. Accommodating such functions in loop-cache like architecture often increases
the size requirement of a loop cache. Scratchpad memories take up much lesser area
and consume nearly 40% lesser power than instruction caches of equal size [2] and
consequently, they are ideal alternatives to loop caches.

In this paper we propose an instruction store architecture that is designed to exploit
specific features of execution kernels in embedded applications. We call it the Kernel
Store or K-Store. The main idea in the K-store is that a scratchpad like memory is used
to store the execution kernel (both loops and functions) of the application: This kernel
memory is therefore a fast SRAM memory at the level of the cache that can be accessed
in one cycle. Unlike the cache it does not have to support tag arrays. The remainder of
the application is stored in main memory and is accessed in the traditional way via an
instruction cache. The system software is modified to support the kernel memory by in-
serting jumps where appropriate in the code. The compiler maps the kernel instructions
to a separate region in the address space and hence, facilitates easy detection of these
instructions during run-time.

Traditional loop cache architectures [3][4][9] cannot store frequently executed func-
tion calls inside the loop cache. K-Store overcomes this limitation by caching the kernel
code (both functions and loops) in a tagless scratchpad memory. A 8KB direct-mapped
basic K-store provides 28% reduction in energy while a 8KB, direct mapped supple-
mental K-Store provides 32% reduction in energy when used in lieu of a conventional
instruction cache of equal size.

184 D.C. Suresh, W.A. Najjar, and J. Yang

The rest of this paper is organized as follows. Section 2 illustrates the design of
our K-Store architecture. In section 3, we describe our experimental framework. In
Section 4, we discuss the results and evaluate the energy and performance of K-Store
architecture. We provide a list of related research work in section 5. In section 6, we
present concluding remarks.

2 K-Store Design

The K-Store architecture consists of two components: the kernel memory and the in-
struction cache. Figure 1 shows the block diagram of our K-Store architecture: The
K-Store consists of both the kernel memory and the instruction cache. During run-time,
instruction block requests are intercepted by a logic circuit, which identifies whether
the requested address belongs to the kernel space or the non-kernel space.

Fig. 1. K-store Architecture

By examining just a few bits of the instruction address during program execution,
we can determine whether the instruction address lies in the kernel space or in the non-
kernel space. For example, let us assume that for a given application, the compiler has
mapped the kernel code in the address range of 4096 to 8192 bytes. We need a circuit
to identify these kernel instructions at runtime. Figure 2 illustrates the operation of a
logic circuit used to identify kernel instructions in this case. Here, the bit values in bit
positions 1–12 are not useful in identifying the kernel instructions (don’t care). When
the 13th LSB is high and all the remaining bits from the 14th to the Most Significant
Bit (MSB) are zeros, we can conclude that the instruction is a kernel instruction. A low
value in all of the bit positions from 14th to the MSB can be easily detected through the
use of a five-levels of 2-input nor gate. While using 0.18-micron process technology,
the access time of an 8k, 4-way set associative cache with block size of 32 bytes, as
obtained using the CACTI tool [18], is 1.28 ns. A five level gate delay in 0.18-micron
process technology typically amounts to 0.3 ns [14]. Hence, for a 500 MHz system
(cycle time = 2 ns), the kernel detection logic can be easily accommodated within the
same cycle. As shown earlier in Table 1, most of the kernel sizes are less than 4k and
hence, checking for a high value on the 13th or 14th bit is sufficient to accommodate
most of the application kernels. The K-store architecture is ideally suited for systems
without a virtual memory.

Power Efficient Instruction Caches for Embedded Systems 185

Fig. 2. Runtime identification of kernel instructions

As shown in Fig. 2, the compiler maps the kernel instructions to a reserved area
in the off-chip address space. Occurrences of the kernel code in the original program
can be replaced by jump instructions that transfer the control flow to the kernel address
space. Upon completing the execution of the kernel code, we need a jump instruction
to continue program execution in the non-kernel address space. Thus every call to the
kernel code adds two additional control transfer instructions to the program. Using our
simulator, we measured the total increase in the number of control transfer instructions
in the program. As shown in Table 2, we found that the control transfer instructions
increased the dynamic instruction count by 0.039% on an average.

In order to better understand the cache behavior of the non-kernel portions of a
program, we investigated the use of kernel memory with varying cache configurations.
To ensure a fair comparison, we restricted the size of the k-store’s instruction cache
so that the total size of the kernel memory and the k-store’s I-cache was equal to that

Table 2. Additional jump instructions to map kernel instructions of different programs

Benchmark Additional dynamic Dynamic Instruction % of additional
control Instructions Count Instructions

Adpcmencode 148 31481991 0.00047
G721decode 1595527 1005741879 0.158642
G721encode 1907982 1068726694 0.1785
Jpegencode 20455 81017999 0.02547
Mpegdecode 578160 1020616339 0.056648
Mpegencode 2344064 7037415745 0.033309
Unepic 236 30588223 0.000772
CRC 1256 18524458 0.00678
Dh 452608 12450027332 0.0003635
Drr 65 16266546 0.0004
MD5 59844 371031482 0.01614
Tl 597 2054152 0.029063
url 60330 1426337205 0.00423
Average 540097 1889217696 0.0392

186 D.C. Suresh, W.A. Najjar, and J. Yang

of the baseline cache. By doing so, the K-store’s instruction has a smaller size than the
baseline cache and consequently, all accesses to the K-store are serviced at lesser power
when compared to that of a baseline cache. We call these k-store cache configurations
as basic K-store.

We also investigate the use of the kernel memory as a supplement to a baseline
cache. Hence, we picked a baseline cache and added a small kernel memory to it and
observed the energy reduction in this case. In spite of the higher cost associated with this
design, the number of off-chip accesses would be much lesser than that of the baseline
cache and hence, this design should be highly energy-efficient. For the rest of this paper,
we will refer to this K-store configuration as supplemental K-store. We will discuss our
experimental setup in the following section.

3 Experimental Framework

We analyzed an extensive collection of embedded system benchmarks from the Net-
Bench [10](CRC, MD5, DH, DRR, TL and URL) and the MediaBench [8] (ADPCM,
JPEG, MPEG and G721) benchmark suites. Table 3 gives a brief description about the
benchmarks used in our experiments. For each of these applications, we used our loop
analysis software [17] to identify the time consuming loops and function calls. We then
identified the kernel instructions in these benchmarks and we extended the Sim-cache
simulator supplied with the Simplescalar tool set [15] in order to simulate our design

We calculate the energy savings using the following formula:

EnergyK−Store = EnergyKernel +EnergyCache +EnergyO f f−Chip

The total number of accesses to each of these components are obtained from the sim-
cache simulator [15] we obtained the energy per kernel memory access and energy per
cache access from the CACTI tool [18]. We investigate the use of K-store in two dif-
ferent configurations – basic K-store and the supplemental K-store. For our instruction
store design, we vary the kernel memory size (2K, 4K), instruction cache size (2K, 4K),
associativity (Direct, 4-way), off-chip miss penalty (20, 40, 60, 100, 200 cycles) and we
evaluate the impact of these parameters on the energy savings and memory access la-
tency. For supplemental K-store, we use a kernel memory of size 1KB and compare our
K-store design with a conventional instruction cache. For each of these configurations,
we fixed the cache block size at 32 bytes. We used 0.18-micron process technology
in our power model. In the following section, we present the energy and performance
results for our K-Store architecture.

Table 3. Average normalized energy and memory cycle reduction for different cache configura-
tions

Cache Energy Cycles
Configuration Reduction Reduction

4K Direct mapped 21% 3.6%
4K-4way set assoc. 20% 3%
8K-Direct mapped 28% 0.5%
8K-4way set assoc. 25% 0.1%

Power Efficient Instruction Caches for Embedded Systems 187

Fig. 3. Normalized energy consumption for (a) a direct mapped cache and (b) a 4-way set asso-
ciative cache; Baseline= 8k, K-store: Kernel = 4k, Cache = 4k

4 Energy and Performance Evaluation

Basic K-Store. Figure 3a shows the normalized energy consumption for a 8Kb, direct
mapped cache. The K-store uses kernel and cache memories of size 4Kb each. We find
that K-Store provides an average energy reduction of 28% over a conventional instruc-
tion cache. Figure 3b shows the normalized energy consumption for a 8Kb, 4-way set
associative cache. The K-store uses kernel memories and cache memories of size 4Kb
each. In these graphs, we find that for the Diffie-Hellman key exchange application
(dh), the energy savings is much higher than the rest. This is due to the fact that the
dh kernel, has an extremely small static size and still contributes towards 66% of the
total execution time. Applications like adpcm and crc are also characterized by very
small static size and high execution count when compared to other applications under
consideration. Hence, they yield significant energy savings.

Figure 4 shows the normalized cycle time for a 8Kb, direct mapped cache. The
K-store uses kernel and cache memories of size 4Kb each. In spite of providing high-
energy savings, the cycle time reduction for the Adpcm application is not so significant
when compared to other applications. Adpcm’s code size is comparable to the base
cache size (8KB) and hence, the base cache provides a higher hit rate than the K-store’s
instruction cache (4KB). On an average, basic K-store yields a 0.5% reduction in the
overall execution cycles.

We explored the design space to find out the optimal sizes of kernel memory and
instruction caches for our instruction store architecture. In Table 3, we show the av-
erage normalized values of energy and memory cycle reduction for each of the cache
configurations. For the results shown in Figures 3–6 and in Table 3, we assumed that
an off-chip access was 60 times more expensive than an on-chip access. For each of
the cache configurations, we also computed the values of energy savings and execution
time reduction for varying values of off-chip penalties. Figure 5 provides the execution
time reduction and the average energy savings for varying values of off-chip penalties.

The energy savings in the kernel memory are obtained due to two reasons: the
smaller size of the kernel memory and the simple addressing scheme. Since the kernel
memory is tagless, the tag comparison power, which contributes to 35% of the cache

188 D.C. Suresh, W.A. Najjar, and J. Yang

Fig. 4. Normalized execution time for a direct- mapped cache; Baseline = 8K, K-store: Kernel
memory = 4K, cache = 4K

Fig. 5. Percentage reduction in (a) memory cycles and (b) energy for varying values of off-chip
penalty

Fig. 6. Normalized (a) energy consumption and (b) execution cycles for a direct mapped cache;
Baseline = 8K, K-store : Kernel memory = 1K, cache = 8K

power, is no longer necessary for a substantial fraction of the executed instructions. A
smaller sized cache services the non-kernel instructions and hence, reduction in cache
size is one of the main reasons for the energy savings reported in this paper. On an
average, we found that reduction in cache size alone, accounted for 13% of the energy
savings.

Power Efficient Instruction Caches for Embedded Systems 189

Supplemental K-Store. We also added the kernel memory to the best baseline cache
configuration and evaluated the resultant energy and performance benefits. We found
that when a 8KB, direct mapped instruction cache was augmented with a 1KB kernel
memory, we achieved 32% reduction in energy and 7% reduction in execution time. The
results are shown in Fig. 6. Since the instruction cache size is the same in the baseline
cache and the K-store, K-store has fewer misses and hence, results in higher energy
savings.

5 Related Work

Several techniques have been proposed to reduce the energy dissipation in the instruc-
tion caches of embedded processors. Many of these methods involve the usage of a
tiny cache as a supplement to an existing instruction cache [9][2][7][13][19]. The tiny
caches are designed in such a way that they exploit some feature of the application
in order to capture most of the processor requests. By making sure that these smaller
caches service bulk of the access request, significant amount of energy can be saved on
each cache access.

Banakar et al. [2] have reported that a scratch-pad memory takes up 34% lesser area,
consumes 40% less power and lowers cycle time by 18% when used in lieu of a cache of
equal size. The power, cost and performance advantages provided by scratch-pad mem-
ories make them ideal candidates for replacing conventional caches. Researchers have
rigorously investigated the use of a scratch pad memory to hold frequently used data
items. Panda [12], Kandemir [6], and Avissar [1] have explored the use of scratch pad
memory as a supplement for traditional cache architectures. They placed a small, fast,
memory at the level of L1 cache and they use this memory to hold the most frequently
used data items. Thus the off-chip traffic due to misses is reduced.

Avissar et al. [1] proposed an automatic compiler management strategy for data
allocation amongst heterogeneous memory units. Panda [12] minimized the cross in-
terference between different variables in the data cache by mapping them onto scratch
pad memory and DRAMS. Sjodin [16] proposed a method wherein the critical vari-
ables with large number of accesses are stored on an on-chip SRAM while less critical
variables allocated to a slower external RAM. Kandemir et al [6] proposed a compiler-
directed on-chip software management strategy for data accesses. They store the reusable
data values in nested loops onto an on-chip SRAM, thereby minimizing the data trans-
fer between the off-chip memory and the on-chip scratch pad memory. K-Store uses the
scratch pad memory to hold the frequently executed instructions and is hence, orthogo-
nal to the works mentioned above, which focus on data storage.

Bellas et al. [4] have proposed the use of an L0 cache that resides between the CPU
and the L1-cache. The compiler selects a few basic blocks to be placed in the L0-cache.
Statically loaded loop caches (SLLC) [2] exploit compile-time information to preload
the caches with the instructions of one frequently executed loop and hence, reduce the
cold start misses.

K-Store is different from L0-cache [4] and SLLC [3] in the following aspects. Even
though the SLLC and L0-cache exploit compile-time information, they can only extract
simple tight loops that contain no function calls. This is due to the limitation of their

190 D.C. Suresh, W.A. Najjar, and J. Yang

access mechanism – by testing if the current PC falls within the range of the beginning
and the ending addresses of the loops, the control logic decides whether the current
instruction is a loop instruction stored in the SLLC or the L-cache. Such a mechanism
excludes those loops containing function calls. While in the K-Store architecture, there
is no such restriction since the entire loop body is moved to a different memory address
space, simplifying the detection of the kernel instructions and increasing the number
of candidate kernels. Besides, preloaded loop caches are architecturally more complex
than scratch-pad memories.

Cache Aware Scratchpad Allocation (CASA) [20] provides a sophisticated tech-
nique for analyzing conflicts within the instruction cache and reduces these conflicts by
using the scratchpad. By using the scratchpad to store both kernel blocks and conflict-
ing instruction blocks, CASA can be effectively combined with a K-store to achieve
significant energy benefits.

In the wake of aforementioned discussion, our contributions in this paper can be
summarized as follows: We propose that program segments with high execution density
(both loops and functions) should be held in a scratch pad memory (Kernel memory)
and the remaining instructions can be efficiently cached in a regular instruction cache.
In order to facilitate easy and non-intrusive detection of kernel instructions, we map the
kernel instructions to a separate region in the off-chip address space. We illustrate that
our approach is highly energy efficient.

6 Conclusion

Most of the embedded system applications tend to have strong kernels, which are in-
struction blocks with high execution count and low static size. In this paper, we propose
a compiler-managed instruction store architecture that exploits kernel features to pro-
vide energy and performance benefits. Our compiler-assisted instruction store places the
computationally intensive kernel code (functions and loops) onto a small, fast scratch-
pad memory (kernel memory) and allocates the remaining instruction blocks to a regular
instruction cache. 8Kb direct mapped supplemental K-store provides 32% reduction in
energy and 7% reduction in execution time when used in lieu of a direct mapped cache
of equal size.

References

1. Avissar, O., Barua, R., Stewart, D.: An Optimal Allocation for Scratch-Pad Based Embedded
Systems. ACM Trans. on Embedded Computing Systems 1 (2002) 6–26

2. Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., Marwedel, P.: Scratchpad Memory:
A Design Alternative for Cache On-chip memory in Embedded Systems. In: Proceedings of
the 10th Int. Workshop on Hardware/Software Codesign, Estes Park, CO (2002)

3. Cotterell, S., Vahid, F.: Tuning of Loop Cache Architectures to Programs in Embedded Sys-
tems Design. In: IEEE/ACM Int. Symp. on System Synthesis (2002) 8–13

4. Bellas, N., Hajj, I., Polychronopoulos, C., Stamoulis, G.: Energy and Performance Improve-
ments in Microprocessor Design Using a Loop Cache. In: Int. Conf. on Computer Design
(1999) 378–383

Power Efficient Instruction Caches for Embedded Systems 191

5. Intel Corp. Intel XScale (tm) Core Developer’s Manual, 2002. http://developer.intel.
com/design/intelxscale/.

6. Kandemir, M., Kadayif, I., Sezer, U.: Exploiting Scratch-Pad Memory Using Presburger For-
mulas. In: Int. Symp. on System Synthesis, Montreal, Canada (2001) 7-12

7. Kin, J., M. Gupta, M., Mangione-Smith, W.H.: The Filter Cache: An Energy Efficient Mem-
ory Architecture. In: the 30th Annual IEEE/ACM Symp. on Micro Architecture

8. Lee, C., Potkonjak, M., Smith, W.H.: MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. In: Int. Symp. on Microarchitecture Research
Triangle Park, NC (1997) 292–303

9. Lee, L., Moyer, B., Arends, J.: Instruction Fetch Energy Reduction Using Loop Caches for
Embedded Applications with small tight loops. In: Int. Symp. on Low Power Design (1999)

10. Memik, G., Smith, W.H., Hu, W.: NetBench: A Benchmarking suite for Network processors.
In: Proc. of Int. Conf. on Computer-Aided Design (ICCAD), San Jose, CA (2001) 39–42

11. Montanaro, J., et al.: A 160MHz, 32b, 0.5W CMOS RISC Microprocessor. IEEE Journal of
Solid State Circuits (1996) 1703–1714

12. Panda, P.R., N.D. Dutt, N.D., Nicolau, A.: Efficient Utilization of Scratch-Pad Memory in
Embedded Processor applications. In: Proc. of European Design and Test Conf., Paris (1997)

13. Ravindran, R., Nagarkar, P.D., Dashika, G.S., Marsman, E.D., Senger, R.M., Mahlke, S.A.,
Brown, R.: Compiler Managed Dynamic Instruction Placement in a Low-Power Code Cache.
In: Proc. of the 3rd Intl. Symp. on Code Generation and Optimization (CGO) (2005)

14. http://www.semicon.toshiba.co.jp/eng/prd/asic/topix.html
15. Simplescalar Simulator. http://www.simplescalar.com
16. Sjodin, J., Von Platen, C.: Storage Allocation for Embedded Processors. In: International

Conference on Compiler, Architecture and Synthesis for Embedded Systems (CASES 2001),
Atlanta, GA (2001)

17. Suresh, D.C., Najjar, W.A., Vahid, F., Villarreal, J., Stitt, G.: Profiling Tools for Hard-
ware/Software Partitioning of Embedded Systems. In: Proc. of ACM SIGPLAN conference
of Language Compilers and Tools for Embedded Systems (LCTES), San Diego, CA (2003)
189–198

18. Steven, J. Wilton, E., Jouppi, N.P.: CACTI: An Enhanced Cache Access and Cycle Time
Model. IEEE Journal of Solid State Circuits, 31 (1996) 677–688

19. Tang, W., Gupta, R., Nicolau, A.: Power Savings in Embedded Processors through Decode
Filter Cache. In: Proceedings of the Design Automation and Test in Europe (2002)

20. Verma, M., Wehmeyer, L., Marwedel, P.: Cache-Aware Scratchpad Allocation Algorithm.
In: Design Automation and Test in Europe (DATE), Paris, France (2004)

Micro-architecture Performance Estimation
by Formula

Lucanus J. Simonson1 and Lei He2

1 Intel Corporation, Santa Clara CA 95052, USA
2 University of California, Los Angeles CA 90095, USA

Abstract. An analytical performance model for out of order issue superscalar
micro-processors is presented. This model quantifies the performance impacts
of micro-architecture design options including memory hierarchy, branch predic-
tion, issue width and changes in pipeline depth at all pipeline stages. The model
requires a minimal number of cycle accurate and trace driven simulations to cali-
brate and once calibrated estimates performance by formula. The model estimates
the performance of arbitrary micro-architecture configurations with an average
error of 6.4%. During early design stages when cycle accurate simulation is pro-
hibitive an analytical model can provide guidance to designers to increase design
quality and reduce design effort. This allows the design of an embedded proces-
sor to be rapidly tuned to its application by reducing the cost of exploring the
design space.

1 Introduction

During early planning stages of micro-processor design a clear understanding of the
impact various design decisions will have on performance is critical. Cycle accurate
simulation is often used to collect performance information, but is too time consum-
ing to be well suited to exploration of a large number of competing design options and
does not lead directly to an understanding of why a change in the micro-architecture
impacts performance. Because performing a large number of cycle accurate simula-
tions is prohibitively a faster method of producing performance information is needed.
We present a super-scalar, out of order issue microprocessor performance model that
estimates performance by formula and requires a minimal number of cycle accurate
and trace driven simulations to calibrate. This model allows greater freedom to explore
micro-architecture options and pipeline strategies during early design, and provides the
capability to more easily tune a processor to its application.

Our model is capable of estimating performance for different combinations of micro-
architecture options and pipeline depth at all stages of instruction execution. Micro-
architecture choices include issue width, resource contention, memory hierarchy, branch
predictor strategy and instruction prefetch. Combining these design elements into a
single performance model enables designers and design tools to optimize all of these
parameters simultaneously with minimal simulation time. The model is intuitive and
reasonably accurate. It requires constant runtime once built up and provides insight into
the causes of performance loss and the ways in which they interact in a realistic pro-
cessor. This work also establishes the methodology for generating a similar model for

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 192–201, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Micro-architecture Performance Estimation by Formula 193

other base micro-architectures such as those used in embedded processors or under de-
velopment in industry. Up front simulation costs are minimized by decoupling all of the
various factors that contribute to performance loss and recombining them analytically.
Empirical cycle-accurate sensitivity analysis of pipeline depth and trace driven simula-
tion of the behavior of each micro-architecture design variable in isolation are used to
provide the inputs to the model.

Related to this paper, many approaches have been proposed to estimate perfor-
mance. A theoretical method for analyzing in-order pipelines is presented in [1], how-
ever the work does not apply to out-of-order issue architectures. Both in-order and
out-of-order front-end pipeline depth is analyzed in [2], though the backend was not.
While exploring the impact of increasing pipeline depth on processor performance in
the Pentium processor [3], an empirical performance model was developed to estimate
performance as a function of pipeline depth, but no micro-architecture changes were
considered.

A first-order superscalar processor model [4] provides a formula based estimate of
performance. It assumes an idealized micro-architecture free of resource contention
and capable of sustained throughput equal to issue width and estimates the perfor-
mance penalties due to branch mispredictions and instruction and data cache misses
from a trace-driven simulation. Building upon [4], we consider a more realistic micro-
architecture that includes resource contention and instruction prefetch. We also decou-
ple the behavior of the various caches and branch predictor so that a trace-driven simula-
tion is not required for each unique combination of cache and branch predictor settings.
In addition, we consider the performance impact of varying the backend pipeline depth
and combine that with the performance impact of the frontend analytically by employ-
ing a novel probabilistic performance loss event overlap model.

The rest of the paper is organized as follows. In Section 2 we present background
information on architecture design options considered, simulation engine used and our
methodology for deriving the model. In Section 3 we present our analytical performance
model. We experimentally verify the correctness and accuracy of our model in Section
4 and conclude the paper in Section 5.

2 Background

2.1 Micro-architecture Design Space

The Micro-Architecture considered in this work is a super-scalar out of order issue
CPU that includes the seven modules shown in Table 1 with the options considered for
each. Pipeline depth is simulated by clock cycle latency between the micro-architecture
modules defined in Table 1. These interconnects are listed in Table 2. The symbol used
to represent the latency of each interconnect is listed as well as a qualitative description
of the type of performance degradation caused by latency on each.

2.2 Methodology

All simulations were performed using modified version of SimpleScalar 2.0 with PISA
instruction set architecture in truncated runs with a fastforward period of forty mil-
lion instructions and a sample period of twenty million instructions. Six benchmarks

194 L.J. Simonson and L. He

Table 1. Micro-architecture Design Freedoms and Options

Design Freedom Options

Issue Width 2, 4, 8
Integer ALU Number Equal to issue width, 3/4 of issue width

Other Arithmetic Unit Number 1/4 Integer ALU, 1/2 Integer ALU
Branch Predictor Size/Strategy bimod 1K, BTB 128; bimod 2K, BTB 256;

combined bimod 2K, 2-level 1K, BTB 512;
combined bimod 4K, 2-level 2K, BTB 1K

Instruction Level 1 Cache
8KB Direct Mapped, 16KB Direct Mapped,
32KB 2 Way Associative, 64KB 4 Way Associative

Data Level 1 Cache 8KB Direct Mapped, 16KB Direct Mapped,
32KB 2 Way Associative, 64KB 4 Way Associative

Unified L2 Cache 128KB 2 Way Associative, 256KB 4 Way Associative,
512KB 4 Way Associative, 1MB 8 Way Associative

Table 2. Interconnect Pipeline Design Freedoms

Symbol Interconnect Performance Impact

LIL1/L2 IL1 Cache to L2 Cache Increased IL1 Cache Miss Penalty
LDL1/L2 DL1 Cache to L2 Cache Increased DL1 Cache Miss Penalty
L f etch Fetch Unit to IL1 Cache Increased Branch Misprediction Penalty

Prefetch Penalty
Ldispatch Fetch Unit to Dispatch Unit Increased Branch Misprediction Penalty

Lissue Dispatch Unit to Issue Unit Increased Branch Misprediction Penalty
LDL1 Issue Unit to DL1 Cache Stalls on data load dependencies
LIALU Issue Unit to each I-ALU Stalls on integer dependencies

Increased Branch Misprediction Penalty
LIMult Issue Unit to each I-Multiplier Stalls on multiply dependencies
LFALU Issue Unit to each FP-ALU Stalls on floating point dependencies
LFMult Issue Unit to each FP-Multiplier Stalls on floating point dependencies

(mcf, equake, art, mesa, parser and bzip2) from the SPEC2000 suite were evaluated to
produce all experimental results presented. These include a mix of floating point and
integer benchmarks and were chosen to represent a range of real world application be-
haviors. Performance of an architecture is summarized as the arithmetic mean of CPI
for the six benchmarks.

The model was developed by performing a study of the performance impact of each
design variable in isolation while holding all other design variables constant. The per-
formance impact of the design variable was graphed and, if possible, a mathematical
formula derived to fit the observed behavior. The formulas and empirical constants ob-
tained by studying each design variable in isolation are combined incrementally, group-
ing variables by category, developing mathematical expressions for the interaction be-
tween the behavior of each variable with other variables in its category and finally
between categories. This led to the division into front and backend in the model and the
grouping of terms.

Micro-architecture Performance Estimation by Formula 195

Deriving the expressions to describe the interaction between design variables in
terms of their performance impact relied upon insight into the anatomy of a performance
loss event. From [4] we know that some performance loss events are not inter-related.
We verified these findings and proceeded to the new factors considered by our model.
For each interaction we devised a hypothetical expression based upon insight into the
micro-architecture. We tested each hypothesis by performing an experiment to isolate
the interaction and measure by cycle accurate simulation.

3 Analytic CPI Model

We measure performance in terms of cycles per instruction (CPI) which we define as the
average number of clock cycles per instruction issued by the processor on the correct
execution path. CPI is proportional to execution time and is convenient for our purposes
because the delay caused by some performance loss event directly adds to execution
time, can simply be averaged over the number of instructions and added to the CPI.
Our approach to performance modeling is to count the number of performance loss
events and quantify their delay penalties. Should two delay penalties be incurred at
the same time the performance overhead should not be double counted. We correct
for overlapping performance loss events to obtain an accurate performance estimation
formula.

3.1 Model with Interconnect Pipeline

The CPI of a micro-architecture is a combination of performance loss due to miss
events, data dependency stalls and the baseline performance of the micro-architecture
with no extra pipelining in the absence of miss events. Baseline performance is a func-
tion of the issue width and resource constraints of the micro architecture combined
with the amount of instruction level parallelism in the benchmark. The miss events we
consider are branch mispredictions, level one instruction cache misses and level two
instruction and data cache misses. Level one data cache misses are modeled the same
as the latencies of arithmetic units that result in data dependency stalls.

We quantify the performance impact of latency in each of the interconnects from Ta-
ble 2 in terms of contribution to miss penalty and average duration of data dependency
stall, then combine their performance impacts to estimate system performance with
consideration of pipelined interconnect. Arithmetic units of the same type are grouped
together into a single module and have identical interconnect latency. We divide the in-
terconnects into frontend and backend interconnects. Frontend interconnects are those
that contribute latency to the pipeline prior to the issue stage. The equation for the
micro-architecture CPI model with consideration of pipelined interconnect is given in
(1).

CPI = CPIideal +CPIIL1 +CPIL2 +CPIFront +CPIBack (1)

3.2 Cache CPI Overhead

Miss rates for one type of level one cache are clearly independent of the other level
one cache configuration as well as the level two cache configuration. Given that the

196 L.J. Simonson and L. He

level two cache is sufficiently larger than the level one caches, our experiments show its
miss rates are roughly independent of level one cache configuration. For this reason the
miss rates for each cache option are measured independent of the configuration options
chosen for the other caches reducing the number of trace driven simulations required to
build up the model.

In equation (1) performance loos due to instruction level one cache misses, CPIIL1, is
defined as the access latency of the L2 cache, LL2(access), plus the interconnect latency
between the IL1 and L2 cache, LIL1/L2, multiplied by the miss rate of the instruction
level one cache. Instruction cache miss penalty is equal to the latency of the next higher
level of memory hierarchy [4].

CPIIL1 = MissRateIL1(LL2(access) +LIL1/L2) (2)

CPIL2 is the performance loss due to level two cache misses, broken down into
instruction and data cache miss rates, multiplied by the latency to main memory, LMM .
The FOverlapL2(data) term in (3) is the expected value for the size of a group of level two
data cache misses that all occur within the issue window size number of instructions
of the previous level two data cache miss. This factor accounts for the overlapping of
L2 data cache miss performance loss as described in [4]. We assume the miss penalty
for level two cache to be the latency of a main memory access. Unlike [4] we do not
calculate or use an overlap factor between level two data cache misses and other miss
events because we assume that fetch is blocked by the time the L2 data miss penalty is
incurred, preventing such overlap from occurring.

CPIL2 = (MissRateL2(inst) +
MissRateL2(data)

FoverlapL2(data)
)LMM (3)

3.3 Frontend CPI Overhead

Two sources of performance loss contribute to frontend CPI, branch misprediction and
prefetch overhead. When latency is added between the level one instruction cache and
the fetch logic the branch predictor does not have the opportunity to decide whether a
branch is taken until several clock cycles after it has been read from the cache. Prefetch
proceeds to fetch contiguous blocks in memory until a branch predicted as taken reaches
the fetch unit. The prefetch pipeline must then be flushed and fetching resumes at the
target address. The formula for CPIFront is given in (4).

CPIFront = α(CPIBPred(pipe) +CPIPre f etch)+CPIBPred (4)

CPIBPred is the performance loss due to branch misprediction

CPIBPred = MissRateBPredPenaltyIntrinsic (5)

where the intrinsic branch misprediction penalty, PenaltyIntrinsic, is measured for a given
benchmark by cycle accurate simulation for a single micro-architecture by dividing the
difference between CPIideal with and without perfect branch prediction by the branch
misprediction rate, MissRateBPred . In our experiments we observed that the branch mis-
prediction penalty had minimal dependence upon the branch prediction option chosen

Micro-architecture Performance Estimation by Formula 197

or the issue width of the microprocessor and is instead a function of pipeline depth
and performance loss overlap. For this reason we use a single measurement of intrin-
sic, baseline branch misprediction penalty for all micro-architecture configurations. The
branch misprediction rate is measured by trace driven simulation of each of the branch
predictor options in Table 1. The CPIBPred(pipe) term in (4) is defined as

CPIBPred(pipe) = MissRateBPredPenaltyBPred(pipe) (6)

where PenaltyBPred(pipe) is defined as

PenaltyBpred(pipe) = 2(L f etch +Ldispatch +Lissue +LIALU) (7)

such that pipeline stages added anywhere in the integer pipeline contribute two cycles
of branch misprediction penalty. The justification for this is that when a branch is being
issued the instruction it depends upon (which we assume to be an integer instruction)
has often not yet committed, so adding one cycle of latency anywhere in the integer
pipeline will add one cycle of branch misprediction penalty due to data dependency
delay of branch issue. If there is no data dependency then adding one cycle of latency
to the frontend will add one cycle of branch misprediction penalty due to delayed res-
olution time of the branch. In both cases a cycle of latency in the backend will add
one cycle of branch misprediction penalty due to delayed resolution time of the branch.
Finally, adding one cycle of latency specifically to the frontend pipeline will add an
additional cycle of branch misprediction penalty because the frontend pipeline takes
longer to refill after it has been flushed due to a branch misprediction.

The CPIPre f etch quantity in (4) is defined as

CPIPre f etch =
HitRateBPredBranchesTakenL f etch

Instructions
(8)

where the ratio of BranchesTaken to Instructions is the probability that a given instruc-
tion is a taken branch. Multiplying by the branch prediction hit rate, HitRateBPred , fac-
tors out the prefetch flushes that overlap performance loss due to branch mispredictions
for those same branches.

3.4 Frontend Overlap Correction

Because performance loss in the frontend may overlap other performance loss events
we introduce in (4) a correction factor, α, based upon the approximation that the timing
of all potentially overlapping performance loss events are independent and random. The
equation for this correction factor is

α =
CPIunit

CPIideal +CPIBpred +CPIBPred(pipe) +CPIback
(9)

where CPIunit is similar to CPIideal but with an initial latency of one on all arithmetic
operations including the typically long latency floating point divide and root operations.
The CPIunit quantity can be thought of as the time the processor spends performing use-
ful work. The α overlap factor is the probability that performance loss events due to

198 L.J. Simonson and L. He

Table 3. Fitness of α overlap factor

IL1 Fetch Latency 1 2 4 8

Error 2.4% 1.7% 4.0% 11.6%

added frontend pipeline stages do not overlap some other source of performance loss,
which is the probability that they happen during the time that the processor is perform-
ing useful work. Branch misprediction can overlap other branch misprediction events
as well as data dependency stalls. It cannot overlap prefetch performance loss or in-
struction cache miss performance loss because during these periods no branches can be
fetched. When fetch becomes blocked due to extremely long latency data dependency
stalls due to level two data cache misses no overlap can occur.

To demonstrate the fitness of modeling the probability of overlap between perfor-
mance loss events as independent random variables with the α overlap factor we mea-
sure cycle accurate CPI for our set of benchmarks while letting the interconnect latency,
L f etch vary from one to eight while other micro-architecture freedoms are held constant
and compare to cycle accurate simulation. As presented in Table 3 the error for this
experiment is very low at small latencies and only 11.6% at extreme fetch latency.

3.5 Backend CPI Overhead

Performance loss for the interconnects in the back end is due to data dependency stalls.
The stall incurred by a dependent instruction is determined by the maximum commit
time of the instructions it is dependent upon. It does not matter which of the backend
interconnects contribute latency to the maximum commit time because the effect is
the same. Backend interconnects are the same way and can be modeled as a group by
summing their individual models.

CPIBack = ∑CPIx
xε{IALU,IMult,FALU,FMult,DL1}

(10)

Because performance loss in the back end is linear CPI overhead of individual intercon-
nects can be accurately modelled as in (11) where Cx is an empirical constant obtained
in a similar way to PenaltyBPred by calculating the slope of a line between two cycle
accurate CPI measurements while varying Lx.

CPIx = CxLx (11)

In the case of data loads the latency is increased by the latency to go to the level two
cache with probability equal to the level one data cache miss rate.

CPIDL1 = CDL1(LDL1 +MissRateDL1(LDL1/L2 +LL2(access))) (12)

We verify our backend pipeline model by checking it against cycle accurate sim-
ulation. In this experiment we use the baseline architecture used to calculate CPIideal

but let the latencies to the arithmetic units vary uniformly by factors of two from one
to sixteen. Maximum estimation error for this experiment was around 2% showing that
the backend model based upon linear performance penalty as a function of latency is
highly accurate.

Micro-architecture Performance Estimation by Formula 199

4 Experiments

We verify the correctness and accuracy of our performance model in an experiment
where thirty-two random configurations chosen from the options in Table 1 and laten-
cies ranging from zero to nine inclusive from the interconnects in Table 2 are measured
by cycle accurate simulation.

The cycle accurate CPI for each of the thirty two configurations is plotted as the
independent variable while the model estimate is plotted as the dependent variable.
As we can see the data points line up nicely along the y = x line. The model shows
good fidelity, with average error for this experiment of 6.4% and maximum error of
18.4%. We compare this to the error reported in [4] of 4.4% on average and 12% in
the worst case in which performance is estimated for a subset of five out of the sixteen
design variables we consider here. We succeed in decoupling the behavior of the various
caches and the pipeline depth as well as adding in consideration of pipeline depth in the
back end without paying too high a price in accuracy over the state of the art.

Fig. 1. Lumped Arithmetic Module Model Fidelity

Table 4. Average absolute error of individual benchmarks

art bzip2 equake mcf mesa parser average

7.3% 10.1% 8.8% 8.8% 7.2% 9.5% 8.6%

In Table 4 the average absolute error is broken down by benchmark. One of the
goals of the model is to abstract away the contribution of instruction stream to perfor-
mance. Based upon the assumption that this was possible, cycle accurate simulation of
only a single benchmark, equake, from the set of six mentioned in section 2.2 was used
to derive the form of the model as discussed in section 2.2. This was necessary dur-
ing the initial micro-architecture study because of the large number of cycle accurate
simulations required. By comparing the accuracy of the full model against other bench-
marks in Table 4 we validate the ability of the model to abstract away the contribution
of instruction stream to performance.

200 L.J. Simonson and L. He

The average absolute error reported for Fig. 1 differs from that in Table 4 because it
is calculated by summing the CPI of the benchmarks before calculating absolute error,
in effect treating the six benchmarks sampled as a single benchmark six times as long.
Significantly, the difference is small because the model tends to underestimate CPI, as
can be observed by comparing the number of data points below and above the y = x line
in Fig. 1. This tendency is a contributing factor to the model’s good fidelity.

5 Conclusions and Discussions

We have developed an accurate analytical performance model for superscalar out of
order issue microprocessors. It models changes in cache hierarchy, branch predictor
size and strategy, issue width and pipeline depth at all stages of execution. The model
provides performance estimates accurate to within 6.4% on average and 18.4% in the
worst case for a random set of micro-architecture design options and pipeline depths.
This compares to 4.4% on average and 12% in the worst case as reported in [4], which
serves as the basis for our work but considers only a third of the micro-architecture de-
sign freedoms in our model. Additionally our model provides further insight into what
the causes of performance loss are in modern micro-processors and how these sources
of performance loss interact with each other to determine the overall performance of a
micro-processor.

The model requires that two cycle accurate simulations be performed for each issue
width under consideration, an additional cycle accurate simulation to obtain the intrinsic
branch misprediction penalty of a benchmark and one cycle accurate simulation for each
type of arithmetic unit employed by the micro-architecture. The model also requires
a single trace driven simulation for each cache configuration option and each branch
predictor configuration option under consideration. The relatively low cost of building
up the model is the key feature that makes it practical. The entire range of possible
combinations of micro-architecture options and pipeline depths can be explored with a
minimal amount of simulation. This provides the basis for a speed/accuracy trade-off
giving designers the option to choose between the analytical model and cycle accurate
simulation to suite their needs.

Modular design of a processor targeting a specific application could benefit from
rapid exploration of the micro-architecture design space, considering all of the dis-
crete options in cache size, branch prediction, ALU type and issue width to minimize
area while meeting performance constraints. This type of model provides the capabil-
ity to perform rapid ”what if” analysis of micro-architecture design choices, enabling
designers to immediately see the impact a change can be expected to have on system
performance or enabling automated design tools to execute interactive refinement opti-
mization algorithms such as floorplanning with consideration of performance.

Future work includes the following objectives: developing an analytical power model
based upon the analytical performance model, applying the analytical performance
model to iterative automated micro-architecture and floorplanning co-optimization such
as in [5], modeling the interaction between performance loss events in micro-architectures
utilizing different branch misprediction recovery mechanisms, extending the analytical
performance model to multi-core processors and eliminating the need for cycle accu-

Micro-architecture Performance Estimation by Formula 201

rate simulation in building up the analytical performance model by replacing empirical
constants with formulas based upon instruction stream statistics.

References

1. Emma, P.G., Davidson, E.S.: Characterization of branch and data dependencies on programs
for evalutating pipeline performance. IEEE Trans. on Computers 36 (1987) 859–875

2. Hartstein, A., Puzak, T.R.: The optimum pipeline depth for a microprocessor. In: International
Symposium on Computer Architecture. (2002)

3. Sprangle, E., Carmean, D.: Increasing processor performance by implementing deeper
pipelines. In: International Symposium on Computer Architecture. (2002)

4. Karkhanis, T., Smith, J.E.: A first-order superscalar processor model. In: International Sym-
posium on Computer Architecture. (2004)

5. C. Long, C., Simonson, L., Liao, W., He, L.: Floorplanning optimization with trajectory
piecewise-linear model for ipelined interconnects. In: DAC. (2004)

Offline Phase Analysis and Optimization
for Multi-configuration Processors

Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

Ghent University, Electronics and Information Systems Department,
Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{fgvdeput, leeckhou, kdb}@elis.UGent.be

Abstract. Energy consumption has become a major issue for modern micropro-
cessors. In previous work, several techniques were presented to reduce the overall
energy consumption by dynamically adapting various hardware structures. Most
approaches however lack the ability to deal efficiently with the huge amount of
possible hardware configurations in case of multiple adaptive structures. In this
paper, we present a framework that is able to deal with this huge configuration
space problem. We first identify phases through profiling and determine the opti-
mal hardware configuration per phase using an efficient offline search algorithm.
During program execution, we inspect the phase behavior and adapt the hard-
ware on a per-phase basis. This paper also proposes a new phase classification
scheme as well as a phase correspondence metric to quantify the phase similar-
ity between different runs of a program. Using SPEC2000 benchmarks, we show
that our adaptive processing framework achieves an energy reduction of 40% on
average with an average performance degradation of only 2%.

1 Introduction

Energy dissipation is a major design issue for modern microprocessors both in the em-
bedded, the general-purpose as well as the high performance market segments. To ad-
dress this issue several researchers have proposed to dynamically tune or resize sev-
eral hardware resources without affecting overall performance, thereby reducing energy
consumption.

Generally speaking, we can identify three major classes of adaptive process-
ing: resource-driven, positional and temporal adaptation. In resource-driven adapta-
tion [1][2], the various hardware components tune themselves according to their current
use. In positional adaptation [3], particular architectural configurations are associated
with particular code sections, for example at the level of subroutines. Each time the
processor enters one of those sections, the corresponding architectural configuration
is installed. In the temporal approach [4][5][6], the program execution is partitioned
into fixed-length intervals, recurring phases are identified and energy-efficient proces-
sor configurations are associated per phase. Phase identification and hardware adapta-
tion is all done dynamically. A common problem is how to deal efficiently with a large
number of hardware configurations in case of multiple adaptive structures. Finding the
optimal configuration through enumeration (as is typically done in previously proposed
dynamic optimization schemes) obviously is not an option.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 202–211, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Offline Phase Analysis and Optimization for Multi-configuration Processors 203

This paper makes the following contributions. First, we present an efficient of-
fline phase analysis framework to reduce the overall energy consumption on multi-
configuration processors. Second, we propose a new phase classification method that
combines clustering efficiency with phase predictability. Third, we propose a phase cor-
respondence metric to quantify the phase similarity between different runs of a given
program with different inputs. The overall end result is an offline phase-based method
that reduces the energy consumption by 40% while incurring a performance degrada-
tion of only 2%.

In the next section we will discuss some previous work. Section 3 details our ex-
perimental setup. In section 4, we present our adaptive processing framework. Overall
results are presented in section 5. Finally, we conclude in section 6.

2 Previous Work

As already mentioned, there exist many hardware adaptation techniques to reduce the
energy consumption of a microprocessor [7][4][1][5][3][6]. Nearly all previously pro-
posed approaches however lack the ability to deal efficiently with a large processor
configuration space when many hardware structures can be resized. This is due to the
fact that determining the optimal hardware configuration per phase is typically done
through online enumeration. This paper proposes a practical solution to this problem
by determining the phases and the optimal hardware configuration per phase offline.
An additional advantage of doing the phase analysis offline is that it provides a global
view on the complete program execution. As such, intervals can be classified by tak-
ing a global view of the program phase behavior into account. Dynamic approaches
on the other hand need to take greedy choices during program execution. We will now
highlight two approaches that closely resemble the approach taken in this paper.

In [6], a purely dynamic temporal phase detection and prediction scheme is pre-
sented from which the basic framework in this paper is extracted: the way phase in-
formation is collected using footprints and the fact that the next phase ID is predicted.
However, this does not affect the generality of our work, i.e. the offline configuration
space exploration could also be used in conjunction with other ways of collecting phase
information such as instruction working set signatures [4], etc., or in case there is no
phase prediction available.

In [3], three different implementations of positional adaptation schemes are pro-
posed, of which SISD (static instrumentation and static decision) resembles our ap-
proach most. With SISD, all major subroutines are first identified by profiling the pro-
gram. Then a number of Low Power Techniques (LPTs) are evaluated on each of those
subroutines during a number of profiling runs. At the end, an efficiency score is com-
puted for each subroutine-LPT pair and for each of those subroutines the most efficient
configuration is chosen. Subsequently, the program needs to be recompiled to trigger
the appropriate hardware adaptation at entry and exit points of the selected subrou-
tines. A major disadvantage of the SISD approach is that the program must be profiled
multiple times. In case of n LPTs, n+1 profiling runs are needed: n with each LPT en-
abled and one with no LPTs enabled. In addition, each profiling run requires a complete
benchmark execution which can be very costly.

204 F. Vandeputte, L. Eeckhout, and K.D. Bosschere

3 Methodology

Before presenting our framework we first detail our experimental setup. We use cycle-
level processor simulation using Simplescalar/Alpha v3.0 [8] in combination with
Wattch v1.02 [9] to collect performance and energy consumption data. For Wattch, we
assume a 0.18 μm-technology and a 1.2GHz clock frequency. Our baseline processor
is depicted in Table 1. We use a subset of the SPEC2000 benchmark suite, see Table 2.
We used these benchmarks since they exhibit a sufficiently diverse phase behavior. The
binaries were taken from the SimpleScalar website. These programs were all simulated
from start to completion using the reference inputs given in Table 2. We used the train
inputs for our offline phase analysis and per-phase optimal hardware configuration ex-
ploration.

Table 1. Baseline simulation model

Processor Width 8-wide fetch/decode/issue/commit - double fetch speed
Functional Units 8 int ALU - 4 mem ports - 2 FP ALU - 2 int MULT/DIV - 2 FP MULT/DIV
Buffers 128 entry re-order buffer - 32 entry load/store queue
Branch Predictor hybrid: 13-bit 8k 2-level predictor - 8k bimodal predictor - 8k meta predictor
L1 I-cache 8KB 2-way set-associative - 32 byte blocks - 2 cycle latency
L1 D-cache 16KB 4-way set-associative - 32 byte blocks - 2 cycle latency
L2 unified cache 1024KB 4-way set-associative - 64 byte blocks - 20 cycle latency
Main Memory 151 cycle latency

Table 2. The SPEC2000 benchmarks, their ref. input and the number of phases

benchmark ref input # phases benchmark ref input # phases

eon rushmeier 1 ammp ref 11
gcc 200.i 30 applu ref 32
gzip graphic 18 equake ref 10
mcf ref 9 facerec ref 27
twolf ref 5 swim ref 25
vpr route 5 wupwise ref 8

4 Offline Phase Capturing and Architecture Tuning

In this section, we will discuss the various components of our adaptation scheme in de-
tail: collecting footprints, phase classification, configuration space exploration, adaptive
execution and phase prediction.

4.1 Collecting Footprints

In [10], Sherwood et al. propose the use of the Basic Block Vector (BBV) to summarize
program behavior of a fixed length instruction interval in a hardware-independent way.
Each element of a BBV contains the number of times a basic block gets executed during
that interval, multiplied by the number of instructions in that basic block. In order to
be able to efficiently capture program phase behavior in hardware, Sherwood et al. [6]
came up with the notion of a footprint which is a condensed form of a BBV. A footprint
is computed by maintaining an accumulator table of 32 24-bit saturating counters. The

Offline Phase Analysis and Optimization for Multi-configuration Processors 205

accumulator table is updated for each executed branch. At the end of the fixed-length in-
terval (1M instructions in this study), the 8 most significant bits from each accumulator
entry are extracted to form a 32-byte footprint.

4.2 Phase Classification

Once the footprints are collected for a given program, we can classify them into phases.
One particular static phase classification approach is employed in SimPoint. In Sim-
Point [10], offline clustering is done through k-means clustering [11].

Because the k-means algorithm does not say anything about the optimal number of
clusters, SimPoint performs the clustering algorithm for a number of values of k (rang-
ing from 1 to Kmax) and computes the Bayesian Information Criterion score (BIC) [11]
to quantify the clustering quality. The optimal k is then determined by choosing the
clustering having a BIC score that is at least 90% of the spread between the best and
the worst BIC score over a range of different k’s.

In our approach we also use k-means clustering but we use a different metric than
BIC to guide phase classification by weighting clustering quality versus phase pre-
dictability. The idea behind our proposal is that on the one hand we want phases that
exhibit similar behavior within the phases and dissimilar behavior between the phases—
this can be achieved by having a large number of phases. On the other hand, we want
to be able to predict future phases highly accurately so that we do not lose energy re-
duction opportunities nor experience performance degradation due to incorrect future
phase predictions. As having less phases could result into a number of actually different
phases to be clumbed together, we also incorporate a special transition phase (as also
proposed in [12]), grouping all intervals that do not belong to any of the k phases. As
intervals belonging to that transition phase will not be optimized, it is important to keep
the number of intervals assigned to this transition phase small.

Since clustering quality generally increases and phase predictability generally de-
creases with an increasing number of clusters, there exists an optimal clustering in
which clustering quality and phase predictability are weighted appropriately. To this
end, we propose the Quality-Predictability Score (QPS) which is defined as the multi-
plication of the clustering quality (CQ) metric and phase predictability. The CQ metric
is defined as one minus the average distance of each point to its cluster center relative to
the maximum distance Dmax of a point to the center of the entire data set1. The optimal
clustering is then defined as the one with the maximum QPS.

Figure 1 shows an example for gzip in which the CQ metric, the phase predictability,
the QPS and the BIC score are shown. The optimal clustering in this example is obtained
for k around 20, but as one can see, there are a number of other clusterings that have
almost the same QPS-score. Applying the BIC scoring mechanism would result in 120
to 130 phases, which results in a phase prediction accuracy of only 57%. This means
that the adaptive processor would be in the wrong phase in almost half of the time.

One potential weakness of offline analysis is that it relies on profiling using a train
input. In our case, the phases as observed when running the train input should resemble

1 To penalize the amount of intervals belonging to the transition phase, these intervals all have
distance Dmax, thus decreasing the clustering quality.

206 F. Vandeputte, L. Eeckhout, and K.D. Bosschere

Fig. 1. The quality-predictability score (QPS) combining clustering quality (CQ) with phase pre-
dictability. An example for gzip

Table 3. The PCM for the various benchmarks

benchmark PCM benchmark PCM

eon 94.44% ammp 94.98%
gcc 70.83% applu 82.82%
gzip 85.67% equake 91.10%
mcf 78.70% facerec 98.65%
twolf 83.35% swim 96.19%
vpr 94.29% wupwise 99.29%

the phases as observed when running the reference input. Ideally, there should be a one-
to-one mapping of phases. In order to validate the quality of the profiling information
we have done the following experiment. We have calculated the train phases as well
as the reference phases when running the train and reference input, respectively. Sub-
sequently, we have computed the phase correspondence matrix between these phases.
An element (i, j) in the phase correspondence matrix gives the number of fixed length
intervals (when running the reference input) corresponding to reference phase i and
train phase j. Based on the correspondence matrix we now calculate the phase corre-
spondence metric (PCM) which quantifies how well the phase behavior of the train and
reference input correspond to each other. The PCM is calculated as follows. Every en-
try in the matrix is first weighted by the similarity between the corresponding train and
reference phase. The similarity between a train and a reference phase is computed as
one minus the (normalized) distance between the footprints of the centroid of the train
and reference phase respectively. All those weighted entries in the matrix are summed
and this sum is then divided by the total number of intervals when running the reference
input. Obviously, if there is a one-to-one correspondence in phase behavior between the
train input and the reference input, the PCM will be one. As such, the closer to one the
PCM is, the better. Table 3 shows the PCM for the various benchmarks. We observe
that there is a fairly good correspondence between the train input and the reference in-
put, with an average phase correspondence of 89%. One exception is gcc which has a
phase correspondence of only 70%. One could try however to combine phase informa-
tion from multiple inputs in order to increase the quality of the profiling information.
This is subject of future work.

Offline Phase Analysis and Optimization for Multi-configuration Processors 207

4.3 Configuration Space Exploration

Now that the phases are available, we can determine the optimal architectural configura-
tion per phase. This is done through an offline configuration space exploration. We use
detailed simulation for this purpose on a representative interval per phase. Again, being
able to determine the representative interval offline provides the possibility to carefully
choose a representative interval using a sophisticated algorithm. Online configuration
space exploration on the other hand, has to take greedy decisions again; typically, the
first few intervals from a phase are considered to determine the optimal hardware con-
figuration. In our offline analysis, we choose the interval being closest to the cluster
center as the representative interval for the given phase.

In our configuration space exploration, we determine the hardware configuration
that attains the maximum energy reduction while achieving an IPC that is within 2% of
the IPC of the baseline configuration. We vary the branch predictor size, the processor
width, the number of functional units, the window and fetch buffer sizes and the number
of active ways in the caches. Most of these resizable structures are controlled by clock
gating and sleep transistors. For the buffers, special care must be taken to shrink them
appropriately. If the size to shrink to is smaller than the current number of occupied
entries, resizing is postponed until the number of occupied entries drops below the target
size; the latter is accelerated by disallowing new entries to enter the buffer until resizing
is possible. For the cache adaptation, we employ the ‘active cache ways’ approach as
proposed by Albonesi [7]. Under this cache adaptation strategy, a subset of the cache
ways can be disabled to reduce energy consumption; in fact, only the data array is
disabled, the tag array remains untouched. When disabled, a cache way still preserves
its contents. When an access is done to an inactive way, a penalty of four cycles is
incurred and the data is transfered to one of the active ways.

Given the large search space (we have 1.89× 1015 possible configurations in this
study), it is impossible to do an exhaustive search. As such, we propose some simplified
but effective variants of the steepest descent (SD) search heuristic called static steepest
descent (SSD) and adaptive static steepest descent (ASSD). Steepest descent tries to
find the optimal solution in a given search space by following the path with the largest
slope for a given optimization function. The main problem of steepest descent however
is that it requires many evaluations in each step if the dimensionality of the search space
is high (e.g. in our case, we vary 21 hardware parameters during each step to know the
highest slope in that point).

A simple greedy solution to drastically reduce the number of evaluations is to eval-
uate the effect of reducing each parameter only in the first step, order all parameters
according to their slope in that initial point, and then optimize each parameter in that
order one after another while keeping the rest of the configuration untouched. This is
what we call static steepest descent (SSD) because we only evaluate the slope of each
parameter once, and use the same ordering in the following steps. The main disadvan-
tage of this algorithm is that the next parameter is only optimized if the previous param-
eter has been optimized. In many cases however, it is better to only partially optimize
a parameter so that the next parameter can be optimized more aggressively. Indeed, a
parameter that was initially cheap to optimize can become very costly after a while in
such a way that other parameters now have become cheaper. However, we do not want

208 F. Vandeputte, L. Eeckhout, and K.D. Bosschere

to evaluate all parameters in each step. Instead, we build a table with the slope in the
initial design point as is done is SSD. During the search algorithm we do the following
in each iteration: we determine the architectural parameter with the largest slope and
optimize along that parameter. We then update the table with this newly obtained slope.
If the slope for the current parameter is smaller than one of the other slopes in the table,
we undo the last optimization step and continue the optimization process with the pa-
rameter in the table that now has the largest slope. This optimization algorithm is called
adaptive static steepest descent (ASSD) and combines the advantages of both SD and
SSD.

In order to further reduce the total time spent in the configuration space exploration
we add a simple but effective pruning scheme to the search algorithms. Recall that
we start from our baseline configuration which has all its parameters at its maximum
values. In all of our search algorithms we optimize each parameter by scaling down
the corresponding hardware structure. So, if the IPC is no longer within 2% of the
baseline IPC, we can stop optimizing the current parameter—scaling further down will
not yield a higher IPC. We thus prune a part of the search space. Likewise, if the energy
reduction starts decreasing, we also do not consider the current parameter anymore in
the next steps.

Fig. 2. The overall energy reduction (left) and total number of evaluations (right) for the search
algorithms when optimizing all phases of each benchmark

Looking at Fig. 2, we conclude that ASSD performs nearly as well as SD in terms of
energy reduction, but requires only a small number of evaluations. The average number
of evaluations is about 132 for optimizing one phase and 2000 for one benchmark. SSD
also performs reasonably well compared to ASSD and SD in terms of energy reduction,
and the number of evaluations during design space exploration are yet smaller than for
ASSD. SD requires a very large number of evaluation runs. In all cases presented in
Fig. 2, the performance degradation was no more that 2%. To validate the effectiveness
of these algorithms, we also evaluated these algorithms in a more limited search (to
be able to compare to exhaustive searching) and concluded that the optimum identified
through these simple heuristics was found to be close to the global optimum. For ex-
ample, the energy reduction results of ASSD are within 5% of the optimal results on
average. We did not include this evaluation in this paper due to lack of space.

Offline Phase Analysis and Optimization for Multi-configuration Processors 209

Fig. 3. Overall energy reduction and IPC degradation for our adaptive processor compared to the
baseline processor

4.4 Adaptive Execution

From these offline analyses, we obtain a phase list consisting of a representative foot-
print (the footprint of the representative interval) and an optimal hardware configuration
per phase. Upon program execution, the phase list is communicated to the hardware and
is stored in the Phase Information Table (PIT). The PIT contains a small number of en-
tries (32 in our study, large enough to capture all phases of a program in this paper),
each entry containing a phase ID, a 32-byte footprint (the footprint of the representative
interval) and the optimal hardware configuration. During execution, phase information
of the current interval is collected similar to what is explained in section 4.1. By the
end of the interval, a footprint is obtained. This footprint is then compared to all the
footprints in the PIT and the phase ID of the least distant footprint is returned. The
phase history information and phase predictor are updated with the last phase ID and
is subsequently used to index the phase predictor. The phase predictor then returns the
next phase ID. Accessing the PIT with the predicted next phase ID yields the optimal
hardware configuration for the next phase.

4.5 Phase Prediction

An important aspect of our temporal hardware adaptation approach is phase prediction.
Phase prediction is used both for classifying intervals into phases as well as for predict-
ing the next phase during program execution. In our framework, we used a 2-level burst
predictor with conditional update and confidence, as Vandeputte et al. [13] showed that
this is today’s most accurate phase predictor. In this paper, we used a 256 entry 4-way
set associative predictor table with 2-bit saturating counters and a confidence threshold
of 1. The average phase misprediction rate of the SPEC2000 benchmarks when using
the offline phases during the adaptive execution is 7.7% (compared to 14.5% when
using the simple last value predictor).

5 Overall Results

Figure 3 shows the overall energy reduction and IPC degradation using our adaptation
framework. Note that these results are obtained through a cross validation setup. We

210 F. Vandeputte, L. Eeckhout, and K.D. Bosschere

Fig. 4. Energy reduction per processor component

used the train input to identify the phases and to determine the optimal configuration
per phase. The reference inputs are then used to report the energy reduction and per-
formance degradation results. The results in Fig. 3 show an average energy reduction
of 40% and a 2% average performance degradation. For most benchmarks, the per-
formance degradations that we observe in Fig. 3 are around 1.5% to 2.5%. There are
however a few exceptions, for example gcc and gzip, for which we observe a perfor-
mance degradation of 4.5% and 3.5%, respectively. The reason for these relatively high
IPC degradations is because of the mismatch between the phases of the program exe-
cuted with the train input versus the reference input on the one hand, and the poor phase
predictability (74% for gcc and 72% for gzip) on the other hand.

Figure 4 quantifies the energy reductions per processor component. We make a
distinction between the branch predictor, the RUU, the LSQ, the L1 I-cache, the L1
D-cache, the L2 cache and the functional units. The largest energy reductions are ob-
served in the instruction windows (both the RUU and the LSQ). The energy reductions
in the branch predictor, the L1 D-cache and the functional units are also significant. For
the L1 I-cache and the L2 cache on the other hand, we do not obtain that large energy
reductions, 6% and 9% on average. There is clearly also a difference in energy reduc-
tion of various components between the SPECint and SPECfp programs. For example
the branch predictor and L1 I-cache can be reduced more aggressively for SPECfp pro-
grams. The reason for this is that SPECfp programs have small, regular kernels, whereas
SPECint programs are far more irregular.

6 Conclusions

Adaptative processing is an effective means for reducing the energy consumption with-
out affecting overall performance. Although several approaches have been proposed
for hardware adaptation, very few papers considered efficient managing of multi-
configuration hardware. The biggest challenge here is how to deal with the large config-
uration space in case of multiple configurable units. In this paper we presented a frame-
work that is able to efficiently deal with multi-configuration hardware. Next to this, we
also (i) presented a highly efficient offline configuration space search algorithm that em-
ploys search space pruning and simulation of small instruction intervals, (ii) proposed

Offline Phase Analysis and Optimization for Multi-configuration Processors 211

a new phase classification metric and (iii) introduced a phase correspondence metric to
quantify the phase similarity between different runs of a program. The overall energy
reduction that we obtain is 40% on average with a 2% performance degradation.

Acknowledgements

This research was funded by Ghent University and by the Fund for Scientific Research-
Flanders (FWO-Flanders).

References

1. Dropsho, S., et al.: Integrating adaptive on-chip storage structures for reduced dynamic
power. In: Internat. Conf. on Parallel Arch. and Compil. Techniques. (2002)

2. Huang, M., et al.: Profile based energy reduction for high-performance processors. In:
Workshop on Feedback-Directed and Dynamic Optimization. (2001)

3. Huang, M.C., Renau, J., Torrellas, J.: Positional adaptation of processors: application to
energy reduction. In: Internat. symp. on Computer architecture. (2003)

4. Dhodapkar, A.S., Smith, J.E.: Managing multi-configuration hardware via dynamic working
set analysis. In: Proc. of the Internat. symp. on Computer Arch. (2002)

5. Huang, M., et al.: A framework for dynamic energy efficiency and temperature management.
In: Proc. of the Internat. symposium on Microarchitecture. (2000)

6. Sherwood, T., Sair, S., Calder, B.: Phase tracking and prediction. In: Proc. of the Internat.
symposium on Computer architecture. (2003) 336–349

7. Albonesi, D.H.: Selective cache ways: on-demand cache resource allocation. In: Proc. of the
32nd Internat. symposium on Microarchitecture. (1999) 248–259

8. Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. SIGARCH Comput. Archit.
News 25 (1997) 13–25

9. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level power
analysis and optimizations. In: Proc. of the Internat. symposium on Computer architecture.
(2000) 83–94

10. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing large
scale program behavior. In: Proc. of the 10th Int. Conf. Arch. Support Program. Languages
Operating Syst. (2002) 45–57

11. Pelleg, D., Moore, A.: X-means: Extending k-means with efficient estimation of the number
of clusters. In: Proc. of the Internat. Conf. on Machine Learning. (2000)

12. Lau, J., Schoenmackers, S., Calder, B.: Transition phase classification and prediction. In:
Proc. of the Internat. Symposium on High Performance Computer Architecture. (2005)

13. Vandeputte, F., Eeckhout, L., De Bosschere, K.: A detailed study on phase predictors. Sub-
mitted to Europar 2005 (2005)

Hardware Cost Estimation for
Application-Specific Processor Design

Teemu Pitkänen, Tommi Rantanen, Andrea Cilio, and Jarmo Takala

Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
{teemu.pitkanen, tommi.rantanen, andrea.cilio, jarmo.takala}@tut.fi

Abstract. In this paper, a methodology for estimating area, energy consumption
and execution time of an application executed on a specified processor is pro-
posed. In addition, a design exploration process to find suitable processor archi-
tectures for a specific application is proposed. Cost and performance estimation is
an important part of the exploration process. The actual cost estimation is based
on predefined characterizations of cost and performance of resources stored in a
database. The results show that the method is quick and its accuracy is sufficient
for design space exploration.

1 Introduction

In general, tailoring a processor architecture for a specific application or set of applica-
tions under certain implementation constraints calls for analyzing several architectural
alternatives. This analysis requires several tasks to be performed: program code for the
application has to be generated for each target architecture, performance of the code on
each architecture has to be evaluated, and implementation costs have to be analyzed. A
huge effort is required to perform all these tasks manually.

This problem can be alleviated with tool-assisted exploration of a vast architecture
design space and a high-level language compiler that is retargetable at run time. In ad-
dition, the estimates of the cost of running an application on its target architecture, e.g.,
execution time, area, and energy, should be obtained. If hundreds of different architec-
ture alternatives are to be analyzed, it is essential that the estimations can be obtained
quickly.

In this paper, a methodology for estimating area, energy consumption, and execu-
tion time of an application executed on a processor is proposed. In addition, a design
exploration process to find suitable processor architectures for a specific task is pro-
posed. The actual cost estimation is based on predefined resource characteristics, which
are stored into a database used by the exploration process. The estimates obtained with
the proposed methodology are compared to reference values obtained from commer-
cial simulation tools. The results show that the accuracy of our method is sufficient for
the exploration process and the estimation is extremely quick compared to traditional
methods.

2 Related Work

The work presented in this paper is based on the Move framework, a design environ-
ment developed at Delft University of Technology, Delft, the Netherlands. The frame-

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 212–221, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Hardware Cost Estimation for Application-Specific Processor Design 213

work consists of a set of tools for designing application-specific programmable proces-
sors [1]; it includes a retargetable high-level language (HLL) compiler, a cycle-accurate
simulator and a processor generator. The framework provides also tool-assisted archi-
tecture exploration; the designer defines the maximum set of processor resources and
the explorer estimates the cost of executing the application on different architectures.
The processor architectures supported by the framework are all based on the same tem-
plate. A target architecture is an instantiation of this template with a set of parameters.
The tools of the framework can exploit the specific features of each instantiation.

The architecture template of the Move framework is based on transport triggering
paradigm [2] —hence the name transport triggered architecture (TTA)— where an in-
struction specifies only the data transports to be performed by the interconnection net-
work. The execution of an operation is a side effect of an operand transport to a specific
operand register of a function unit. TTA’s, therefore, remind the data-flow computation
paradigm, but the availability of operands is determined statically.

In a TTA processor, only one type of operation is supported: the move operation,
which performs a data transport from a source to destination. A TTA processor, as
illustrated in Fig. 1, consists of a set of function units (FU) and register files (RF)
containing general-purpose registers, a control unit, and an interconnection network
consisting of buses. Data memory accesses are performed with the aid of a load-store
unit, which is a normal function unit from the architecture point of view. The function
units and register files can have different number of input and output ports, which are
connected to one or more buses.

Each function unit begins to execute a new operation when an operand is moved into
a trigger operand register, shown in the block diagram in Fig. 2. All the other operands
have to be transferred into the operand registers in the same or earlier cycles. A function
unit can produce one or more results. If the function unit supports several operations,
the actual operation is selected by means of an opcode attached to the move that writes
the trigger register. The function units can be pipelined and the latency of a unit is
managed by the compiler, which expects deterministic latencies. Dynamic latency has
to be managed at run-time by transport pipeline lock mechanism.

The design space exploration process used in Move framework, as described in [1],
is an iterative process where, in each iteration, the target processor architecture is varied
and the performance of the given application running on the processor is evaluated. The

LSUFUFU

RF RF CNTRLFU

DMEM

IMEM

Fig. 1. TTA processor organization. FU: Function unit. RF: Register file. LSU: Load-store unit.
CNTRL: Control unit. DMEM: Data memory. IMEM: Instruction memory. Dots represent con-
nections between buses and ports of function units

214 T. Pitkänen et al.

tdata

clock

opcode

tload

glock

reqlock

oload1

oload2

reset

odata1

rdata

logic

EN

logic

ENEN

EN

output register
(optional)

pipeline register
(optional)

trigger register operand register
EN

operand register

odata2

Fig. 2. Structure of a three-inputs, one-output function unit in a TTA processors

user defines the maximum set of resources, i.e., the number of buses, the number and
type of FUs, etc. At each iteration of the exploration process, a target architecture,
defined by a subset of the maximum resource set, is selected. The given application is
mapped and scheduled onto the target architecture and simulated to obtain performance
statistics. Finally, estimates of area and speed of the architecture on target technology
are computed.

In the next iteration, one resource is removed and the map-schedule-simulate-esti-
mate process repeated. Based on the obtained statistics, the next target architecture is
selected by removing another resource. This process is repeated until a critical resource
is removed, i.e., the application cannot be scheduled without the resource. The critical
resource is put back and another one is removed. After a while, the target architecture
contains only critical resources and nothing can be removed. At this point, the explorer
begins to put resources back, but in different order. The explorer performs a predefined
number of such remove-add resource sweeps. After the exploration is completed, the
user can pick the target architectures with favorable cost and performance characteris-
tics for further optimizations.

The design space exploration process requires estimation of various cost metrics.
Different cost metrics of a digital circuit, e.g., area and power consumption, can be esti-
mated at different levels of abstraction. In general, the estimation is a trade-off between
accuracy and speed, i.e., better accuracy requires more details of the implementation.
There are several tools to obtain accurate estimates of area, delay, and power consump-
tion using physical models. These tools require that the VLSI implementation is avail-
able implying that the time consuming place and route phases have been completed.
There are also low-level power analysis methods operating at RT-level, which provide
comparable accuracy, e.g., [3] [4]. However, the low-level tools are not especially useful
in architectural exploration due to their long simulation times. In [5], several methods of
physical modeling, such as Rent’s rule and Donath’s wiring model, have been applied
for evaluating the area and delay of the protocol processor architectures. The Rent’s

Hardware Cost Estimation for Application-Specific Processor Design 215

exponents were allocated for each hardware resource in the processor and final cost is
obtained with linear approximation. The area accuracy is within 40% of true area.

Most of the efforts in power estimation have targeted at compiler optimizations, i.e.,
creating power-aware software. For this purpose, cycle-by-cycle power estimation is
required. The estimation is often targeted to a specific microarchitecture, as with the
methods reported in [6] [7]. If architectural alternatives are to be explored, the estima-
tion method has to support higher level models. E.g., in [8], cycle-level performance
simulator is used to obtain the hardware access counts. These counts are used to obtain
power estimate with the aid of parameterizable power models of the resources. These
models are based on effective capacitance and fall into four categories: array struc-
tures, fully associative content-addressable memories, combinational logic and wires,
and clocking. Since the power models are based on capacitance, the models cannot be
obtained automatically from a RT-level design. This implies manual work when new
models are created.

In [9], the power estimation of a processor core is based on switching capacitance
tables. Each function unit is analyzed with all the possible operand combinations. The
power accuracy was verified within 10% of results obtained with circuit level simulators
while the execution time was less than 0.1 sec per transition. The tabular power figures
implies large tables when the number of bits in the inputs is increased.

The estimation models can also be obtained automatically from RT-level compo-
nents as described in [10]. The elementary components are synthesized onto target
technology and characteristics are stored into a component-library. The characteris-
tics include both the delay and power consumption. The RT-level components are fairly
fine-grained, e.g., full-adders and logic gates, thus complex systems will contain a large
number of components. A power estimation method based on a higher level model
is proposed in [11], where each functionality of a peripheral device is modeled as an
instruction. Each instruction has a corresponding power mode, which allows a power-
per-instruction look up table to be created. The power consumption of the processor is
still based on measuring the current when a certain instruction is executed.

In the work described in this paper, the objective is architectural design space ex-
ploration, thus huge number of different processors are to be analyzed. This calls for an
extremely quick estimation method. In addition, the absolute accuracy of the estimation
results is not the main concern; the purpose is to obtain the relative cost of different de-
sign alternatives. After exploration, the user will pick up the most promising candidates
for further investigation.

3 Cost Estimation Method

Due to the fact that the design space exploration is an iterative process and a large
number of different architectures are analyzed, the cost estimation needs to be quick. In
addition, the estimation method has to be independent from technology, i.e., the same
tools should work when the target technology is changed. Finally, the exploration is
used to pick up candidates for further optimizations, thus the relative cost is needed
rather than the absolute cost.

In this work, we have exploited the fact that the exploration process contains already
simulation, which provides statistics of the utilization of each resource. In addition,

216 T. Pitkänen et al.

the framework contains a processor generator, which generates synthesizable hardware
description of the final processor structure. This generator relies on library components,
i.e., synthesizable hardware descriptions of resources such as function units, register
files, etc. Thus, descriptions of most resources are predefined.

3.1 Modified Design Space Exploration Process

In the original exploration process in [1], an important architecture parameter was fixed
before the exploration process; the latency of function units was given by the user. This
approach does not take into account that the latency of a function unit is dependent on
the timing requirement, i.e., a unit may require pipelining, which increases the latency,
when shorter delay is needed. In a similar fashion, the same unit may have a different
structure if delay requirements are different. E.g., simple ripple-carry adder is sufficient
for low clock frequencies but higher clock frequencies may require carry-look ahead
adders, thus the area and power of the units depends on the delay constraint.

In order to automate the selection of the FU latency, we propose that the cost in-
formation of several implementations of the same function unit is stored into a cost
database together with latency and critical path information. Given a delay constraint,
the latency of a function unit can be easily determined. This requires that the clock fre-
quency is not estimated like in [1]. The cycle time is either given by the user or is varied
by the exploration process.

The implementation of the function unit can be selected with the aid of the cycle
time and delay of the component when the inputs and outputs of the function unit are
registered, i.e., the critical path determining the delay is from a register to a register.
However, the output register is optional, thus it is possible that the critical path in a
complete processor is from the input register through the logic of the function unit
and the interconnection to the input register of another function unit. In such a case,
the interconnection delay has to be taken into account when determining whether the
component fulfills the given timing constraints or not.

The proposed design space exploration process is illustrated in Fig. 3. The inputs
of the exploration process are the unscheduled code of the given application, a set of
processor components (resources), and the cost database. In each iteration, a target ar-
chitecture is formed by selecting a set of resources. The architectural parameters that
are related to the implementation, such as latency, are obtained from the cost database.
The given application is then scheduled onto the target architecture and the parallel
code is simulated. Simulation results are finally used to estimate the cost of executing
the parallel code on the architecture. Each evaluated target architecture is stored with
its cost and performance statistics as one design point in the design space.

3.2 Technology Characterization

Implementation-specific data about the resources is stored in the cost database. These
data can be obtained by running logic synthesis tools and hardware simulators and
analyzing the results. This process, called characterization, can be automated and per-
formed off line, since the same cost database can be shared by several exploration runs,
with different applications and initial architectures. The hardware description of each
function unit is stored in libraries. Those descriptions are needed during the processor

Hardware Cost Estimation for Application-Specific Processor Design 217

Design Point #i
(Machine+Statistics)

Mapper & Scheduler

SimulatorCost Estimation

Parallel Code #i

Sequential Code
Maximum

Resource Set

Application
in HLL

Compiler Front-End

Cost Database
area, energy, delay

Design Space Exploration

Machine Description#i

Resource Selection

cycles#i,
utilizations#i

Statistics#i
utilizations#i, area#i,

clock period#i,
 cycles#i, energy#i

Fig. 3. Principal flow diagram of the proposed design space exploration process. HLL: High-level
language

Table 1. Properties characterizing the hardware resources

Resource Characterized by

Function Unit operations, word width, operation delay (critical path), output de-
lay (delay from last register to output), latency, no. pipeline stages,
pipeline control discipline, no. input ports, no. output ports

Register File no. words, word width, delay, no. read ports, no. write ports

Interconnect fanin, fanout, word width, delay

Control Unit density of the interconnection network

generation phase. During the characterization phase, a block is synthesized with vary-
ing synthesis constraints and simulated. The implementation data is obtained from the
report files.

Each type of hardware resource, i.e., function units, register files, and interconnec-
tions, is characterized by a specific set of properties, as shown in Table 1. The database
contains also an entry for the control logic. In addition, certain metrics may consist of
several values for each entry.

3.3 Area Estimation

The total area of the target architecture is obtained as the sum of the area of each hard-
ware resource, i.e., area of function units, register files, interconnection, and control
unit. The area of a particular function unit and register file is obtained by querying the

218 T. Pitkänen et al.

corresponding entry from the database. If an equal match does not exist in the database,
the closest possible database entries are used for estimating the area.

The area estimation of interconnect is obtained with a slightly different approach.
The interconnect consists of sockets, i.e., connections of a port to buses, as illustrated in
Fig. 4. In our case, busses are realized with the aid of one-directional bit lines instead of
tristate buses as in [1]. The input and output sockets contain AND gates and multiplex-
ers, respectively. The actual bus contains an OR gate, thus the area estimate is obtained
by summing the area estimates of those components from the cost database.

3.4 Energy Estimation

The estimate of the energy consumed by a resource cannot be obtained directly from
the database but it must be linearly approximated from the utilization, and weighted ac-
cording to the used cycle time. The energy estimate of a function unit, EFU , is obtained
as follows

EFU =

(
∑

i
UiEi

)
+Eidle

(
nc−∑

i
Ui

)
+Estatic

nctclk

td
(1)

where Ei is the dynamic energy per clock of operation i, Eidle is dynamic energy when
no operation is executed per clock, Estatic is the energy due to leakage current during
time td , td is the delay of critical path, Ui is the number of times the operation i is
used, nc is the number of cycles executed in the simulation, and tclk is the clock period.
The parameters Ei, Eidle, Estatic, and td are obtained from the cost database, while the
parameters Ui and nc are obtained from the instruction set simulation. The clock period
tclk is defined during the resource selection.

The energy of a register file, ERF , requires a different formulation. An RF is charac-
terised by its number of input and output ports, which has a strong effect on the power
consumption. The formula used to compute the energy is

FU0 rdata FU1 r2data FU0 tdata FU0 odata FU1 tdata FU1 odataFU1 r1data

Ena

Output
Socket

Output
Socket

Output
Socket

Socket

Input
Socket

Ena Ena Sel Sel

Bus0

Bus0
Bus1
Bus2

Bus1

Bus2

Input
Socket

Input
Socket

Sel

Input
Socket

Sel

FU0
tdata odata rdata

FU1
odata r2data

a)

b)

r1datatdata

Fig. 4. Example of TTA processor: (a) logical diagram and (b) principal structure

Hardware Cost Estimation for Application-Specific Processor Design 219

ERF =
(

∑
r

∑
w

ErwUrw

)
+Estatic

nctclk

td
(2)

where Erw is the dynamic energy per clock when r reads and w writes are performed in
parallel, Urw is the number of times when r reads and w writes are performed in parallel
in simulation, and Estatic is the energy per td due to leakage current of the RF. Again,
the parameters Erw, Estatic, and td are obtained from the cost database and Urw and nc

are given by the instruction set simulator.
The energy consumed by the interconnection is obtained with the same principle as

with function units in (1). For estimating the energy of a control unit, ECNT RL, we have
used an extremely simple model:

ECNT RL = nr (E0 +dEs) (3)

where nr is the total number of bits in all the registers in the control unit and E0 the
dynamic energy per clock cycle of a 1-bit register. The parameter d denotes the den-
sity of interconnection network, which is describes how many of all the possible socket
connections are used, i.e., d = 1, if all the socket connections are connected (fully con-
nected interconnection). The parameter Es describes the additional energy consumed
per clock cycle due to instruction decoding and driving of the control signals to a socket
connection.

4 Experimental Results

In order to compare the accuracy of the proposed estimation scheme, we characterized
a set of function units described in VHDL on a commercial 0.11 μ ASIC technology
and created a cost database. We used a number of applications including 8×8 discrete
cosine transform and Viterbi decoding and selected several target architectures for each
application, with varying level of parallelism. The applications were compiled with
Move tools onto the target architectures and the Move simulator was used to obtain the
run-time statistics. A VHDL description of each target architecture was generated.

For each target architecture, the reference area was obtained by synthesizing the de-
sign using the Synopsys Design Compiler. The timing constraints used in the synthesis
were used as values of requested clock period in the estimations. The energy references
were obtained by performing first gate-level simulation for capturing the switching ac-
tivity. The activity information was used in the power analysis of the Design Compiler.
The simulation was performed by using the binary code generated by the Move tools.

An example of experimental results is given in Fig. 5, which shows area and energy
of function units (FU), register files (RF), interconnect (IC) and control logic (CN-
TRL) for one application executed on three different architectures. According to pre-
liminary experiments, the average error in area estimation is 5% and the maximum error
is 18.3%. The largest error is in the interconnect and control logic. The error in energy
estimation is larger: 10.5% on average and maximum of 34.8%. Again, the largest error
is typically in the interconnect and control unit due to the fact that the used models are
simple.

220 T. Pitkänen et al.

The speed of the estimation process is mainly dependent on the number of function
units and register files. The size of the cost database has also an effect on the estimation
speed. In order to have an idea of the estimation speed and its portion of the overall
design space exploration process, we measured the time an estimation takes on a Linux
work station with 600 MHz Pentium 3 processor. Target architectures ranging from 20–
70 kgates required 1–5 sec while simulation of these (500–2M instruction cycles) took
2–60 seconds. The actual compilation took 2-120 seconds. Therefore, one iteration in

AE AR BE BR CE CR

ki
lo

g
at

es

0

10

20

30

40

50

60

70

80

AE AR BE BR CE CR

CNTRL

IC

RF

FU

T=203μsec T=186μsec T=109μsec

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

uJ

Fig. 5. Experimental area and energy comparisons of three processor architectures executing the
same application. Processors A and B run at clock frequency of 100 MHz and processor C at 200
MHz. AE ,BE ,CE : Estimates. AR,BR,CR: References. T : Execution time

the design space exploration, estimation of one processor took 5–180 sec. When those
processors are synthesized on a work station with a 3 GHz Pentium 4 processor, the
logic synthesis alone takes from 2 hours to 2 days. The power analysis of the synthe-
sized structure with the switching activity capture in simulator requires another 2 hours
to 2 days depending on the number of instruction cycles.

5 Conclusions

In this paper, we have proposed a cost estimation methodology suited for design space
exploration for TTA processors. In addition, we proposed an improved exploration pro-
cess with tool-assisted selection of pipelining degree for function units of a given target
architecture. Our preliminary comparisons show that the proposed cost estimation pro-
cess is really quick. Therefore, it is well suited for exploration where hundreds or even
thousands of architectures are evaluated. In addition, the experiments show that the area
accuracy of the estimation is clearly sufficient for design space exploration. The energy
estimation does not perform as well, especially the estimation of interconnect could be
improved. However, the energy estimation accuracy is still sufficient for exploration; it
allows comparison of different processor architectures.

Hardware Cost Estimation for Application-Specific Processor Design 221

Acknowledgement

This work has been supported in part by the Academy of Finland under project 205743
and the National Technology Agency of Finland under project “Flexible Design Meth-
ods for DSP Systems”.

References

1. Corporaal, H., Arnold, M.: Using transport triggered architectures for embedded processor
design. Integrated Computer-Aided Eng. 5 (1998) 19–38

2. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. John Wiley & Sons,
Chichester, UK (1997)

3. Jin, H.S., Jang, M.S., Song, J.S., Lee, J.Y., Ki, T.S., Kong, J.T.: Dynamic power estima-
tion using the probabilistic contribution measure (PCM). In: Proc. Int. Symp. Low Power
Electronics and Design, San Diego, CA (1999) 279–281

4. Wu, Q., Qiu, Q., Pedram, M., Ding, C.S.: Cycle-accurate macro-models for RT-level power
analysis. IEEE T. VLSI 6 (1998) 520–528

5. Ahonen, T., Nurmi, T., Nurmi, J., Isoaho, J.: Block-wise extraction of Rent’s exponents for
an extensible processor. In: Proc. IEEE Comput. Soc. Ann. Symp. VLSI, Tampa, FL (2003)
193–199

6. Chang, N., Kim, K., Lee, H.G.: Cycle-accurate measurement and characterization with a
case sudy of the ARM7TDMI. IEEE T. VLSI 10 (2002) 146–154

7. Contreras, G., Martonosi, M., Peng, J., Ju, R., Lueh, G.Y.: XTREM: A power simulator for
the Intel XScale core. In: Proc. ACM Conf. Language Compilers Tools Embedded Syst.,
Washington, DC (2004) 115–125

8. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power
analysis and optimizations. In: Proc. Int. Symp. Comput. Arch., Vancouver, BC, Canada
(2000) 83–94

9. Vijaykrishnan, N., Kandemir, M., Irwin, M.J., Kim, H.S., Ye, W., Duarte, D.: Evaluating
integrated hardware-software optimizations using a unified energy estimation framework.
IEEE T. Comput. 52 (2003) 59–76

10. Gerlach, J., Rosenstiel, W.: A scalable methodology for cost estimation in a transformational
high-level design space exploration environment. In: Proc. Design, Automation and Test in
Europe, Paris, France (1998) 226–231

11. Talarico, C., Rozenblit, J.W., Malhotra, V., Stritter, A.: A new framework for power estima-
tion of embedded systems. IEEE Comput. 38 (2005) 71–78

Ultra Fast Cycle-Accurate Compiled Emulation of
Inorder Pipelined Architectures�

Stefan Farfeleder1, Andreas Krall1, and Nigel Horspool2

1 Institut für Computersprachen, TU Wien, Austria
{stefanf, andi}@complang.tuwien.ac.at

2 Department of Computer Science, University of Victoria, Canada
nigelh@uvic.ca

Abstract. Emulation of one architecture on another is useful when the architec-
ture is under design, when software must be ported to a new platform or is being
developed for systems which are still under development, or for embedded sys-
tems that have insufficient resources to support the software development process.
Emulation using an interpreter is typically slower than normal execution by up to
3 orders of magnitude. Our approach instead translates the program from the orig-
inal architecture to another architecture while faithfully preserving its semantics
at the lowest level. The emulation speeds are comparable to, and often faster than,
programs running on the original architecture. Partial evaluation of architectural
features is used to achieve such impressive performance, while permitting accu-
rate statistics collection. Accuracy is at the level of the number of clock cycles
spent executing each instruction (hence the description cycle-accurate).

1 Introduction

Emulation of instruction sets of different architectures is common. Originally, all em-
ulators were interpreter-based. An interpreter mimics the execution of a standard com-
puter by repeatedly fetching an instruction, decoding that instruction, and then execut-
ing it. The implementation is straightforward and allows insertion of monitoring code
into the interpreter to gather any desired statistics. SimpleScalar and some other mod-
ern simulators still use interpretation because it allows cycle-accurate emulation of all
features of today’s complex architectures with out-of-order instruction execution [1].

The biggest disadvantage with interpreters is their extremely slow execution speed,
which can be three to five orders of magnitude slower. Improving emulation speed is
clearly desirable. In this paper, we describe techniques which achieve a speed-up by
about three orders of magnitude — making the emulated program on a PC faster than
on the original architecture.

2 Related Work

One technique for improving emulation speeds is memoization. Micro architecture
states and the resulting simulator actions are cached. Then the emulation can be “fast

� This research was supported in part by Infineon and the Christian Doppler Forschungsge-
sellschaft.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 222–231, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 223

forwarded” whenever a cached state is reached. Schnarr and Larus [2] improved the
speed of FastSim by 5 to 12 when emulating an architecture similar to a MIPS R10000.
The speed can be further improved by using subroutine threaded interpreters which
cache changed program parts [3].

Translating emulators are orders of magnitude faster than interpreters. Binary trans-
lation was first used for functional simulation of other architectures. A static binary
translator takes a complete program, determines the program structure and translates
the program into an equivalent one on the host architecture. Problems arise when in-
direct branches cannot be resolved at compile time or self-modifying code is used. A
solution is to combine the translated program with an interpreter which is used in such a
case. Binary translators have been successfully used for the simulation of the IBM 370
architecture [4] and for the migration of programs from the MIPS architecture to the
Alpha architecture [5]. In contrast, dynamic binary translators convert short sequences
of linear code into native code of the host architecture at runtime. This is the approach
embodied in the Transmeta Crusoe architecture [6].

Shade [7] performs functional emulation and instrumentation, where collecting
traces and similar information incurs a 2.8 - 6.1 slowdown. Embra [8] is a functional
CPU model in SimOS and runs about 10 to 30 times slower by translating target instruc-
tions into the native instructions of the host. Bintrans [9] is a retargetable binary trans-
lator. From a description of the source and target architectures, a dynamic binary trans-
lator is automatically generated which executes programs between 1.8 and 2.5 times
slower than the original.

Binary translation is tied to a fixed host architecture. Compiled emulation is more
flexible because it generates C (or other high-level) source code for the emulated pro-
gram. The compiler can optimize away most of the intermediate computations and thus
improve performance. Mills et al. [10] generate one function for the complete program
implementing branches by a switch statement. Amicel and Bodin [11] used assembly
language source as the input language and generated C/C++ machine code. Retargetable
compiled emulation has been successfully applied by Pees et al. [12].

3 The xDSPcore Processor Architecture

The simulated processor, xDSPcore [13], is a five-way variable-length very long in-
struction word (VLIW) load/store digital signal processor (DSP) with pipelined inorder
execution. Up to five instructions are executed in each cycle. It supports some common
extensions for the DSP domain, such as SIMD (single instruction multiple data) instruc-
tions, multiply-accumulate instructions, various addressing modes for loads and stores,
fixed point arithmetic, predicated execution, etc. The processor’s register file consists
of two banks, one for data registers, the other for address registers. Each data register is
40 bits wide, but can also be used as a 32 bit register, or as two registers of 16 bit width
(“shared registers”, “overlapping registers”, “register pairs”).

The xDSPcore is a pipelined architecture. Some instructions need more than one
execution stage. Register operands are read at the beginning and written at the end of
the pipeline stage where they are needed. Branches have delay slots which can be filled
with any instruction bundle. The xDSPcore’s hardware loop instructions allow a fixed

224 S. Farfeleder, A. Krall, and N. Horspool

number of repetitions of a piece of code without having to manage the loop counter in
the code itself.

The simulated processor can make two memory accesses per cycle if they are to
different banks, otherwise an additional memory access cycle is needed. There is no
data cache, but there is an instruction buffer. The instruction buffer minimizes memory
accesses and thus reduces power consumption on the xDSPcore. It has eight slots. Each
slot holds one fetch bundle, which consists of four instruction words, plus an executed
bit. The executed bit is set after all four of the instruction words are executed. The slot
can be recycled and its contents overwritten by another instruction bundle only after the
executed bit has been set. The xDSPcore’s fetch unit reads one fetch bundle per cycle
and writes it in a round-robin manner to the next slot in the buffer, omitting the write if
that bundle is already cached or if the buffer slot does not have its executed bit set. A
second unit, the aligner unit, reads four fetch bundles from the buffer and issues a stall
if an instruction word needed for the next instruction bundle is missing.

4 Simulator Details

The requirements of our simulator were:

– fastest possible execution,
– cycle and state accurate,
– debugger support (single stepping, breakpoints),
– convenient architecture specification,
– portability (should run on common 32 and 64 bit computers).

The performance and portability requirements require compiled emulation. The as-
sembly language source of the program to be emulated is translated into an equivalent
C program which emulates the whole functionality of the simulated architecture. De-
spite difficulties caused when emulating a pipelined parallel architecture, basic blocks
and loops are used as translation units. To handle unpredictable computed jumps and to
support debugging, a full interpreter is integrated with the compiled emulator. Control
is passed back and forth between the two components as required. The interpreter has a
GUI which displays assembler source, and supports single-stepping and breakpoints.

For extending the architecture and for easy retargeting to other architectures, the
syntax and semantics of the instruction set are specified in a XML configuration file. In
the following sections, we describe how various problems in the emulator are solved.

4.1 XML Configuration File

Both the interpreter and the compiled emulator read their configurations from an XML
file. It describes the complete instruction set and the hardware configuration for the
register file, the pipeline, the instruction buffer, etc. The description of an instruction
includes the execution semantics and additional text used for automatic documentation
generation and to describe calling conventions. Figure 1 shows a slightly simplified
and edited version of the XML description of the ld (Load) instruction. The instruction
reads the value of an address register at the beginning of stage EX1, adds 2 to the register

Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 225

<instruction>
<mnemonic>ld</mnemonic>
<operands>
<operand>ADDR_REG</operand>
<operand>LX_DX_RX_REG</operand>

</operands>
<syntax>(op1)+, op2</syntax>
<semantics>
<execute>READ_OP1</execute>
<execute>MOD_OP1</execute>
<execute>MEM_READ</execute>
<execute>WRITE_OP2</execute>

</semantics>
</instruction>

<map key="READ_OP1">
<timing>EX1,begin</timing>
<code>tmp1 = %op1</code>
<code>tmp2 = %op1 + 2</code>

</map>
<map key="MOD_OP1">
<timing>EX1,end</timing>
<code>%op1 = tmp2</code>

</map>
<map key="MEM_READ">
<timing>EX2,begin</timing>
<code>tmp3 = mem[tmp1]</code>

</map>
<map key="WRITE_OP2">
<timing>EX2,end</timing>
<code>%op2 = tmp3</code>

</map>

Fig. 1. ld instruction with timings in the XML file

at the end of EX1, uses the old value as the address for a memory read at the beginning
of stage EX2 and stores the read value into another register at the end of the stage.

The identifiers within the <execute> elements reference other places in the XML
file (shown in Figure 1), where the timings and the code that has to be generated for
such an instruction part are stored. This separation of concerns facilitates maintenance
– since many instructions share common parts, changes can be made at a single place.

The <operands> and <syntax> elements shown in Figure 1 are used for the assem-
bler front-end. After an assembler line is split into simple tokens, checks are made as to
whether the syntax and the types of the operands match the information found here.

4.2 Dividing the Instruction Bundles into Basic Blocks

The instruction bundles are traversed to find all basic block leaders. A leader is an
instruction bundle that meets one or more of the following requirements:

1. it is a target of a branch instruction,
2. it starts the body of a hardware loop, or
3. it follows a branch instruction or the end of a hardware loop body.

For those branch instructions that have a branch delay, the instructions in the branch
delay slots are appended to the branch instruction’s basic block. If an additional branch
is executed in a branch delay slot, only the first instruction of the target basic block is
executed. In this case, a duplicate basic block which contains only the first instruction
is generated. Each of these basic blocks is translated into a single C function in the
generated output. This keeps the functions small, resulting in short compilation times
and good optimization by the C compiler.

226 S. Farfeleder, A. Krall, and N. Horspool

EX1 begin tmp1 = r0
tmp2 = r0 + 2

end r0 = tmp2
EX2 begin tmp3 = mem[tmp1]

end l0 = tmp3

Fig. 2. Code for ld (r0)+, l0

4.3 Generating Code for Instructions

Consider an actual instruction with real operands, like ld (r0)+, l0. The placehold-
ers for the operands that were shown in Figure 1 are simply filled with the actual
operands. Figure 2 depicts the code generated for this instruction. The identifiers start-
ing with tmp in the table are temporary variables used to cache register values or
computed values. The C compiler should optimize unnecessary copies away. These
temporaries also solve interdependencies between different pipeline stages of overlap-
ping instructions in an elegant way.

Many arithmetic instructions can be implemented by a single C operator. Other
instructions like multiply-accumulate, bit insertion or saturated computations do not
have direct C counterparts. They are implemented by groups of operations or small
inline functions which are read from the XML file.

4.4 Control Flow

Each generated C function returns the number of the next basic block to be be executed.
This number is used as an index into an array of function pointers to locate the next
basic block’s function. The compiled simulator’s main loop has the following simple
structure:

int bbnr = <number of starting block>;
while ((bbnr = bbptr[bbnr]()) >= 0) ;

A software stack simulates the hardware stack for subroutine calls. At a call, the
number of the basic block following the call instruction is pushed onto the stack, the
called function number is returned and is thus executed next. A return instruction pops
a function number from the stack and returns it.

4.5 Instructions Crossing Basic Block Boundaries

Consider the assembler code show in Figure 3. Because the EX2 stage of the ld instruc-
tion is executed at the same time as movr’s EX1 stage and because register l0 is written
at the end of a cycle, register l1 receives l0’s old value. Therefore executing the whole
ld instruction at the end of the basic block which contains the br instruction would
give wrong results. To resolve these conflicts, the code fragments of ld’s EX2 stage are
moved into the basic block that begins with the label foo: and will be executed there
in the correct order. The decision whether those moved code parts need to be executed
is determined by a global variable that remembers the last executed basic block.

Basic blocks can be duplicated to improve performance. For every predecessor Pi of
basic block B which has leftover pipeline stages, a specialized version Bi of basic block

Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 227

br foo
nop
ld (r0)+, l0
...
foo:
movr l0, l1

Fig. 3. Overlapping between ld and movr

B is generated. It includes the code for the leftover pipeline stages. A global simulator
switch determines the code generation scheme. In the previous example, the basic block
is duplicated. Only one of them executes the second part of ld.

4.6 Simulating the Instruction Buffer

The addresses of the currently cached fetch bundles are stored in an array, as are the
executed bits. At the beginning of each bundle, an attempt is made to insert the next
fetch bundle’s address into the array. A second table is used for a reverse-lookup be-
cause simulating the fully associative lookup would require up to eight comparisons per
check. This second table associates each possible fetch bundle address with an index
into the address array.

All instruction words between the program counter and the fetch counter are always
held in the instruction buffer. Thus if one knows that the fetch counter is ahead of
the instruction pointer by a sufficient amount, the check whether the instruction words
needed for the execution of the next bundle are available can be omitted. To simulate
this statically, the following strategy is applied. The program counter is initially set to
the address of the first instruction bundle and the fetch counter is set to the address of
the first fetch bundle. Program flow is simulated by adding four to the fetch counter and
the amount of memory used by the instruction bundle to the program counter at every
step. If the fetch counter does not exceed the program counter, there is no guarantee
that the bundle is in the buffer. In this case, extra code is generated which performs a
look-up for the needed address and to simulate a stall if it could not be found.

As already stated, executing a branch instruction sets the fetch counter and all exe-
cuted bits. Code to simulate these actions is executed at the start of the destination basic
block. When that destination block can be reached by both branching and by sequential
execution, two versions of the block are compiled — one with and one without the ex-
tra code to set the fetch counter and the executed bits. Finally code to set the executed
bit in the instruction buffer is inserted after all instruction words of a fetch bundle are
executed.

Simulating the instruction buffer is expensive. Techniques to decrease the costs by
computing extensive lookup tables at compile time are being explored.

4.7 Hardware Loops

The loop instruction is simulated by pushing a function pointer to the loop body’s first
basic block and the iteration count onto a stack. At the end of the loop, the counter
is decremented; if it reaches zero, the following basic block gets executed, otherwise
execution continues with the beginning of the loop body as found on the stack.

228 S. Farfeleder, A. Krall, and N. Horspool

If a hardware loop consists of a single basic block, the simulator optimizes the loop
into a C for(;;) statement, thus eliminating the overhead caused by a function call for
each iteration and enabling the C compiler to apply further optimizations. If a hardware
loop is sufficiently small to fit into the instruction buffer, a different optimization can be
performed. The loop body is unrolled three times; the first copy simulates the buffer as
described in the previous section for the first iteration, the second one repeats the body
n− 2 times. Since the instruction words are already buffered, the fetch simulation can
be completely omitted. Finally the third copy of the body simulates the last iteration of
the loop.

4.8 Memory Stalls

The xDSPcore has two memory ports, the X port covering the lower half of the data
memory and the Y port covering the upper half. Two memory accesses are possible in a
single cycle only if they do not use the same port, otherwise a pipeline stall occurs and
the second access is deferred to the next cycle.

If two memory accesses are detected in a bundle, code to test whether the two mem-
ory addresses use the same port has to be inserted. If tmp1 and tmp2 are temporary
variables holding the values of two address registers that are used to access memory,
then the code to check if a stall occurs is similar to this:

if (!((tmp1 ˆ tmp2) >> 15)) {
... /* issue a stall */

}

4.9 Collected Statistics

Each basic block has an associated counter which has to be incremented at runtime
when entered. Using these counters, the dynamic number of executed instructions, bun-
dles, the average number of instructions in a bundle, the frequency of each instruc-
tion, etc., can easily be computed. The number of memory stalls and aligner stalls are
also counted. In addition, the emulator maintains extra counters for .PROFILE pseudo-
instructions that are generated by the C compiler. They are used for feedback-driven
optimization.

5 Experimental Results

Six sample programs, which represent typical applications for the xDSPcore proces-
sor, were used in our experiments: blowfish (symmetric block ciphering), dct8x8/dct32
(discrete cosinus transformations), g721 (voice compression), serpent (cryptographic
algorithm) and viterbi (Viterbi decoder). The sizes of these programs and other char-
acteristics are listed in Table 1. The dynamic parallelism column shows the average
number of instructions executed in each cycle. The parallelism and the dynamic aver-
age basic block length have a significant effect on how efficiently the program can be
emulated.

The left part of table 2 shows the speed of the six programs on a simple interpreter.
Because statistics gathering has such a large effect on emulation speed, the speed is

Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 229

Table 1. Characteristics of Test Programs

Source size Object size Dynamic Average basic
parallelism block length

blowfish 25.8 kB 32 kB 1.91 14.38
dct8x8 43.9 kB 7 kB 1.85 7.48
dct32 35.8 kB 34 kB 2.14 8.73
g721 28.5 kB 5 kB 1.29 6.57
serpent 144.1 kB 46 kB 1.68 8.31
viterbi 36.6 kB 23 kB 1.21 216.85

Table 2. Emulation Speeds with an Interpreter and Compiler

interpreted compiled
with statistics without statistics with instr. buffer without instr. buffer

blowfish .083 MHz .207 MHz 165 MHz 302 MHz
dct8x8 .082 MHz .205 MHz 95 MHz 190 MHz
dct32 .071 MHz .187 MHz 105 MHz 204 MHz
g721 .078 MHz .198 MHz 78 MHz 259 MHz
serpent .040 MHz .208 MHz 120 MHz 258 MHz
viterbi .094 MHz .214 MHz 181 MHz 566 MHz

Table 3. Resources Needed to Create the Compiled Simulation

Generation Compile C code Binary
time (s) time (s) size (kB) size (kB)

blowfish 3.22 3.06 316 257
dct8x8 3.32 4.51 421 396
dct32 3.27 5.13 780 542
g721 4.97 7.47 454 404
serpent 9.41 24.36 2081 1518
viterbi 3.50 60.85 475 411

shown with statistics gathering enabled and disabled. The right part of table 2 shows
the execution speed of each of the programs when emulated with Compiled Emulation.
The two columns show the cost of emulating the instruction buffer of the xDSPcore ar-
chitecture. However it is necessary for guaranteeing cycle-accurate performance statis-
tics. Statistics gathering has negligible effect on timings for the compiled emulation.
Therefore, separate timing data is not shown for this case in the table.

The effective speed-up through using the compiled technique versus interpretation
can be estimated by comparing the numbers in the “with statistics” column of Table 2
with the numbers in the “with instruction buffer” column of Table 2. The speed-ups
range from 1000 to 3000. It can be seen that the largest speed-ups occur for the programs
which have the longest basic blocks.

Finally, Table 3 shows the resources needed to generate and compile the emulated
programs. Although the compiled programs are much larger than the original programs

230 S. Farfeleder, A. Krall, and N. Horspool

on the xDSPcore platform, it should be remembered that they are executed on a much
more powerful computer where memory is not a limitation. All measurements were
made on an AMD Opteron 2Ghz CPU. The C code was translated by the Intel compiler
with the -O3 optimization level.

6 Conclusion

We have presented a novel approach for retargetable emulation of an architecture with
some challenging features which include pipelining, a VLIW design, banked memory
and an instruction cache. By generating C code which represents a translation of the
original program at the basic block level, and which embodies the particular features
of the emulated architecture, we have achieved impressive performance results. To our
knowledge, we are the first to exploit partial evaluation of emulated features and ex-
tensive code duplication of the emulated program. The emulation speed is up to 3000
times faster than an interpreter while still maintaining a faithful simulation of the origi-
nal architecture down to the number of clock cycles consumed.

References

1. Austin, T., Larson, E., Ernst, D.: SimpleScalar: An infrastructure for computer system mod-
eling. Computer 35 (2002) 59–67

2. Schnarr, E., Larus, J.: Fast out-of-order processor simulation using memoization. In: Pro-
ceedings of the 8th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VIII), ACM SIGPLAN, ACM (1998) 283–294

3. Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., Hoffmann, A.: A universal
technique for fast and flexible instruction-set architecture simulation. In: Proceedings of the
39th conference on Design automation, ACM Press (2002) 22–27

4. May, C.: Mimic: a fast system/370 simulator. In: Papers of the Symposium on Interpreters
and interpretive techniques, ACM Press (1987) 1–13

5. Sites, R.L., Chernoff, A., Kirk, M.B., Marks, M.P., Robinson, S.G.: Binary translation. Com-
munications of the ACM 36 (1993) 69–81

6. Dehnert, J.C., Grant, B.K., Banning, J.P., Johnson, R., Kistler, T., Klaiber, A., Mattson, J.:
The transmeta code morphing software: Using speculation, recovery, and adaptive retransla-
tion to address real-life challenges. In: Proceedings of the International Symposium on Code
Generation and Optimization (CGO ’03). (2003)

7. Cmelik, B., Keppel, D.: Shade: A fast instruction-set simulator for execution profiling.
ACM SIGMETRICS Performance Evaluation Review 22 (1994) 128–137 Special Issue on
Proceedings of the 1994 Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’94; 16–20 May 1994; Vanderbilt University, Nashville, TN, USA).

8. Witchel, E., Rosenblum, M.: Embra: Fast and flexible machine simulation. In: Proceed-
ings of the ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems. Volume 24,1 of ACM SIGMETRICS Performance Evaluation Review.,
New York, ACM Press (1996) 68–79

9. Probst, M.: Dynamic binary translation. In: UKUUG Linux Developer’s Conference 2002.
(2002)

10. Mills, C., Ahalt, S.C., Fowler, J.: Compiled instruction set simulation. Software – Practice
and Experience 21 (1991) 877–889

Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 231

11. Amicel, R., Bodin, F.: A new system for high-performance cycle-accurate compiled simu-
lation. In: 5th International Workshop on Software and Compilers for Embedded Systems.
(2001)

12. Pees, S., Hoffmann, A., Meyr, H.: Retargetable compiled simulation of embedded proces-
sors using a machine description language. ACM Transactions on Design Automation of
Electronic Systems. 5 (2000) 815–834

13. Krall, A., Hirnschrott, U., Panis, C., Pryanishnikov, I.: xDSPcore: A Compiler-Based Con-
figurable Digital Signal Processor. IEEE Micro 24 (2004) 67–78

14. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform. Computer
35 (2002) 50–58

Generating Stream Based Code from Plain C

Marcel Beemster, Hans van Someren, Liam Fitzpatrick, and Ruben van Royen

ACE Associated Compiler Experts bv,
De Ruyterkade 113, 1011 AB Amsterdam, The Netherlands

marcel@ace.nl
http://www.ace.nl

Abstract. The Stream model is a high level Intermediate Representation that can
be mapped to a range of parallel architectures. The Stream model has a limited
scope because it is aimed at architectures that reduce the control overhead of pro-
grammable hardware to improve the overall computing efficiency. While it has
its limitations, the performance critical parts of embedded and media applica-
tions can often be compiled to this model. The automatic compilation to Stream
programs from C code is demonstrated.

1 Motivation

Now that humanity has learned to make very fast processors, it turns out that they
are not always efficient enough to fit our desire for portability. Fortunately there is a
lot of room for improvement. Programmable microprocessors - including RISC, CISC,
VLIW and DSP flavors - are very inefficient. For every data operation an instruction has
to be decoded, control signals sent, operands retrieved from a multi-ported (expensive)
register file, data moved to the functional unit, computed and finally moved back to
the register file. This does not even take speculative actions, re-order buffers, bypasses,
prediction mechanisms and many other techniques into account.

Nevertheless, programmable microprocessors remain extremely popular in many
computing domains, including that of embedded computing where—by nature—the
application is more static than applications that run on, for example, a PC. The primary
reasons are flexibility and sequential programmability.

Flexibility—due to software programmability—is important when time to market,
emerging standards, and product diversity are important. When a short time to market is
a goal, product specifications are often not available until the project is well underway.
Software provides the flexibility to adapt the product. Emerging standards pose similar
constraints. In-field upgrades are only possible with programmable devices.

Putting relatively small extensions aside, almost all programmable microprocessors
present a sequential programming model that is suitable for programming in assembly
or a sequential high level language such as C. Sequential programmability is important
because parallel programming is difficult and non-portable.

Parallelism holds the key to solving many of the inefficiencies of the sequential
processor. It has done so for many years already—right from the beginning of pro-
grammable computing. Parallel hardware is very easy to build. If parallel programming
were not so hard, parallel computing would be much more common than it is today.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 232–241, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Generating Stream Based Code from Plain C 233

The kind of parallel hardware that is used in embedded systems often has the goal of
reducing power consumption in addition to speeding up the application. A simple form
is the extension of processors with SIMD instructions operating on wide data paths.
Such an instruction operates, for example, on four data values at a time and saves the
control overhead of three individual values.

This paper discusses a stream based, abstract, parallel model of computation and
how to extract it from a subset of standard C. The aim of the model is to serve as an
intermediate representation in the compilation to programmable parallel architectures.
The model is an abstract model—it requires further mapping to the architecture to deal
with timing and resource constraints. For this reason, the model is rather restricted and
very static. This helps in the mapping to different kinds of parallel architectures, each
with its own special features and limitations. The static nature of the model implies that
much of the control overhead can be removed and that parallelism at the hardware level
is readily extracted.

The static nature of the model implies that not all of standard C can be expressed in
it. To compile arbitrary C programs requires a hybrid architecture that has an efficient
parallel data path as well as a fully flexible sequential data path. A compiler is expected
to keep track of which parts of the program are mapped to which data path.

The Stream model described here can be contrasted to the Streams-C high level
language [1]. Streams-C is a programming language, not an IR, and has a much richer
computational model including independently running processes. It is developed specif-
ically for programming FPGAs. Although both languages are based on the data flow
principle, the differences in design goals result in two very different languages.

The goals of StreaMIT [2] are closer to that of the Stream model. An important
difference is that the filters in StreaMIT can have arbitrary complexity, while the Stream
model’s computational elements are standard primitives. Timing and communication
are much less restricted in StreaMIT, even allowing for asynchronous messages. Still,
many of the optimization and mapping algorithms described for StreaMIT also apply
to this work.

2 The Stream Model

The Stream processing model that is introduced here is designed in the context of the
commercial CoSy compiler development system [3]. CoSy is used by many companies
and research institutes to create compilers for processors that are used in embedded
applications. CoSy is a compiler development system—it is highly flexible and can be
adapted to build compilers for a wide variety of processors. Compilers built with CoSy
are most often C compilers.

The Stream model is described here together with its derivation from standard C. It
serves as an intermediate representation in the compiler and requires additional map-
ping to actual hardware.

Figure 1 shows a graphical representation of an example Stream program. The
Stream model is always a directed data flow graph, no cycles are possible. A given
instance of the model consists of a number of connected elements, each implementing
a specific function that may be different from other elements. At the input side of the

234 M. Beemster et al.

@(#)streamcosymodel.fig 1.1 05/03/04

Generator
Input

Generator
Input

Constant

Output

Computational
Element

Computational
Element

Element

+

*

Fig. 1. A graphical representation of an example Stream program

graph are input and constant elements. At the output side are one or more output ele-
ments. Between input and output elements there is a directed network of computational
elements.

Input elements read from memory, output elements write to memory. The abstract
Stream model executes one iteration at a time. The term iteration is used since it cor-
responds directly with one iteration of the inner loop of the original C source code. At
every iteration input values are produced, then pass through the computational elements
network and the resulting values written to memory by the output elements.

The input for translation to the Stream model are C loop nests. These nested loops
are the source of the parallelism that can be expressed in the Stream model. The rest
of the program must be mapped to the sequential data path using traditional compiler
techniques.

2.1 Input Generators

Input generators arise from array access expressions. The following code is an excerpt
from a matrix multiply operation:

for (i=0;i<N;i++){
for (j=0;j<N;j++){

for (k=0;k<N;k++){
... a[i][k] ...

} } }

The expression a[i][k] corresponds to a Stream input generator. When executing
the loop in its sequential form it generates a stream of values from the array a. This
stream is described in the Stream model as follows:

s = StreamInput3(&a[0][0], N, N, /* Outermost */
N, 0, /* Middle */
N, 1) /* Innermost */

Generating Stream Based Code from Plain C 235

This is a 3-dimensional stream generator with the base address a (&a[0][0]). It
is three dimensional because the source expression is inside three nested loops. Each
dimension is described by a tuple with the number of iterations and the stride. The
StreamInput3 primitive generates a stream of values obtained from the array by nested
address generation of the three dimensions, where the innermost dimension runs with
the highest frequency.

The three tuples are derived by analyzing the use of the iteration counters i, j and k
in the expression a[i][k]. Each iteration loops N times. This corresponds to the initial
value N in every tuple. The second value is the stride with which each iteration walks
through the array. The i iteration counter is used in the “big” dimension of the two
dimensional array. Every step accesses the following row and each row has a size of N.
So the stride for the outermost dimension is N. The iteration counter j is not used in
the array expression and so does not contribute to the address generation. Its stride is
therefore 0. Finally the k iterator is used in the “small’ dimension of the expression.
Hence the innermost stride is 1.

The result is an input element that generates a stream of N*N*N data values. At every
iteration of the model, one data value is taken off every input stream.

Output elements are very similar to input elements and correspond to array-element
assignment in the source program. (See example below.)

A number of different input primitives correspond to different levels of loop nest-
ing. Input address generation is limited to affine expressions of iteration variables. It
is not possible to use data dependent values in the array indexing expressions. With
this limitation the address generation in the input and output generation is completely
decoupled from computations in the data flow graph. This decoupling is important be-
cause it makes the control flow of the model completely independent of the data values
that are computed.

2.2 Computations on Streams

Here is a more complete example:

for(i = 0 ; i < 64 ; i++) {
t = a[i] + b[i] ;
z[i] = t + c[i*2] ;

}

In the compilation from a C loop nest to a Stream program, every expression inside
the loop represents a stream with one data value for every iteration. Covering the code
with streams is a bottom up process, starting at the leafs. In the expression a[i] +
b[i], each of a[i] and b[i] represent an input stream. The two streams are combined
with the + operator, resulting in another stream. This stream is bound to the variable t
by the assignment. The t stream is used again in the next statement.

The complete Stream program for the example is:

Stream as = StreamInput1(&a[0], 64, 1)
Stream bs = StreamInput1(&b[0], 64, 1)
Stream ts = StreamAddition(as, bs)

236 M. Beemster et al.

Stream cs = StreamInput1(&c[0], 64, 2)
Stream zs = StreamAddition(ts, cs)
StreamOutput1(zs, &z[0], 64, 1)

3 Extending the Basic Model

The basic Stream model described so far is very simple. The data flow graph is di-
rected and static, every operation completes within the iteration, there is no conditional
execution and there is no state inside the graph.

The graph must remain directed and static. This enables the mapping onto a wide
range of parallel processor architectures. But many other limitations can be lifted in
order to facilitate more complex programs to be expressed.

3.1 Conditional Execution

Adding conditional execution to a data flow model is relatively easy. Consider:

if(c > 0) { a = b + 2 ; }
else { a = b ; }

To implement this, the StreamCondition element is introduced. It connects to three
input streams.

Stream StreamCondition(Stream cs, Stream ts, Stream fs)

The first input stream is the one that controls the condition. It is a stream of boolean
values with the results of c>0 for every iteration. The other two input streams are for
b+2 (true values) and b (false values). This StreamCondition takes one value of every
Stream and selects either the value from ts or fs depending on the value from cs.

Note that this element makes the selection after both the then and the else branch
of the original code have been computed. In a sequential processor the choice would
have been made beforehand, thus saving work.

In the Stream model late selection is unavoidable. The formalism does not allow
non-determinism: a stream that may or may not produce a value at a given cycle, de-
pending on a computed value cannot be dealt with. In the mapping to hardware, this
restriction may be lifted.

3.2 Reduction Operators

Reduction operators such as accumulation are common in signal processing applica-
tions:

for(i = 0 ; i < 64 ; i++) {
accu = 0 ;
for(j = 0 ; j < 32 ; j++) {

accu = accu + x[i][j] * coeff[j] ;
}
result[i] = accu ;

}

Generating Stream Based Code from Plain C 237

In this example the multiply-accumulate is done once for every inner loop iteration.
But the accumulated value is written (only) once every outer loop iteration. This is the
nature of a reduction operation: the rate at which values are produced becomes lower.

In the Stream model the accumulator is included as a primitive operation. It has two
operands, an input stream and a parameter rate. The rate determines how many values
are accumulated before a result value is produced. In the example above the rate is 32:

multRes = StreamMultiply(xIn, coeffIn)
accus = StreamAccumulate(multRes, 32)

In this example the result Stream accus has 32 times fewer elements than the input
stream multRes. In the data flow graph this means that on the multRes edge of the
graph there is an element in every iteration, but on the accus stream there is only an
element at every 32nd iteration. The frequency of elements on certain edges is reduced,
but in the model it is still known exactly at what iterations the elements occur.

Note that the StreamAccumulate primitive introduces state in the data flow graph.
The accumulator node carries two values—the accumulated value, by definition initial-
ized at 0, and a counter—from one iteration to the next.

3.3 Reusing Values

Consider the following loop:

for(i = 1 ; i < 64 ; i++) {
b[i] = a[i] + a[i-1] ;

}

In a straightforward translation to the Stream model this would give two input
streams reading from memory and one output stream. But that would be quite wasteful:
the array a would be read twice and memory access is so expensive that that should
be avoided. The observation with this loop is that every value a[i] is used again one
iteration later as a[i-1].

In the Stream model this requires a node that delays a value for use in the next
iteration. The two input streams of the example code can then be created with:

aStream = StreamInput1(&a[1], 64, 1)
aSub1Stream = StreamDelay1(aStream, a[0])

The function of the StreamDelay1 operator is to delay every value in its input
stream until the next iteration. At the very first iteration it is initialized to produce the
value a[0].

The same mechanism is also used when temporary variables are used to take values
to the next iteration.

For the delay operator to be useful requires a fixed distance between the iteration in
which the value is produced and in which it is used. In the example it is one, but larger
distances are possible. In that case, more than one initial value is needed to initialize
the delay pipeline.

238 M. Beemster et al.

4 Compiling a Real Application

The Discrete Cosine Transform lies at the heart of many image compression algorithms
and is representative of many of the media-processing applications that find their way
into embedded devices. Its implementation must be extremely efficient to be used in
hand-held devices. It is also a good example of the kinds of algorithms that are used
in this domain. The code embeds a significant amount of parallelism, but to exploit
that from the original C code is non-trivial, let alone to map it to a specific parallel
architecture.

The code below is a DCT-transform of a full image, divided into blocks. The num-
ber of blocks is 4 (NUMOFBLOCKS) and the block size is 8 (BS). The code is a 5-deep
nested loop. The macros MULTIPLY and (DE)SCALE are used to implement fixed point
arithmetic.

for (block = 0; block < NUMOFBLOCKS; block++) {
for (y = 0; y < BS; y++) {

for (x = 0; x < BS; x++) {
sum = 0;
for (v = 0; v < BS; v++) {

for (u = 0; u < BS; u++) {
int tmp;
tmp = MULTIPLY(cos_table[x][u],

cos_table[y][v]);
tmp = DESCALE(tmp);
tmp = MULTIPLY(tmp, pInput[block][v][u]);
sum += tmp;

} }
sum = (sum >> 2) + SCALE(128);
sum = DESCALE(sum);
if (sum > 255) pOutput[block][y][x] = 255;
else if (sum < 0) pOutput[block][y][x] = 0;
else pOutput[block][y][x] = sum;

} } }

This code is accepted by the CoSy based Stream model generator and generates
the—surprisingly concise–Stream program below. The compiler includes patterns for
the recognition of accumulator operations and saturation.

in0 = StreamInput5(pInput, 4,256, 8,0, 8,0,
8,32, 8,4)

in1 = StreamInput5(cos_table, 4,0, 8,0, 8,32,
8,0, 8,4)

in2 = StreamInput4(cos_table, 4,0, 8,32, 8,0, 8,4)
calc0 = StreamMultiply(in1, in2)
calc1 = StreamAddition(calc0, 8192)
calc2 = StreamShiftright(calc1, 14)
calc3 = StreamMultiply(in0, calc2)

Generating Stream Based Code from Plain C 239

calc4 = StreamAccumulate(calc3, 64
calc5 = StreamShiftright(calc4, 2)
calc6 = StreamAddition(calc5, 2097152)
calc7 = StreamAddition(calc6, 8192)
calc8 = StreamShiftright(calc7, 14)
calc9 = StreamSatCeiling(calc8, 255)
calc10 = StreamSatFloor(calc9, 0)
StreamOutput3(calc10, pOutput, 4,256, 8,32, 8,4)

5 Mapping to Parallel Architectures

The Stream model is a high level model. Its power lies in that it can be mapped ef-
ficiently to a wide range of parallel architectures such as SIMD instruction set exten-
sions, Vector architectures, FPGAs and Reconfigurable architectures and even SPMD
machines. This is unlike standard C code, which is highly sequential by nature.

A Stream program has fully static control flow. At every point in the computation
it is exactly known which value is computed, where it comes from and to where it
should go. Only the values that are computed are dynamic. This static control model is
exploited in the mapping to actual hardware.

5.1 FPGAs and Reconfigurable Architectures

The most natural match for the Stream model are reconfigurable architectures. Such
architectures consist of a number of computational elements that can be connected
through a configurable network. Generic FPGAs can be programmed like this but more
particular examples are the PACT XPP [4] and the IPFlex DAP/DNA [5]. A mapping
to an FPGA requires similar techniques.

Even for these architectures a mapping of the Stream model to time and resources
is required.

Mapping starts with the address generators. In the DCT example five dimensional
address generators are used. These are typically not available in hardware. It requires
that one or more of the outer level dimensions are peeled off and moved to software
control to reprogram the address generators at the right time.

Also the DCT example has two cos table streams with a one-but-innermost tuple
with a 0 stride. This implies that the innermost dimension values are read 8 times each.
Possibly there is a way to cache these values.

Time Mapping. In the abstract model, each iteration completes before the next starts.
This is not necessary, since the data flow graph is directed and fully deterministic. By
keeping count of the delay of each compute element and inserting delay cycles at the
right places, a fully pipelined mapping of the Stream model can be created.

Alternatively, an implementation can use synchronous transfer of values between
compute elements. In that case explicit delay nodes are not needed at the expense of
additional control signals between the elements.

Resource Mapping. A reconfigurable processor will have limited resources and a lim-
ited connection network. If a Stream program is too large to fit the reconfigurable pro-

240 M. Beemster et al.

cessor it has to be cut. Instead of putting the complete Stream program on the architec-
ture, it is only partially mapped. At the points where the cuts appear, output elements
and input elements are inserted that store and load the data streams to temporary arrays.
Since the models are fully static, computing the temporary array sizes is straightfor-
ward.

Cutting can be optimized by choosing a cutting plane with a minimal size of the
temporary arrays.

5.2 SIMD Extension and Vector Architectures

SIMD Extension and Vector architectures cannot compute a whole stream program
at once. The goal in mapping to these architectures is to optimize the partitioning of
the streams and to keep stream communication between compute elements in (vector)
registers.

Partitioning is necessary since a typical vector in these architectures is from 4 to 64
elements long. The flow of computation must be mapped to push that many elements at
a time through the Stream program. At any time a static number of values will be active
and these can be kept in machine registers.

Special care must be taken of the StreamDelay elements: they can be mapped onto
shift or shuffle operations to shift state from one block to the next. Generating shuffle
operations when starting with the Stream model is relatively easy, while they are hardly
used by more traditional methods of vectorization [6].

5.3 Mapping Conditional Nodes

In the Stream model, conditional computation is implemented by selecting the right
value at the end of computing all variants. It keeps the Stream model deterministic.
But in an actual implementation, this may not be the most efficient because also the
discarded value is computed. If an implementation permits such choices can be moved
forward in the data flow network, thus saving wasted work.

For SIMD and Vector machines this is not an option. Since iterations are grouped to
fit the size of the vectors, distinct variants cannot get an individual treatment, they must
all follow the same flow of computation.

6 Conclusion

Above all, the Stream model is a high level intermediate representation. It is not a
machine model by itself—its goal is to allow for a relatively easy mapping to parallel
architectures. This is a different approach from traditional vectorizing compilers which
do extensive dependence analysis and loop reorganization, but are often specific for one
architecture type.

The paper demonstrates how a compiler can compute a Stream program from nested
loops. The compiler does not target arbitrary C code, control flow must be static and
data dependences must have a fixed distance. In embedded and media processing, a
large body of performance critical code has this structure. The data flow oriented nature
of these applications fits well to the Stream model.

Generating Stream Based Code from Plain C 241

Forced by power hungry applications, parallelism will make its way into pro-
grammable processors aimed at embedded computing, despite their awkward and non-
portable programming models. The Stream model makes a modest attempt—because
it has its limitations—in providing a generic intermediate representation that can be
mapped to a range of parallel architectures while allowing these architectures to be
programmed with a sequential programming model.

References

1. Gokhale, M.B., Stone, J.M., Arnold, J., Kalinowski, M.: Stream-oriented fpga computing in
the streams-c high level language. In: FCCM ’00: Proceedings of the 2000 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, Washington, DC, USA, IEEE
Computer Society (2000) 49–58

2. Thies, W., Karczmarek, M., Gordon, M., Maze, D., Wong, J., Hoffmann, H., Brown, M.,
Amarasinghe, S.: A common machine language for grid-based architectures. SIGARCH
Comput. Archit. News 30 (2002) 13–14

3. Alt, M., Assmann, U., van Someren, H.: Cosy compiler phase embedding with the cosy
compiler model. In: CC ’94: Proceedings of the 5th International Conference on Compiler
Construction, London, UK, Springer-Verlag (1994) 278–293

4. PACT XPP Technologies, Germany. http://www.pactxpp.com (2005)
5. IPFlex, Japan. http://www.ipflex.com (2005)
6. Krall, A., Lelait, S.: Compilation techniques for multimedia processors. International Journal

of Parallel Programming 28 (2000) 347–361

Fast Real-Time Job Selection with Resource Constraints
Under Earliest Deadline First�

Sangchul Han1, Moonju Park2, and Yookun Cho1

1 School of Electrical Engineering and Computer Science,
Seoul National University, Seoul, Korea
{schan, cho}@ssrnet.snu.ac.kr

2 Mobile Hanset R&D Center, LG Electronics, Seoul, Korea
moonjupark@lge.com

Abstract. The Stack Resource Policy (SRP) is a real-time synchronization pro-
tocol suitable for embedded systems for its simplicity. However, if SRP is applied
to dynamic priority scheduling, the runtime overhead of job selection algorithms
could affect the performance of the system seriously. To solve the problem, a
job selection algorithm was proposed that uses a selection tree as a scheduling
queue structure. The proposed algorithm selects a job in O(�log2n�) time, result-
ing in significant reduction in the run-time overhead of scheduler. In this paper,
the correctness of the job selection algorithm is presented. Also, the job selection
algorithm was implemented in GSM/GPRS handset with ARM7 processor to see
its effectiveness on embedded systems. The experiments performed on the system
show that the proposed algorithm can further utilize the processor by reducing the
scheduling overhead.

1 Introduction

In many real-time applications on embedded systems, real-time jobs communicate with
each other using shared resources. In such environments, a form of synchronization
protocol is necessary to control accesses to shared resources, and resources are granted
to jobs and used in a mutually exclusive manner.

There are many research results on real-time synchronization protocols. Sha, Rajku-
mar and Lehoczky [1] proposed the Priority Inheritance Protocol and the Priority Ceil-
ing Protocol (PCP) to solve the resource sharing problem in the fixed priority schedul-
ing. Chen and Lin [2] extended PCP so that it can be used in Earliest Deadline First
(EDF) scheduling [3]. Jeffay proposed the Dynamic Deadline Modification [4] where
the deadlines of jobs are modified to avoid undesirable preemptions while accessing
shared resources. The common approach of theses protocols is blocking a job at the
moment it requests a resource that is held by another job. This approach makes re-
source sharing costly. Blocking a job causes the runtime overhead of maintaining a list
of blocked jobs, additional memory consumption and context switch.

� This work is supported in part by Brain Korea 21 project and in part by ICT.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 242–250, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Fast Real-Time Job Selection with Resource Constraints Under Earliest Deadline First 243

The Stack Resource Policy (SRP) [5] is another real-time synchronization protocol.
It requires that a job should not be allowed to start execution if the job needs a shared
resource that is held by another job. The job is not allowed to start execution until the
resource is released (this is called early blocking). When the resource is released the job
is allowed to start execution, and it is guaranteed that it will never be blocked. Therefore,
under SRP, there is no actual blockage and no additional context switch. A scheduler
just does not select a job that needs a resource in use currently even if the priority of the
job is highest. With these features, SRP has been considered to be simpler to implement
than other protocols, and to be suitable for embedded systems with limited processor
power and memory capacity.

Early blocking can be realized by the CPU scheduler. Under SRP, the scheduler
should select a job that satisfies the following two conditions (we call the job most
eligible); its preemption level is higher than the system ceiling and its priority is highest
among such jobs. In dynamic priority scheduling such as EDF, the conventional job
selection algorithms can find the most eligible job in O(n) time as we will show in
Section 2. This runtime overhead becomes unendurable for embedded systems as the
number of jobs increases.

In [6], a scheme is proposed that uses a selection tree as a scheduling queue (or
ready queue) structure and a job selection algorithm that can find the most eligible job
in O(�log2n�). In this paper, we present the correctness proof of the algorithm proposed
in [6], how the scheme is effective for embedded systems, and the impact of the scheme
on embedded systems. We measured the runtime overhead of the scheduler on ARM7
TDMI processor which is embedded in GSM/GPRS mobile phone. The experimental
results show that the proposed scheme reduces the runtime overhead significantly.

The rest of this paper is organized as follows. Section 2 provides the brief overview
of SRP and the analysis on the runtime overhead of EDF+SRP scheduling. Section
3 explains the proposed scheduling queue structure. In Section 4, the proposed job
selection algorithm is verified. The experimental results are presented in Section 5.
Finally, Section 6 concludes our work.

2 Analysis on the Selection Overhead

SRP is a real-time synchronization protocol which introduces the concept of preemption
level. A preemption level π(J) is a static value associated with a job J. The essential
property of preemption levels is that a job Ji is allowed to preempt job Jj only if π(Ji) is
higher than π(Jj). In EDF scheduling, for example, the preemption level of a job can be
assigned based on the relative deadline of the job; the preemption level is defined such
that π(Ji) > π(Jj)⇔Di < D j, where Dk is the relative deadline of a job Jk. A ceiling of
a resource is defined as the highest preemption level of jobs that may use the resource.
The system ceiling is defined as the highest ceiling among the resources that are being
used. SRP requires that a job be allowed to start only if its preemption level is higher
than the system ceiling. Then, it is guaranteed that the job is not blocked after it starts
and there is no deadlock.

An important feature of SRP is the early blocking. The scheduler delays the start
of the execution of a job if the job needs a shared resource which is held by another

244 S. Han, M. Park, and Y. Cho

1J

2J

3J

4J

5J

6J

7J

8J
0 5 10 15 30 35 40 45

Fig. 1. An EDF schedule of the jobs in Table 1. The arrival time of each job is marked with an
upward arrow and the absolute deadline with a downward arrow. Critical sections are represented
by colored squares.

Table 1. An example set of jobs

Arrival Relative Preemption Length of
Job #

time deadline level
WCET

critical section
resource #

J1 8 25 8 5 1 R1

J2 12 30 7 2 1 R3

J3 10 31 6 3 1 R2

J4 8 32 5 2 1 R3

J5 6 33 4 3 1 R3

J6 4 34 3 2 1 R3

J7 2 35 2 3 1 R3

J8 0 100 1 10 6 R2

(a) sorted list (b) heap

J7 J6 J5 J4 J3 J2

J7

J6 J5

J4 J3 J2

Fig. 2. The conventional scheduling queue structures

job. After the resource becomes available, once the job starts its execution it will not
be blocked. Thanks to this property, the mechanism for accessing shared resources is
simple compared with PCP because there is no need to adjust priorities or to block a
job. Furthermore, there is no context switch caused by blocking.

Fast Real-Time Job Selection with Resource Constraints Under Earliest Deadline First 245

In dynamic priority scheduling, the conventional job selection algorithms can find
the most eligible job in O(n) time where n is the number of jobs in the system. Figure 1
depicts an EDF schedule of the jobs in Table 1. J8 arrives at time 0. It acquires R2

and enters the critical section at time 2. At this time the system ceiling is raised to the
resource ceiling of R2, 6. J4, J5, J6, and J7 arrive during the critical section of J8 but
they are not allowed to start execution because their preemption levels are not higher
than the system ceiling. At time 8, J1 arrives, and it preempts J8 since its preemption
level is 8. At time 12, J1 acquires R1 and enters the critical section. The system ceiling
is raised to 8. At time 13, J1 releases R1 and completes its execution. The system ceiling
is restored to 6. Then, the scheduler tries to find the most eligible job; the preemption
level is higher than 6 and the priority is highest among such jobs. If it could not find
such a job, it resumes the execution of J8.

In EDF scheduling, active jobs are kept in a scheduling queue (or ready queue) in
the order of absolute deadline. In general, a scheduling queue is implemented using a
list or a heap. Figure 2 shows the state of the scheduling queue at time 13 in the above
example (J8 is assumed to have been moved to a preemption stack. see [5]). In the list
implementation (Fig. 2(a)) a linear search algorithm sequentially examines jobs in the
list from the head until it finds a job with a preemption level higher than 6. At last,
it finds such a job, J2, at the tail. In the heap implementation (Fig. 2(b)) the scheduler
examines J7 but it finds that J7’s preemption level is not higher than 6. Then, it examines
J6 and J5. Although the deadline of J6 is earlier than J5, the scheduler also examines
J4 and J3 because J6’s preemption level is not higher than 6. In this way the scheduler
examines all jobs in the scheduling queue, traversing the whole tree. Therefore, using
the conventional job selection algorithms and scheduling queue structures, the most
eligible job can be found in O(n) time in the worst case.

3 Data Structure for Scheduling Queue

The algorithm presented here uses a selection tree as a scheduling queue structure. For
given n jobs, a selection tree with m = 2�log2 n� leaf nodes is used. Figure 3 shows an
example state for 8 jobs of the example in the previous section. As shown in Fig. 3, the
nodes are denoted by from N1 to N2m−1. Node Nk contains a pointer to Task Control
Block (TCB) of the job it represents, denoted by TCB(Nk). The deadline of Nk, denoted
by D(Nk), is the absolute deadline of the job that Nk represents. When a job with pre-
emption level p arrives, the job is represented by Nm+p−1. An internal node represents
the earlier-deadline job of the ones its two children represent. Hence, the root node N1

represents the earliest-deadline job among all active jobs. If there is no active job at pre-
emption level p, Nm+p−1 is said to be empty. An internal node, both children of which
are empty, is also said to be empty. The deadline of an empty node is defined as ∞. In
Fig 3, the number in a node is the absolute deadline of the job the node represents.

The number of preemption level the system supports should be equal to or greater
than n which is the number of jobs. Since the selection tree is a complete binary tree,
m = 2k(2k−1 < n≤ 2k). Since k = �log2n�, log2m = log22�log2m� = �log2n�. Therefore,
the height of the selection tree is log2m + 1 = �log2n�+ 1 and the time complexity of
insertion and deletion is O(�log2n�).

246 S. Han, M. Park, and Y. Cho

preemption
level

N

N

1

3

N9 N10 N11

2N

4N

8N

N5 6N

N12

N7

N N1514N13

1 2 3 4 5 6 7 8

37 38 39 40 41 42

37 38 40 42

4037

37 Level 1

Level 2

Level 4

Level 3

Fig. 3. Selection tree as the scheduling queue structure

It is assumed that each job has a distinct preemption level. If more than one job has
the same relative deadline, they are assigned the same preemption level. To accommo-
date more than one jobs at a single preemption level, the Constant Ratio Grid Method
can be applied [7]. A FIFO queue is dedicated to each preemption level. When a job
with preemption level p arrives, it is inserted into the pth FIFO queue. The job at the
head of the pth FIFO queue is represented by Nm+p−1.

4 Selection Algorithm

We define some notations below. FLAG(Nk) tells whether Nk is a left child or a right
child. T REE(Nk) is a set of all nodes in the sub-tree rooted from Nk. LEAF(Nk) is a set
of leaf nodes in the sub-tree rooted form Nk. PL(Nk) is the preemption level of Nk. Note
that the parent node of Nk is N�k/2� and its children are N2k and N2k+1 [8].

1. FLAG(Nk) =

⎧⎨⎩
ROOT : k = 1
LEFT : k �= 1 and k mod 2 = 0
RIGHT : k �= 1 and k mod 2 = 1

2. T REE(Nk) =
{

φ : k ≥ 2m
{Nk}∪T REE(N2k)∪T REE(N2k+1) : k < 2m

3. LEAF(Nk) =
{{Nk} : m≤ k < 2m

LEAF(N2k)∪LEAF(N2k+1) : k < m
4. PL(Nk) = k−m+1, f or m≤ k < 2m

The selection algorithm is formally described in Algorithm 1. It searches for the most
eligible job, i.e., a job whose preemption level is higher than S and the absolute deadline
is earliest among such jobs. The search begins from a one-height sub-tree. The most el-
igible job in the sub-tree is identified as the height of the sub-tree is increases gradually.
The sub-tree is denoted by Tk, where Ni is the root node of Ti. The most eligible node
in Tk is denoted by Ne.

Initially, both Nk and Ne are made to refer to the leaf node associated with preemp-
tion level S+1 (PL(Nm+S) = (m+S)−m+1 = S+1). Since the preemption levels are

Fast Real-Time Job Selection with Resource Constraints Under Earliest Deadline First 247

static, the node can be found in O(1). In case that Nk is the left child of its parent and
the deadline of its sibling, Nk+1, is earlier than the deadline of Ne, Nk+1 is the most eli-
gible node in the sub-tree T�k/2� which is the sub-tree rooted from the parent node of Nk

and Nk+1. Note that the preemption level of every node in Tk+1 is higher than S and the
deadline of Nk+1 is earlier than any other node in Tk+1. In case that Nk is the right child
of its parent, there is no need to consider Nk’s sibling, Nk−1, because the preemption
level of any node in Tk−1 is lower than S.

It can be easily shown that the time complexity of Algorithm 1 is O(�log2 n�) be-
cause the height of the selection tree is �log2n�+1. The correctness of the algorithm is
shown by Theorem 1.

Lemma 1. For 1≤ k < 2m, Suppose i is an integer such that log2 (m/k)≤ i < log2 (m/k)+
1. Then,

LEAF(Nk) = {Np : k ·2i ≤ p < (k +1) ·2i} (1)

Proof: Let TNk be the sub-tree rooted from Nk. Since TNk is also a complete binary tree

and the level of Nk is �log2 k�, the height of TNk is h = log2 m−�log2 k� and the number
of leaf nodes of TNk is 2h = 2log2 m−�log2 k�. Then, since the leftmost leaf node of TNk is
Nk·2h , LEAF(Nk) = {Nk : k ·2h≤ p < k ·2h +2h = (k+1) ·2h}. Since �log2 k�= log2 m−
h = log2(m/2h), log2(m/2h)≤ log2 k < log2(m/2h)+1. Hence, m≤ k ·2h < 2m.

Corollary 1. For a node Nk, the highest preemption level of nodes in the tree rooted
from the left child of Nk is lower than the lowest preemption level of the nodes in the
tree rooted from the right child of Nk.

Theorem 1. (Correctness) Algorithm 1 finds the most eligible node.

Proof: We prove the theorem by induction. Let ei and ki be, respectively, e and k after
the ith iteration. Then, k0 = e0 = m+S, k1 = �k0/2�, k2 = �k1/2�, . . . ,km = 1. Note that
T REE(Nk0)⊂ T REE(Nk1)⊂ T REE(Nk2)⊂ ·· · ⊂ T REE(Nkm).

Since Ne0(= Nk0) is the unique element in T REE(Nk0) and PL(Ne0) = S + 1, Ne0

refers to the most eligible node in T REE(Nk0). Assume that Nei refers to the most
eligible node in T REE(Nki).

Case 1: Nki is the right child of its parent. Since Nk0 ∈ T REE(Nki) and PL(Nk0) =
S + 1, the preemption levels of the nodes in T REE(Nki−1) are not higher than S by

Algorithm 1 Find the earliest-deadline job with π(J) > S

e← m+S, k← m+S
repeat

if FLAG(Nk) = LEFT and D(Nk+1) < D(Ne) then
e← k +1

endif
k← �k/2�

until FLAG(Nk) = ROOT
return TCB(Ne)

248 S. Han, M. Park, and Y. Cho

Corollary 1. None of the nodes in T REE(Nki−1) is eligible. Therefore, Nei+1 refers to
the most eligible node in {N�ki/2�}∪T REE(Nki−1)∪T REE(Nki) = T REE(N�ki/2�) =
T REE(Nki+1).

Case 2: Nki is the left child of its parent. Since Nk0 ∈ T REE(Nki) and PL(Nk0) = S+
1, the preemption levels of the nodes in T REE(Nki+1) are higher than S+1 by Corollary
1. All nodes in T REE(Nki+1) are eligible. Since Nki+1 refers to the earliest-deadline
node in T REE(Nki+1) by definition, the earlier-deadline node between Nei and Nki+1 is
the most eligible node in {N�ki/2�}∪T REE(Nki)∪T REE(Nki+1) = T REE(N�ki/2�) =
T REE(Nki+1).

5 Experiments

We measured the runtime overhead of the scheduler on a GSM/GPRS mobile phone
being developed by LG Electronics Inc. The mobile phone is equipped with an ARM7
TDMI processor. The ARM processor used in the experiment does not have I-Cache
nor D-Cache, thus we do not need to consider the effect of consistency problems such
as cache misses. The target system operates at 52MHz clock speed. To speed up the
system, the operating system’s codes are loaded from NOR flash ROM into the inter-
nal SRAM of the ARM processor during the system is booted up. Also, the operating
system is coded using 32-bit ARM instruction set.

The main activities of schedulers are inserting, selecting and deleting a job into/from
the ready queue. The associated overheads are called enqueue overhead (Δenq), se-
lection overhead (Δsel), and dequeue overhead (Δdeq), respectively. The scheduler is

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

O
ve

ra
ll

O
ve

rh
ea

d
(u

se
c)

Number of Jobs

sorted list
unsorted list

heap
selection tree

Fig. 4. Per-period overall overhead

Fast Real-Time Job Selection with Resource Constraints Under Earliest Deadline First 249

invoked to select the most eligible job whenever a new job arrives or a job finishes.
Hence, the overall overhead per-period is Δt = Δenq + Δdep + 2Δsel [9], assuming that
the overhead of other parts of operating system is negligible.

We measured the worst case runtime overhead of each activities on the mobile
phone. The considered data structures for the scheduling queue are sorted list, unsorted
list, heap, and selection tree. The sorted list and the unsorted list was implemented using
a doubly linked list. The heap and the selection tree was implemented using an array.

Figure 4 shows the per-period overall overhead (Δt) measured in the experiment.
For less than 15 jobs, the proposed algorithm is comparable to the conventional algo-
rithms. For more than 15 jobs, the proposed algorithm reduces the overall overhead
significantly owing to the logarithmic time complexity.

The measured data are analyzed and functionalized using the Least Square Method.
Table 2 summarizes the measured worst case runtime overhead of scheduler activities.
We can see the selection overhead of the unsorted list is greater than that of the sorted
list since both the priorities and the preemption levels are compared in the unsorted list,
while only the preemption levels are compared in the sorted list to find the most eligible
job. As expected, the coefficients of the enqueue and dequeue overhead of the heap
are greater than those of the selection tree. This is because the insertion and deletion
operation of the heap involves more comparison instruction and swapping a parent node
and a child node. As for the selection overhead, the time complexity of the proposed
algorithm is O(�log2 n�), while those of the conventional algorithms are O(n).

Table 2. Runtime overhead. Values are in μs, and n is the number of jobs

the conventional algorithms the proposed algorithm
sorted list unsorted list heap selection tree

Δenq 1.35n+7.40 7.39 4.92�log2 n�+2.46 3.17�log2 n�+8.75
Δdeq 4.92 4.92 6.09�log2 n�+2.68 3.35�log2 n�+7.08
Δsel 1.42n+1.64 2.63n+0.15 1.17n+5.39 1.94�log2 n�+4.80

In a today’s advanced GSM/GPRS handset supporting many applications such as
JAVA, WAP, MP3 player, and high-resolution camera, the number of tasks is usually
ranged from 70 to 100. The GSM/GPRS handset used in the experiment has 92 tasks,
and up to 74 tasks can be in the ready state simultaneously in the worst case. Thanks
to the proposed algorithm, we could reduce the overhead of the scheduler significantly,
by about 68.8%. The legacy scheduler that uses a sorted list for 256 priority levels
takes about 330 μs for selecting and dispatching a task in the worst case. The proposed
algorithm performs the same operations in only about 103 μs. Since the scheduler is
activated on every timer interrupt, the shortest period of scheduler activation is about
4.8 ms, which is close to a TDMA period. Thus the proposed algorithm consumes about
2.19% of processor utilization, while the legacy with sorted lists consumes about 7.02%
of processor utilization in the worst case. Using the proposed algorithm, we can further
increase the applications’ utilization of the processor.

250 S. Han, M. Park, and Y. Cho

6 Conclusion

In spite of many strong points, the Stack Resource Policy (SRP) may introduce a con-
siderable amount of scheduling overhead to legacy schedulers because SRP requires
that a scheduler should select a job based on both priority and preemption level. In the
worst case, the conventional schedulers using EDF and SRP has O(n) scheduling over-
head when there are n jobs in the system. This paper presents an algorithm that can find
the most eligible job in O(�log2 n�) using a selection tree as a scheduling queue struc-
ture where jobs are arranged in the order of both priority and preemption level. The
correctness of the algorithm is also shown in this paper. Experiments were performed
to verify the effectiveness of the proposed scheduling scheme on a GSM/GPRS handset
embedding ARM7 TDMI processor. The experimental results show that the algorithm
reduces the overall scheduling overhead significantly. The proposed method allows us
to further utilize the processor by reducing the worst-case scheduling overhead by about
68.8%.

References

1. Sha, L., Rajkumar, R., Lehoczky, J.: Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers 39 (1990) 1175–1185

2. Chen, M.I., Lin, K.J.: Dynamic priority ceilings: A concurrency control protocal for real-time
systems. Real-Time Systems 2 (1990) 325–346

3. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-time envi-
ronment. Journal of ACM 20 (1973) 46–61

4. Jeffay, K.: Scheduling sporadic tasks with shared resources in hard-real-time systems. In:
Proceedings of 13th IEEE Real-Time Systems Symposium. (1992) 89–99

5. Baker, T.: Stack-based scheduling of real-time processes. Real-Time Systems 3 (1991) 67–
100

6. Han, S., Park, M., Cho, Y.: An efficient job selection scheme in real-time scheduling under
the stack resource policy. In: Proceedings of the 17th International Parallel and Distributed
Processing Symposium. (2003) 118

7. Liu, J.W.S.: Real-Time Systems. Prentice-Hall (2000)
8. Knuth, D.E.: The Art of Computer Programming. Volume 3. Addison-Wesley (1998)
9. Zuberi, K.M., Pillai, P., Shin, K.G.: EMERALDS: a small-memory real-time microkernel. In:

Proceedings of 17th ACM Symposium on Operating Systems Principles. (1999) 277–299

A Programming Model for an Embedded Media
Processing Architecture�

Dan Zhang1, Zeng-Zhi Li1, Hong Song2, and Long Liu1

1 School of Electronics & Information Engineering,
Xi’an Jiaotong University, Xi’an Shaanxi 710049, China

danzhang@mailst.xjtu.edu.cn
2 School of Mechanical Engineering, Xi’an Shiyou University,

Xi’an Shaanxi 710065, China

Abstract. To follow rapid evolution of media processing algorithms, the latest
media processing architecture enhances the execution efficiencies of media appli-
cations by adding a programmable vision processor and by improving memory
hierarchy, while complicates the programming. In this paper, the features of this
architecture are analyzed, the reason of inefficiency of media application imple-
mented by general programming model is studied and SPUR programming model
is proposed. In SPUR, media data and operations are expressed as media streams
and corresponding operations naturally. Moreover, algorithm is divided into high-
level part written by SP-C and low-level part written by UR-C. Fine-grained data
parallelism are exploited explicitly as well. Experimental results show that SPUR
provides programmer a novel, expressive and efficient programming way, and ob-
viously improves readability, robustness, development efficiency and object-code
quality of media applications.

1 Introduction

There is a wide range of applications of media processing to capture, store, manipulate
and transmit media objects such as text, handwritten data, audio objects, still images,
2D/3D graphics, animation and full-motion video. Each media processing environment
requires different processes, techniques, algorithms and hardware [1], [2], [3]. A variety
of algorithms have come into series of standards, such as MPEG-1, MPEG-2, MPEG-4,
JPEG2000, H.263 and H.264. At present, computer applications are becoming media-
rich and WWW will make future applications contain more and more media objects [4],
[5], [6], which present great challenges to both hardware and software environment of
media processing.

The key characteristics of media applications include high computing rate, high data
bandwidth, low global data reuse and high data locality, ample parallelism at the instruc-
tion, data and task levels, and real-time requirements [7], [8]. Many researches have
been made on the architecture and programming technologies of media processing for
a long time [3], [9], [10], [11], [12]. The differences of application environments lead to

� This work has been supported by the Nation Science Foundation of China (No.60173059).

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 251–261, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

252 D. Zhang et al.

various requirements of performance, area, power and cost. Thus, media processing sys-
tems have to make trade-off between hard-wire and software programmability. Media
Processor (MP), a kind of programmable media-specific processor, makes such trade-
off successfully and gains higher performance than General-Purpose Processor (GPP)
and PDSP. Moreover, a novel Media Processor with Programmable Vision Coproces-
sor (MPwPVC) introduces master-slave mode to executes scalar and vector operations
in parallel, and three-tier memory hierarchy to increase available bandwidth. MPwPVC
improves performance, but complicates the programming. General programming model
(GPM) is not suitable for this complexity because of its emphasis on expressiveness and
flexibility of language and wide range of applications. Hence, it is significant to propose
a programming model for MPwPVC.

In this paper, the features of this architecture are analyzed, the reason of inefficiency
of media application implemented by GPM is pointed out, and SPUR programming
model is proposed. In SPUR, media data are expressed as media streams naturally, and
the general code of media application are reconstructed into high-level skeleton pro-
grams and low-level microcode routines, which are compiled, assembled and linked
into object code respectively. SP-C, used to write skeleton programs, simply extends
ANSI C. UR-C, used to write microcode routines, treats media streams as kernel data
objects, expresses the inherent data parallelism in media algorithms explicitly, and ex-
tends operations on media streams. The experimental results show that the development
efficiency and object code quality of media applications on MPwPVC are improved ob-
viously by applying SPUR programming model. This paper is organized as follows.
The comparisons with related studies are presented in section 2. The overview of MP-
wPVC is presented in section 3. SPUR programming model is proposed in section 4.
The experimental results are provided in section 5. Finally, the conclusions and future
works are given in section 6.

2 Comparisons with Related Studies

Vector C [13] targets general vector machines. The arrays are treated as first-class ob-
jects by using a special subscripting syntax to select array slices. Many new vector op-
erators are added, but no ones specific to media processing. Similarly C[](C brackets)
[14] also introduces lots of vector operators. Specific to the GPPs with media ISA exten-
sions, MMC [15] extends syntax and semantic to support vector data type and necessary
vector operators. The Compilers of TI [16] and Intel [17] provide intrinsic libraries for
media ISA extension. They, however, are only used to develop media software for some
particular class of processors (e.g. Intel family). DSP-C [18] extends ANSI C with fixed
point type, saturation type, circular buffers type and multi-memory type to support the
most common characteristics of DSPs explicitly and generate object-code of higher
quality. SWARC [19] is a portable, high-level SWAR execution model, supporting GPP
with SIMD extensions. It presents SWAR layout in high-level language (HLL) and adds
some vector operators. In Trimedia [20], VLIW RISC performs most media processing
tasks with SIMD, while coprocessors do fixed tasks. SIMD operations are exposed as
custom operations. Trimedia Stream Software Architecture (TSSA) emphasizes mod-
ulization, interoperability, reusability and compatibility. Vision Instruction Processor

A Programming Model for an Embedded Media Processing Architecture 253

(VIP) [21] has PE-array and special cache system designed for vector and matrix type
operations. The media kernels are developed by using VPL and compiled into assembly
code of microcontroller and OAK DSP C code. The high-level programs are developed
by using C++. Imagine [22] is a stream architecture and programming model, which
contains a stream-specific memory hierarchy and supports a large quantity of process-
ing elements, then improves performance and memory bandwidth. To overcome the
shortcomings of mismatch with application-domain and unreasonable abstraction of
general-purpose languages on stream processing grid-based architecture, StreamIt [23]
language provides high-level structured abstract representations of stream and a mes-
saging system for control on grid-based architecture.

Compared with above studies, UR-C refers some vector operators from C[] and
Vector C and MMC to apply to media streams. The concept of media stream comes
from Imagine and StreamIt, and thought of algorithm partition derives from VIP and
Imagine. Differently SPUR is specific to MPwPVC. TSSA is only used to develop high-
level part of algorithm, VPL to develop low-level part. Unlike them, SPUR provides full
programmability. Saturation operations in DSP-C act implicitly as type qualifiers, but
UR-C adds explicit saturation operators to enhance safety and reliability. In a word,
some features of SPUR come from other studies, but its design goals and key decisions
are not same.

3 Overview of MPwPVC Architecture

In general MP, RISC controls other components and implements media algorithms by
software programming, while coprocessors deal with various urgent, real-time, high-
throughput and fixed tasks. The uni-processor cannot perform scalar and vector op-
erations efficiently at same time, and memory system also cannot provide high-speed
access of two kinds of data. Therefore, as fig. 1 shows, a novel MPwPVC architecture
contains following features:

1. High performance parallel processing ability: The computations are distributed
among various parts of MPwPVC. In VLIW and SIMD ways, PVC performs a
lot of vector operations for vision processing, which is most computation-intensive,
change-frequent and algorithm-evolution-rapid. RISC only performs high-level part
of algorithms and scalar operations.

2. Separated scalar and vector data: According to their different processing and ac-
cessing ways, scalar data are stored in SRAM and vector data in DRAM. SRAM
Bus connects scalar function units and DRAM Bus connects vector ones. This re-
duces conflict-probability of access, so increases bandwidth.

3. Three-tier memory hierarchy of vector data: It consists of off-chip DRAM, on-chip
VRAM and RF, which is suitable for the storing and accessing pattern of media
data very well, and exploits the features of high data locality, low global data reuse
and concurrency in media applications efficiently.

254 D. Zhang et al.

SRAM Interface

RISC

Assistant Engines

Media Processor

Huffman

En/Decoder

Host Interface

Audio Interface

Video Out

Camera In

DRAM Interface
Other Interfaces

Portal

Command

DRAM

SRAM

DRAM Bus

SRAM Bus

VRAM

RF

Function Units

...

Programmable Vision Coprocessor

Fig. 1. Block diagram of Media Processor with Programmable Vision Coprocessor

4 SPUR Programming Model

MPwPVC improves the performance of media applications, but complicates software
programming. The high development-cost of assembly and unfitness of GPM are the
reasons of new programming model. The design principles of SPUR are to decrease
the application range of language and model, heighten the abstraction level, enhance
the ability of expression of media application, and map well to architectural features
of MPwPVC. The previous languages and models provide abstractions of underlying
hardware of GPP or vector processor and have a large range of application, so they have
great flexibilities. However, SPUR provides a high-level abstraction of media applica-
tions, makes programmer focus more attention on implementation of algorithms than
hardware and Instruction Set Architecture(ISA) details. Meanwhile, it also has good
mappings of architectural features of MPwPVC, then simplify the works of compiler.

4.1 Design Goals

The model design was guided by a handful of high-level goals:

Ease of programming: The media applications and algorithms have evolving rapidly,
so new product usually is time-crucial to market. But assembly language implies a
lot of well-known drawbacks such that the development is slow and painful. GPM,
which emphasizes expressiveness and flexibility of language and wide range of
applications, is not suitable for this complexity.

Performance: MPwPVC must provide real-time high performance for media process-
ing, thus the compiler ability is a key consideration in model design.

Portability: The model must support porting applications between different MPw-
PVCs. The hardware details are hidden in HLL and compiler is responsible for
porting to target machine.

Complete support for hardware functionalities: Programmers will be hard to depend
on HLL and programming model if it blocked access to functionalities that are
available in assembly language.

Good interface to assembly library: If new model do not have it, the rate of code
reuse is low and acceptance of new model by programmer is slow.

A Programming Model for an Embedded Media Processing Architecture 255

Extensibility for future hardware: The model and language should be extended to fit
new features without breaking backward compatibility.

4.2 Introduction of SPUR Programming Model

The main definitions of SPUR programming model are listed below:

Media Stream: A sequence of data record with a regular pattern. It is a algorithm-level
object and independent of memory layout.

Microcode Routine: A sequence of operations performing on a media stream. It is
used to implement the low-level part of algorithms and also called kernel [22].
Usually it reads input streams, performs computing, and then writes output streams.
UR-C (Ucode Routine C) is used to write it.

Skeleton Program: It is used to define streams and implement high-level part of al-
gorithms. It exposes the control flows and data flows among microcode routines.
SP-C (Skeleton Program C) is used to write it.

SPUR Programming Model: A programming method to develop media application
on MPwPVC architecture, which includes SP-C and UR-C languages, and corre-
sponding compilers, assemblers, linkers and simulators.

In SPUR model, general-purpose code of media application are required to be re-
constructed as following steps:

1. Partition algorithm: Analyze algorithm and partition it into low-level and high-level
parts, which correspond respectively to higher syntax layer (e.g. Picture and GOB)
and lower syntax layer (e.g. MB, Block and pixel).

2. Extract media streams: In general-purpose code, an array operated in loop usually
represents a Block, MB or GOB. It can be transformed into media stream or other
derived streams of it according to their access patterns.

3. Construct microcode routines: The regular data access patterns usually exist in
loops of low-level parts, which can be transformed into check stream loop in
UR-C. Then microcode routines are made with high cohesion and low coupling
according to the inherent relations of modules in algorithms.

4. Construct skeleton program: Skeleton program performs high-level control and
data flow tasks, and then builds whole application. These tasks include controlling
peripherals, inputting/outputting data, controlling other components for assistant
tasks, and high-level syntax parsing of media data.

As fig. 2(a) shows, media applications contain data localities, which means a se-
quence of microcode routines deal with a stream one by one and intermediate results
are needless to be written out. As fig. 2(b) shows, the intermediate results are placed in
RF or VRAM near function units, therefore greatly reduce the requirements for global
bandwidth. The coarse-grained task-level parallelism exists between microcode rou-
tines, and fine-grained instruction and data level parallelism exist in microcode routines.
Skeleton programs run in MP, while microcode routines run in PVC.

256 D. Zhang et al.

Microcode

Routine

Microcode

Routine

Microcode

Routine

Microcode

Routine

Skeleton Program

Media Streams
(a)

SP-C Compiler

MP PVC

u-rout 1

u-rout fact

u-rout n

ROM
RAM ...RISC MAC FUn

Interconnect network

Register File

VRAM VRAM

DRAM

WriteVRAM(...);

ReadVRAM(...);

call u-rout fdct

...

UR-C Compiler

SP-C source UR-C source

fdct:

call u-rout xxx

(VLIW insns)

Compile

time

Run

time

(b)

off-chip

DRAM

Visible
Invisible

VRAM

DP

64 bit

Element 1

stream mb ={DP, BYTE, 0, 2, 32}

Element 0

Element 31

RF

Element 1
Element 0

Element 31

step : 2

0 bit

(c)

Fig. 2. (a) Media streams processing flow; (b) Runtime environment of SPUR programming
model; (c) Runtime memory image of a 16×16 Macro-Block media stream

4.3 UR-C (Ucode Routine C)

UR-C has more limitations than ANSI C, such as not allowing global variables, point-
ers, etc. It limits some unnecessary flexibilities for media applications, and then im-
proves the efficiency of compiler. The features of UR-C are listed below:

1. Combination data type: It maps media data with 8 (HALF), 16 (BYTE), 32 (WORD),
64 (DWORD) and 128 bit width (QWORD) explicitly. They indicate how to split
SIMD function units to execute operations such as addition, multiply-accumulate
and transpose.

2. Media stream data type: Media stream resides in on-chip VRAM and RF. SP-C
programs execute the transfers between DRAM and VRAM and UR-C programs
execute various SIMD operations on media streams in VRAM. RF is invisible to
programmers, so the instructions, which transfer data between VRAM and RF and
operate on RF, are generated by compiler. By this way, programmers express data
flows and high-level control flows explicitly, while low-level instructions are gen-
erated by compiler. Programmer and compiler manipulate media streams through
Media Stream References (MSRs).

MSR :=< B,M,O,S,N,C > (1)

B indicates memory space, M indicates combination type, O indicates offset, S
indicates step, and N indicates the number of word. These are all user-properties. C
indicates system property “cursor” which is updated by instructions generated by
compiler. MSR can be defined recursively, namely derived-streams. The element
of media streams must be a full machine word. The syntax of MSR is defined as
follows:

A Programming Model for an Embedded Media Processing Architecture 257

msr: ’stream’ IDENTIFIER ’=’ ms expr
ms expr: ms expr basic | ms expr derived
ms expr basic: ’{’ MSPACE ’,’ CTYPE ’,’ OFF ’,’ STEP ’,’ ELENUM ’}’
ms expr derived: ’derived stream(’ msr ’,’ CTYPE ’,’ OFF ’,’ STEP ’,’
ELENUM ’)’

The primitives operating on media streams are defined as follows:

stream ref.read(): Reads the element pointed by cursor;
stream ref.write(val): Writes val into the element pointed by cursor;
stream ref.step(): Advances the cursor by one element;
stream ref.pop(): Associates read and step;
stream ref.push(val): Associates write and step;

Figure 2(c) shows the runtime memory image of a media stream defined on a pro-
cessor with 64-bit width word, representing a 16×16 Macro-Block.

3. Structured data access: UR-C only allows MSR and scalar variables to be accessed
through parameters, not allows global variables.

4. Limited control flow: Because all operations are based on media streams, general
for, while and do-while loops are removed, and loop construct check stream(msr)
is added. It checks whether cursor of msr reach the end. It simplifies program struc-
ture, decrease control dependencies and make compiler generate higher quality
code.

5. Saturation operators: UR-C supports saturation operation explicitly. As the follow-
ing example shows, the sum result of stream a and stream b will be saturated ac-
cording to 16 bit HALF independently.

stream a = {DP, HALF, 0, 1, 32}, b = {DP, HALF, 32, 1,32},
c = {DM, HALF, 0, 1, 32};

c = addsat(a, b);

6. Reduction operators: Unary reduction operation means executing binary operation
on media stream element by element and getting a scalar result. In the following
example, all elements of sa are summed into res. All reduction operators are shown
in table below.

stream sa = {DP, HALF, 0, 1, 32};
res = @+ sa;

Operator @+ @* @< @> @| @& @ˆ

Description Sum Product Minimum Maximum Logic OR Logic AND Logic XOR

7. Segment operator: It is used to get sub-word of a media stream. In the following
example, the first BYTE of a is assigned to temp.

temp = segment(a, BYTE, 0);

258 D. Zhang et al.

4.4 SP-C (Skeleton Program C)

SP-C is the superset of ANSI C and has following simple extensions:

1. Microcode routine library: All prototypes of callable microcode routines are de-
fined in u-rout.h. SP-C programs call microcode routines like functions. In the fol-
lowing syntax, arguments can be with MSR type or any scalar type.
ucode name(argument 0, ..., argument n);

2. Manipulation functions of media stream: Media streams reside in VRAM and RF,
and whose data are from off-chip DRAM. As fig. 2(b) shows, SP-C includes some
functions of media stream controlling the data-transferring between DRAM and
VRAM. The syntax is defined as follows.
WriteVRAM(char *ptr, stream s, int byte cnt);
ReadVRAM(char *ptr, stream s, int byte cnt);

3. APIs accessing other components: Except calling microcode routines to perform
vision processing tasks, SP-C programs also need controlling other components to
finish some works, e.g. protocol parsing and variable length encoding/decoding,
etc.

5 Experimental Results

To evaluate the availability and efficiency of SPUR model, VFAST, a typical MPwPVC,
is selected as target machine [24]. UR-C compiler makes use of soft-pipeline and other
loop-optimization, and scheduling technique of reading and writing of media streams.
Three media application examples are as follows.

1. RGB-to-YUV [25]: As fig. 3(a) shows, SP-C program captures the raw image from
camera, parses it into 16×16 pixel RGB Macro-Block streams sr,sg,sb according
to syntax, then calls microcode routine vp rgb2yuv to compute and generate six
YUV Blocks (4:1:1), finally outputs sy,su,sv Block streams.

Macro-Block Stream

sy

su

sv
Block Stream

rgb2yuv

/* rgb2yuv-s.c */

/* define rgb and yuv stream ref. */

stream sr={DP, BYTE, 0, 1, 32};

...

/* write data into stream sr, sg, sb */

WriteVRAM(ptr_r, sr, 256);

...

/* call ucode-routine */

vp_rgb2yuv(sr, sg, sb, sy, su, sv);

/* read data from stream sy, su, sv */

ReadVRAM(ptr_y, sy, 256);

…

/* rgb2yuv-u.c */

 void vp_rgb2yuv(stream sr, …) {

 loop_stream(sr, sg, sb) {

 r = sr.pop(); g = sg.pop(); b = sg.pop();

 /* calculate Y, output to stream sy */

 sy.push(0.299 * r + 0.587 * g + 0.114 * b);

 /* calculate U and V every 4 elements. */

 if ((i+1)%4 == 0) {

 ...

 su.push(-0.146*r_uv-0.288*g_uv+0.434*b_uv);

 sv.push(0.617*r_uv-0.517*g_uv+0.1*b_uv);

 }

 i++;}} UR-CSP-C
(a)

R G B

Y

U

V

/* hef-s.c */

/* define a Macro-Block stream */

stream hef_mb = {DP, BYTE, 0, 1, 32};

 ...

 WriteVRAM(ptr_hef, hef_mb, 16*16);
vp_hor_edge_filter(hef_mb, 2, 16);

 ReadVRAM(ptr_hef, hef_mb, 16*16);
 ...

/* hef-u.c */

/* w: image-width; h: image-height. */
void vp_hor_edge_filter(stream hef, int w, int h) {
/* define derived streams containing A,B,C,D pixels.*/

 stream sa = derived_stream(hef, BYTE, 6*w, 1, (h/8)*w);

 stream sb = derived_stream(hef, BYTE, *w, 1, (h/8)*w);

 stream sc = derived_stream(hef, BYTE, 8*w, 1, (h/8)*w);

 stream sd = derived_stream(hef, BYTE, 9*w, 1, (h/8)*w);

 check_stream(sa,sb,sc,sd) {

 ...

 delta = (vala - 4 * valb + 4 * valc - vald) / 8;

 d1 = sign (delta) * mmax (0, abs (delta) -

 mmax (0, 2 * (abs (delta) - 4)));

 d2 = mmin (abs (d1 / 2), mmax (-abs (d1 / 2),

 (int) ((vala - vald) / 4)));

 vald = vald + d2;

 valc = mmin(255, mmax(0, valc - d1);

 valb = mmin(255, mmax(0, valb + d1));

 vala = vala - d2;

 ...}}

Horizontal

block edge

Vertical block edge

A

B

C

D

sa

sd

sc

sb

SP-C UR-C

(b)

8x8 blocks

Compressed

data stream
vp_fdctvp_rgb2yuv vp_quant vp_huffenc

(c)

Fig. 3. (a) RGB-to-YUV; (b) Horizontal edge filter; (c) JPEG-DCT encoder

A Programming Model for an Embedded Media Processing Architecture 259

Table 1. The comparison between UR-C and handwritten assembly benchmarks

u-routine Data size Description U(c) U(s) A(c) A(s) p-rat s-rat

vp rgb2yuv 16 × 16 RGB to YUV 847 448 683 344 0.81 1.3
vp fdct 8 × 8 Forward DCT 1352 888 936 604 0.69 1.47
vp quant 16 × 16 Quantification 11782 1688 4549 836 0.39 2.02
vp idct 8 × 8 Inverse DCT 1590 1132 980 592 0.62 1.91
vp thr le2thr 8 × 8 Clip below threshold 231 172 137 112 0.59 1.54
vp hor edge filter 16 × 16 Horizontal Edge Filter 1167 700 638 408 0.55 1.72
vp me 8 × 8 Motion estimation 2013 400 952 196 0.47 2.04
vp conv 3x3 8 cols 3 × 3 convolution 1163 368 506 192 0.44 1.92
vp median 3x3 32 cols Median 3 × 3 filter 1308 1024 734 516 0.56 1.98

2. Horizontal edge filter [26]: As fig. 3(b) shows, in vp horiz edge f ilter, the pixel-
sequences A,B,C,D around horizontal edge of blocks are defined as four derived
streams sa,sb,sc, and sd of input stream he f .
In above two examples, each element has BYTE combination type, which makes
eight pixels be performed in SIMD way. In comparison with general-purpose array-
based code, the media-stream-based code avoid the computation of array sub-script,
multi-loop control and possibility of array out-of-range, moreover, the expression
of data and operation are more natural and direct. The whole program has simplic-
ity, naturalness and robustness.

3. JPEG encoder based on DCT (JPEG-DCT) [27]: The basic steps of JPEG-DCT en-
coder are shown in fig. 3(c). Media streams representing a still image pass through
the microcode routines vp rgb2yuv,vp f dct,vp quant and vp hu f f enc, finally gen-
erates compressed data stream.

Table 1 shows the results comparison between UR-C and handwritten assembly
code in terms of cycles and code size. All UR-C kernel programs are compiled by ele-
mentary UR-C compiler and measured in cycle-accurate simulator VPSIM. Column 1
shows the name of media kernels. Column 2 shows data size. Column 3 shows descrip-
tion. Column 4 and 5 show the cycles and sizes of UR-C, and column 6 and 7 show the
cycles and sizes of handwritten ASM. The last two columns p-ratio and s-ratio indicate
the performance ratio (0.39∼ 0.81) and code size (1.3∼ 2.04) ratio between UR-C and
handwritten assembly. These results are not very satisfying, therefore improvements are
needed.

6 Conclusion and Future Works

As a novel embedded programmable media processor, MPwPVC introduces a PVC
and memory hierarchy of vector data to satisfy the requirements of performance, area,
cost and power, but complicates programming. By using SPUR programming model
for MPwPVC, the media data can be expressed naturally, simply and directly, and data-
level parallelism can be exploited explicitly. The reconstruction method of media ap-
plications is presented, and the corresponding languages and compilers are proposed.

260 D. Zhang et al.

Accordingly the readability, robustness, development efficiency and object-code qual-
ity of media applications are improved obviously. However, there are some spaces for
improvement in language design and optimization techniques of compiler.

References

1. Lee, R.B., Smith, M.D.: Media processing: A new design target. IEEE Micro (1996) 6–9
2. Lee, R.B.: Accelerating multimedia with enhanced microprocessors. IEEE Micro (1995)

22–32
3. Dasu, A., Panchanathan, S.: A survey of media processing approaches. IEEE Trans. on Circ.

and Sys. for Video Tech. 12 (2002) 633–644
4. Furht, B.: Processor architectures for multimedia: A survey. In: Multimedia Modeling Conf.

(1997) 89–109
5. Sasaki, H.: Multimedia complex on a chip. In: IEEE Inter. Solid-State Circuits Conf. (1996)

16–19
6. Lev, L.A., et al: A 64-b microprocessor with multimedia support. IEEE Journal of Solid-

State Circuits 30 (1995) 1227–1238
7. Owens, J.D., et al: Media processing applications on the imagine stream processor. In: IEEE

International Conference on Computer Design. (2002) 295–302
8. Aron, N., et al: Study of multimedia application characteristics. [Online]. http://www. stan-

ford.edu/class/ee392c/handouts/apps/media long.pdf (2003)
9. Pirsch, P., Stolberg, H.J.: Vlsi implementations of image and video multimedia processing.

IEEE Trans. on Circ. and Sys. for Video Tech. 8 (1998) 878–891
10. Panchanathan, S.: Architectural approaches for multimedia processing. In: ACPC’99, LNCS

1557. (1999) 196–210
11. Lappalainen, V., et al: Overview of research efforts on media isa extensions and their usage

in video coding. IEEE Trans. on Circ. and Sys. for Video Tech. 12 (2002) 660–670
12. Shahbahrami, A., Juurlink, B., Vassiliadis, S.: A comparison between processor architectures

for multimedia applications. In: RISC2004. (2004)
13. Guštin, V., Bulić, P.: Introducing the vector c. In: 5th Inter. Meeting on High Perf. Comp.

for Computational Science VECPAR. (2002) 253–266
14. Kalinov, A., et al: An ansi c superset for vector and superscalar computers and its retargetable

compiler. Journal of C Language Translation 5 (1994) 183–198
15. Bulić, P., Guštin, V.: An extended ansi c for processors with a multimedia extension. Inter-

national Journal of Parallel Programming 31 (2003)
16. TI: Tms320c6000 optimizing compiler user’s guide (rev. l). [Online]. http://www-

s.ti.com/sc/psheets/spru187l/spru187l.pdf (2004)
17. Intel: Intel c++ compiler 8.1 for linux. [Online]. http://www.intel.com/software/products/

compilers/clin/ (2005)
18. Beemster, M., van Someren, H.: The dsp-c extension to c. [Online]. http://www.techonline.

com/community/tech group/dsp/tech paper/36995 (2003)
19. Fisher, R.J., Dietz, H.G.: Compiling for simd within a register. In: 11th Inter. Workshop on

Lang. and Comp. for Parallel Computing. (1998) 290–304
20. Philips: Trimedia sde. [Online]. http://www.alacron.com/downloads/vncl98076xz/sde

2 75006255.pdf (2000)
21. Ramacher, U., et al.: A 53-gops programmable vision processor for processing, coding-

decoding and synthesizing of images. In: 31st European Solid-State Device Research Con-
ference. (2001)

22. Kapasi, U.J., et al.: Programmable stream processors. IEEE Computer (2003) 54–62

A Programming Model for an Embedded Media Processing Architecture 261

23. Thies, W., Karczmarek, M., Amarasinghe, S.: Streamit: A language for streaming applica-
tions. In: Inter. Conf. on Compiler Construction. (2002)

24. Leadtek: Vfast architectural reference manual. Something (2001)
25. Pollard, N., May, D.: Using interval arithmetic to calculate data sizes for compilation to

multimedia instruction sets. In: ACM Multimedia ’98. (1998) 279–284
26. Lim, J.S. In: Two-Dimensional Signal and Image Processing. Prentice Hall (1990) 478–488
27. Wallace, G.K.: The jpeg still picture compression standard. Communications of the ACM

34 (1991) 30–44

Automatic ADL-Based Assembler Generation for ASIP
Programming Support1

Leonardo Taglietti, Jose O. Carlomagno Filho, Daniel C. Casarotto,
Olinto J.V. Furtado, and Luiz C.V. dos Santos

Computer Science Department,
Federal University of Santa Catarina, Florianópolis, SC, Brazil

leonardo@inf.ufsc.br
http://www.inf.ufsc.br

Abstract. Systems-on-Chip (SoCs) may be built upon general purpose CPUs or
application-specific instruction-set processors (ASIPs). On the one hand, ASIPs
allow a tradeoff between flexibility, performance and energy efficiency. On the
other hand, since an ASIP is not a standard component, embedded software code
generation cannot rely on pre-existent tools. Each ASIP requires a distinct toolkit.
To cope with time-to-market pressure, automatic toolkit generation is required.
Architecture description languages (ADLs) are the ideal starting point for such
automation. This paper presents robust and efficient techniques to automatically
generate a couple of tools (assembler and pre-processor) from the ADL descrip-
tion of a given target processor. Tool robustness results from formal techniques
based on context-free grammars. Tool efficiency evidence is provided by experi-
ments targeting three CPUs: MIPS, PowerPC 405 and PIC 16F84.

1 Introduction

As a result of the sheer rate of growth expressed by Moore’s Law, millions of gates are
available within a single chip. This huge supply of hardware combined with the growing
demand from the embedded systems industry gave rise to Systems-on-Chip (SoCs)[1].
SoCs may be built upon general purpose CPUs or application-specific instruction set
processors (ASIPs). Being tailored to a single application class, an ASIP allows a trade-
off between flexibility, performance and energy consumption [5]. Since an ASIP is not
a standard component, embedded software code generation cannot rely on pre-existent
tools like compiler, instruction-set simulator, assembler, etc. On the contrary, each ASIP
requires its own toolkit. To cope with time-to-market constraints, automatic toolkit gen-
eration is required. A starting point for such automation should be some formal descrip-
tion of the target CPU. It would be convenient to adopt a SystemC [3] description as a
starting point, as it is considered one of the most promising languages for SoC model-
ing [3]. However, a model written directly in SystemC would admit so many different
description styles that automation would be cumbersome. This problem can be avoided
by the use of Architecture Description Languages (ADLs). Among those reported in the

1 This work is supported by CNPq/Microelectronics National Program (Grant 132930/2003-0).

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 262–268, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Automatic ADL-Based Assembler Generation for ASIP Programming Support 263

literature (see Section 2), we have chosen ArchC [2], an ADL under the GNU Lesser
General Public License which allows the automatic generation of SystemC models. The
scope of this work is the development of robust and efficient techniques to support auto-
matic toolkit generation. This paper focuses on the automatic generation of a couple of
related tools (pre-processor and assembler) from the description of the instruction-set
architecture (ISA) of a given ASIP. The remainder of this paper is organized as follows.
Section 2 describes related work. Automatic tool generation is detailed in Section 3.
Section 4 summarizes experimental results. Conclusions and future work perspectives
are presented in Section 5.

2 Related Work

2.1 Automation Evolution

Assembler generation techniques have improved a lot since the late seventies. Early ad-
hoc techniques simply took advantage of similarities among assembly languages[16].
Later, formal techniques based on grammars were introduced to allow the automatic
generation of assembly language parsers [17]. However, grammar generation was per-
formed semi-automatically. In the first attempts to address automatic grammar genera-
tion, relevant information was filtered from an HDL-like description of the target CPU
and was then cast in an intermediate representation more suitable for grammar genera-
tion. More recently, with the advent of ADLs, that cumbersome filtering was replaced
by ADL parsing [6] [7][10][11][12].

2.2 Parser Generation Engines

Most assembler generators reported in the literature[6][14][15] use Lex and Yacc for
both ADL and assembly language parser generation. Besides its inherent limitation to
LALR(1) syntactic analysis[13], Yacc does not have a co-validation mechanism be-
tween language and grammar. To avoid such limitations, we adopt GALS[9], a lexical
and syntactic analyzer generator developed in our department. It assumes a context-free
grammar (CFG) representation of a given language. GALS relies on a unified specifi-
cation of both lexical and syntactical aspects and allows a broader range of syntactical
analysis techniques like recursive top-down, predictive LL(1), SLR(1), LALR(1), and
LR(1) [13]. Its most important feature is the availability of an embedded simulator for
co-validation between language and grammar, as well as debugging facilities for reg-
ular expression verification. This improves the maintainability and extensibility of the
assembler generation tool.

2.3 The Scope of Our Contribution

In this paper, we use GALS as the key engine to build an assembler generator for the
ADL ArchC [2]. ArchC is licensed under GNU Lesser General Public License and
has the unique feature of generating SystemC models automatically. The current ArchC
package (version 1.2) allows the automatic generation of instruction-set simulator, com-
piled simulator generator and co-verification tools. Therefore, this work contributes to
current ArchC toolkit by adding an assembler generator.

264 L. Taglietti et al.

3 Automatic Tool Generation

Our automatic assembler generation flow consists of the following steps, which are
detailed in Figure 1.

– ADL parser generation
– ADL parsing
– Instruction list generation
– CFG generation for the assembly language
– Assembly-code parser generation
– Assembler tool compilation

GALS is the key to automatic parser generation and is therefore used in the first
and fifth steps. The first step is implemented by feeding GALS with a CFG for the
adopted ADL. In the second step, the ADL parser extracts information from the ADL

Fig. 1. Assembler generation flow

Automatic ADL-Based Assembler Generation for ASIP Programming Support 265

description and stores them into internal data structures. In a third step, specialized
functions look up the data structures and build an instruction list. A CFG generation al-
gorithm was designed to accomplish the fourth step by extracting information from the
data structures. The resulting CFG for the assembly language is fed as input to GALS
in the fifth step, leading to the assembly-code parser. In the last step, the instruction
list, the assembly-code parser, some auxiliary classes and the semantic analyzer are all
compiled, resulting in the generation of the desired assembler tool. It should be noted
that the generated CFG is LL(1) and thereby unambiguous, which assures deterministic
syntactic analysis, granting robustness to the assembler generation tool.

As far as the ADL is frozen, the ADL parser is a standard component of the assem-
bler generator. However, if the ADL has to be changed or extended, a new ADL parser
can be efficiently and safely generated by the GALS tool, granting maintainability and
extensibility to our assembler generator. Note also that the generator components were
deliberately designed so that only the instruction list and the assembly’s CFG must be
changed during the generation of a new assembler, since only them are dependent on
the described instruction-set architecture.

The generated assembler assumes that all assembly instructions are native. Since
the use of pseudo-instructions and macros is quite common, a pre-processor should
be used beforehand to guarantee that only native instructions are present in the actual
assembly code. The role of such pre-processor is to expand macros, replace pseudo-
instructions by native ones, calculate target addresses for branches, etc. Essentially,
our pre-processor generator extracts information from an input set-up file (containing
directives, pseudo-instructions and address generation rules) reuses the instruction list
depicted in Figure 1 and adds address generator and standard classes to produce the
pre-processor tool.

4 Experiments

4.1 Experimental Set-Up

Our experiments were run on a CPU Intel R© Pentium 4, 1.8 GHz, with 256 MB of
main memory, under Linux Debian. Although our ultimate goal is ASIP support, for
the sake of tool validation and without loss of generality, well-known general purpose
ISAs were used for the experiments: MIPS, PowerPC 405 and PIC 16F84. The binary
code generated by the assembler tool was executed on functional models of each target
CPU, which were generated from ArchC descriptions. The MIPS ArchC model was
obtained in [2]. PIC 16F84 and PowerPC 405 models were developed by the authors.
Programs extracted from the Dalton Project[4] were used as benchmarks. Execution
time is expressed in seconds and was measured by adding CPU user and system times
after invoking the Linux time command.

4.2 Experimental Procedures

For each target CPU Ci, represented by a model Mi written in ArchC, the following
tools were generated: an instruction-set simulator Si (generated by the ArchC package
itself), a pre-processor Pi and an assembler Ai. Each benchmark program was compiled

266 L. Taglietti et al.

to the target CPU Ci, resulting in the respective assembly code. Finally, the assembly
code of each benchmark was submitted to pre-processor Pi and then to assembler Ai,
resulting in the binary code for target CPU Ci.

4.3 Experimental Results

Our experiments aim at validating and checking the efficiency of both the generating
and the generated tools. Results for the generating tools are shown first (Tables 1 and
2); results for the generated tools are shown later (Tables 3 and 4). Table 1 shows the
time needed to generate the pre-processor and the assembler tools.

Table 1. Pre-processor and assembler generation times

CPU ISA size Pre-processor Assembler
MIPS 58 0,04 1,13
PowerPC 120 0,05 3,44
PIC 35 0,03 1,06

Clearly, assembler generation time is dominant over pre-processor generation time,
which can be neglected. As expected, assembler generation times are essentially pro-
portional to ISA sizes. To investigate the rate of growth with ISA size, different cores
were built with growing subsets of a same ISA, as follows: given a core Ci, core Ci+1

contains all instructions of Ci plus ten new instructions. Table 2 shows that time grows
linearly with ISA size.

Table 2. Assembler generation time

Core ISA size PowerPC MIPS
C1 15 0,97 0,98
C2 25 1,00 1,01
C3 35 1,02 1,02
C4 45 1,03 1,03
C5 55 1,10 1,10

Table 3 characterizes the benchmarks used in the experiments with the generated
tools. For a given ISA, the left column represents the number of executed instructions
in each benchmark and the right column (bold) represents the code size (number of
instructions in the code).

For the sake of validation, the binary code of each benchmark was run on every tar-
get CPU. The experimental results were consistent for all tested cases. For the purpose
of efficiency evaluation, the joint pre-processing and assembling times were measured
for each benchmark, as shown in Table 4. The correlation between Tables 3 and 4 shows
that, for a given CPU, the time increases at a smaller rate than the number of assembled
instructions.

Automatic ADL-Based Assembler Generation for ASIP Programming Support 267

For instance, in the case of MIPS, if we compare programs negcnt and sort, the
number of instructions is multiplied by 5, while the time is multiplied by 2.3. This be-
havior is an evidence of the efficiency of the generated tools. On the other hand, for a

Table 3. Benchmark characterization

Benchmark MIPS PowerPC PIC
negcnt 154 32 121 28 150 30
gcd 209 53 198 48 125 32
int2bin 153 36 143 35 256 36
cast 80 48 87 55 68 60
fib 490 106 445 96 358 70
sort 2982 154 2744 48 2227 110

given program tested in distinct CPUs, the time can grow at a slightly higher rate than
the number of assembled instructions. For program sort, for instance, if we compare
PIC and PowerPC, the number of instructions is multiplied by 1.3, while the time is
multiplied by 2.2. This can be attributed to PowerPC’s more complex instruction-set
formats.

Table 4. Pre-processing and assembling times

Benchmark T em [s]
MIPS PowerPC PIC

negcnt 0.030 0.035 0.020
gcd 0.030 0.050 0.020
int2bin 0.040 0.040 0.030
cast 0.040 0.050 0.030
fib 0.060 0.080 0.040
sort 0.070 0.110 0.050

5 Conclusions and Perspectives

The proposed technique and the associated tools were properly validated by means of
experiments. Moreover, we have presented efficiency evidences for both the generating
and the generated tools. Generation times are low enough and grow linearly with the
instruction-set size. Pre-processing and assembling times grow linearly with the num-
ber of assembled instructions. Generator robustness and correctness are guaranteed by
formal techniques based on context-free grammars. This allows fast and safe tool main-
tenance or upgrade in face of ADL changes or extensions. Generator maintainability
and extensibility is enhanced by the co-validation mechanism embedded in GALS. One
of our next research topics is to investigate techniques for compiler generation from an
ADL description, again from a maintainability and extensibility perspective.

i

268 L. Taglietti et al.

Acknowledgment

We would like to thank the members of the Computing Systems Laboratory at UNI-
CAMP for their help with the ArchC package, especially Sandro Rigo and Professors
Guido Araújo and Rodolfo de Azevedo.

References

1. Bergamaschi, R.: A to Z of SoCs. Brazilian Microelectronics School Tutorial (EMICRO
2002), Florianópolis, Brazil, 2002

2. Computing Systems Lab, State University of Campinas: The ArchC Architectural Descrip-
tion Language. Available at http://www.archc.org.

3. Open SystemC Initiative: Available at http://www.systemc.org.
4. Dalton Project: Available at http://www.cs.ucr.edu/ dalton/i8051/i8051syn/
5. Marwedel, P.: Embedded System Design. Kluwer Academic Publishers (2003)
6. Hadjiannis, G., Hanono, S., e Devadas, S.: ISDL: An instruction set description language for

retargetability. In: Proc. 34th Design Automation Conference (1997) 299–302
7. Braun, G., et al.: A novel approach for flexible and consistent ADL-driven ASIP design. In:

Proc. 41th Design Automation Conference (2004) 717–722
8. Mishra, P., Dutt, N.D., e Nicolau, A.: Functional abstraction driven design space exploration

of heterogeneous programmable architectures. In: Proc. Int. Symposium on System Synthe-
sis (2001) 256–261

9. Guesser, C. E.,: GALS - A Lexical and Syntactical Analyzer Generator. Research Report
- Computer Science Department, Federal University of Santa Catarina, Florianópolis, SC,
(2002)

10. Freerick, M.: The nML Machine Description Formalism. (1993). http://www.cs.tu-
berlin.de/ mfx/dvi docs/nml 2.dvi.gz

11. Pees, S., et al.: LISA-machine description language for cycle-accurate models of pro-
grammable DSP architectures. In: Proc. 36th Design Automation Conference, New Orleans
(1999) 933–938

12. Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., Nicolau, A.: EXPRESSION: A lan-
guage for architecture exploration through compiler/simulator retargetability. Design, Au-
tomation and Test in Europe, Munich, Germany (1999) 485–490

13. Aho, A., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools. Addison-
Wesley (1988)

14. Kumari, S.: Generation of assemblers using high level processor models. Master Thesis.
Department of Computer Science and Engineering - Indian Institute of Technology, Kanpur,
India (2000)

15. Chiu, P.K., Fu, S.T.K.: A Generative Approach to Universal Cross Assembler Design. ACM
SIGPLAN Notices (1990) 43–51

16. Wu, H., Jin, Y.: GPASM: A general purpose cross assembler for microprocessors. In: Proc.
IEEE Asian Electronics Conference. (1987) 470–472

17. Tracz, W.J.: Advances in microcode support software. In: Proc. 18th Annual Workshop on
Microprogramming. (1985) 57–60

Sandbridge Software Tools�

John Glossner1,3, Sean Dorward1, Sanjay Jinturkar1, Mayan Moudgill1,
Erdem Hokenek1, Michael Schulte2, and Stamatis Vassiliadis3

1 Sandbridge Technologies, 1 North Lexington Ave., White Plains, NY, 10512, USA
jglossner@sandbridgetech.com
http://www.sandbridgetech.com

2 University of Wisconsin, Dept. of ECE, 1415 Engineering Drive, Madison, WI, 53706, USA
schulte@engr.wisc.edu

http://mesa.ece.wisc.edu
3 Delft University of Technology, Computer Engineering Lab, Delft, The Netherlands

s.vassiliadis@its.tudelft.nl
http://ce.et.tudelft.nl

Abstract. We describe the generation of the simulation environment for the Sand-
bridge Sandblaster multithreaded processor. The processor model is described
using the Sandblaster architecture Description Language (SaDL), which is im-
plemented as python objects. Specific processor implementations of the simula-
tion environment are generated by calling the python objects. Using just-in-time
compiler technology, we dynamically compile an executing program and proces-
sor model to a target platform, providing fast interactive responses with acceler-
ated simulation capability. Using this approach, we simulate up to 100 million
instructions per second on a 1 GHz Pentium processor. This allows the system
programmer to prototype many applications in real-time within the simulation
environment, providing a dramatic increase in productivity and allowing flexible
hardware-software trade-offs.

1 Introduction

The architecture of a computer system is the minimal set of properties that determine
what programs will run and what results they will produce 0. It is the contract between
the programmer and the hardware. Every computer is an interpreter of its machine
language - that representation of programs that resides in memory and is interpreted
(executed) directly by the (host) hardware. A simulator is an interpreter of a machine
language where the representation of programs resides in memory but is not directly ex-
ecuted by host hardware. Historically, three types of architectural simulators have been
identified. An interpreter consists of a program executing on a computer, where each
machine language instruction is executed on a model of a target architecture running
on the host computer. Because interpreted simulators tend to execute slowly, compiled
simulators have been developed. A statically compiled simulator first translates both the

� This paper has been presented at the SAMOS IV workshop 2004.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 269–278, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

270 J. Glossner et al.

Exec. Code
(Target)

F
D

F
D

R

D
E

E

Execution phaseCompilation phase

Fig. 1. Interpreted Simulation

program and the architecture model into the host computer’s machine language. A dy-
namically compiled (or just-in-time) simulator either starts execution as an interpreter,
but judiciously chooses functions that may be translated during execution into a directly
executable host program, or begins by translating at the start of the host execution.

Instructions set simulators commonly used for application code development are
cycle-count accurate in nature. They use an architecture description of the underlying
processor and provide close to accurate cycle counts, but typically do not model external
memories, peripherals, or asynchronous interrupts. However, the information provided
by them is generally sufficient to develop the prototype application.

Figure 1 shows an interpreted simulation system. Executable code is generated for a
target platform. During the execution phase, a software interpreter running on the host
interprets (simulates) the target platform executable. The simulator models the target
architecture, may mimic the implementation pipeline, and has data structures to reflect
the machine resources such as registers. The simulator contains a main driver loop,
which performs the fetch, decode, data read, execute and write back operations for
each instruction in the target executable code.

An interpreted simulator has performance limitations. Actions such as instruction
fetch, decode, and operand fetch are repeated for every execution of the target instruc-
tion. The instruction decode is implemented with a number of conditional statements
within the main driver loop of the simulator. This adds significant overhead especially
considering all combinations of opcodes and operands must be distinguished. In addi-
tion, the execution of the target instruction requires the update of several data structures
that mimic the target resources, such as registers, in the simulator.

Figure 2 shows a statically compiled simulation system. In this technique, the sim-
ulator takes advantage of the any a priori knowledge of the target executable and per-
forms some of the activities at compile time instead of execution time. Using this ap-
proach, a simulation compiler generates host code for instruction fetch, decode and
operand reads at compile time. As an end product, it generates an application specific
host binary in which only the execute phase of the target processor is unresolved at
compile time. This binary is expected to execute faster, as repetitive actions have been
taken care of at compile time.

While this approach addresses some of the issues with interpretive simulators, there
are further limitations. First, the simulation compilers typically generate C code, which

Sandbridge Software Tools 271

Fetch, Decode, Read done

Exec. Code
(Target)

E

E

C (Host)

Assem/Link

Execute
the binary

Execution phaseCompilation phase

Application
specific
executable on host
(visible to user)

Fig. 2. Statically Compiled Simulation

is then converted to object code using the standard compile→assemble→link path. De-
pending on the size of the generated C code, the file I/O needed to scan and parse the
program could well reduce the benefits gained by taking the compiled simulation ap-
proach. The approach is also limited by the idiosyncrasies of the host compiler such
as the number of labels allowed in a source file, size of switch statements etc. Some
of these could be addressed by directly generating object code - however, the overhead
of writing the application specific executable file to the disc and then re-reading it dur-
ing the execution phase still exists. In addition, depending on the underlying host, the
application-specific executable (which is visible to the user) may not be portable to
another host due to different libraries, instruction sets, etc.

Figure 3 shows the dynamically compiled simulation approach. In this approach,
target instructions are translated into equivalent host instructions (executable code) at
the beginning of execution time. The host instructions are then executed at the end of
the translation phase. This approach eliminates the overhead of repetitive target instruc-
tion fetch, decode and operand read in the interpretive simulation model. By directly
generating host executable code, it eliminates the overhead of the compile, assemble,
and link path and the associated file I/O that is present in the compiled simulation ap-

Exec. Code
(Target)

E

E

Application
specific
executable on host
(visible to user)

Execute
the binary

Execution phaseCompilation phase

translate

Fig. 3. Dynamically Compiled Simulation

272 J. Glossner et al.

proach. This approach also ensures that the target executable file remains portable, as
it is the only executable file visible to the user and the responsibility of converting it to
host binary has been transferred to the simulator.

This paper is organized as follows. In Section 2, we present a transparent multi-
threaded architecture that provides for scalable implementations. In Section 3, we de-
scribe how our toolchain is generated. In Section 4, we provide simulation results and
discuss related work. In Section 5, we draw conclusions.

2 Sandblaster Processor

An architectural function is transparent if its implementation does not produce any
architecturally visible side effects. Generally, it is desirable to have transparent imple-
mentations. Many architectures, however, are not transparent. When modeling an archi-
tecture, it is often desirable to model a specific implementation’s performance. Because
generating tools for a multiplicity of architectures and implementations is resource in-
tensive, architecture description languages have been developed [2][3]. A characteristic
of this approach has been the generation of both the tool chain and hardware descrip-
tion.

Sandbridge Technologies has developed the Sandblaster architecture for conver-
gence devices [4][5]. Just as handsets are converging to multimedia multiprotocol sys-
tems, the Sandblaster architecture supports the datatypes necessary for convergence de-
vices including RISC control, DSP, and Java code. As shown in Fig. 4, the Sandblaster
multithreaded processor design includes a unique combination of modern techniques

I –
C

ac
h

e
64

K
B

64
B

 L
in

es
4W

 (
2-

ac
ti

ve
)

I- DecodeI- Decode

JumpQ PC
CR

JTR

LCR

Data Buffer

MPY

VRABC

VPR0

MPY

VRABC

VPR1

PABC

MPY

VPR2

MPY

VPR3

SAT

VRABC VRABC

PABCPABCPABC

ACC ACC ACC ACC

ADD ADD ADD ADD

AGEN

(16) 32-bit
GPR

LS IQ

LRA LRB

Address

Dir
LRU Replace

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

8-Banks

INT IQ

IRA IRB

ALU

WB

Bus/Memory
Interface

Interrupt SIMDIQ

I –
C

ac
h

e
64

K
B

64
B

 L
in

es
4W

 (
2-

ac
ti

ve
)

I –
C

ac
h

e
64

K
B

64
B

 L
in

es
4W

 (
2-

ac
ti

ve
)

I- DecodeI- Decode

JumpQ PCPC
CRCR

JTRJTR

LCRLCR

Data Buffer

MPY

VRABC

VPR0

MPY

VRABC

VPR1

PABC

MPY

VPR2

MPY

VPR3

SAT

VRABC VRABC

PABCPABCPABC

ACC ACC ACC ACC

ADD ADD ADD ADD

AGEN

(16) 32-bit
GPR

LS IQ

LRA LRB

Address

Dir
LRU Replace

Dir
LRU Replace

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

8-Banks

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

Data Memory
64KB

8-Banks

INT IQ

IRA IRB

ALU

IRA IRB

ALU

WB

Bus/Memory
Interface

Interrupt SIMDIQ

Fig. 4. Sandblaster Multithreaded Processor

Sandbridge Software Tools 273

such as a SIMD Vector unit, a parallel reduction unit, and a RISC-based integer unit.
Each processor core provides support for concurrent execution of up to eight threads.

A RISC-based integer execution unit, depicted in the center of Fig. 4, assists with
control processing. Physical layer processing often consists of control structures with
compute-intensive inner loops. A baseband processor must deal with both integer and
fractional datatypes. For the control code, a register file with 16 32-bit entries per thread
provides for very efficient control processing. Common integer datatypes are typically
stored in the register file. This allows for branch bounds to be computed and addresses
to be generated efficiently.

Intensive DSP physical layer processing is performed in the SIMD Vector unit de-
picted on the right side of Fig. 4. Each cycle, four 16-bit vector elements may be loaded
into the Vector File, while four pairs of 16-bit vector elements are multiplied and then
reduced (e.g. summed), with saturation after each operation. The branch bound may
also be computed and the instruction repeated until the entire vector is processed. Thus,
retiring four elements of a saturating dot product and looping may be specified in as
little as 64-bits, which compares very favorably to VLIW implementations.

An important power consideration is that the Vector File contains a single write port.
This is in distinct contrast to VLIW implementations that must specify an independent
write port for each operation in the VLIW instruction. Consequently, VLIW instruc-
tions, which are often up to 256-bits, may require register files with eight or more write
ports. Since write ports contribute significantly to power dissipation, minimizing them
is an important consideration in handset design.

To enable physical layer processing in software, the processor supports many levels
of parallelism. Thread-level parallelism is supported by providing hardware for up to
eight independent programs to be simultaneously active on a single Sandblaster core.
This minimizes the latency in physical layer processing. Since many algorithms have
stringent requirements on response time, multithreading is an integral technique in re-
ducing latencies.

In addition to thread-level parallelism, the processor also supports data-level par-
allelism through the use of the SIMD Vector unit. In the inner kernel of signal pro-
cessing or baseband routines, the computations appear as vector operations of moderate
length. Filters, FFTs, convolutions, etc., all can be specified in this manner. Efficient,
low-power support for data-level parallelism effectively accelerates inner loop signal
processing.

To accelerate control code, the processor supports issuing multiple operations per
cycle. Since control code often limits overall program speedup (e.g. Amdahl’s Law),
it is helpful to allow control code and vector code to be overlapped. This is provided
through a compound instruction set. The Sandblaster core provides instruction level
parallelism by allowing multiple operations to issue in parallel. Thus, a branch, an inte-
ger, and a vector operation may all issue simultaneously. In addition, many compound
operations are specified within an instruction class such as load with update, and branch
with compare.

Finally, the SB3000 product includes four Sandblaster processor cores per chip to
provide enough computational capability to execute complete WCDMA baseband pro-
cessing in software in real-time.

274 J. Glossner et al.

Future 3G wireless systems will make significant use of Java. A number of carriers
are already providing Java-based services and may require all 3G systems to support
Java [6]. Java, which is similar to C++, is designed for general-purpose object-oriented
programming [7]. An appeal for the usage of such a language is its “write once, run
anywhere” philosophy [7]. This is accomplished by providing a Java Virtual Machine
(JVM) interpreter and runtime support for each platform [8][9].

JVM translation designers have used both software and hardware methods to exe-
cute Java bytecode. The advantage of software execution is flexibility. The advantage
of hardware execution is performance. The Delft-Java architecture, designed in 1996,
introduced the concept of dynamic translation of Java code into a multithreaded RISC-
based machine with Vector SIMD DSP operations [10][11]. The important property of
Java bytecode that facilitated this translation is the statically determinable type state
[7]. The Sandbridge approach is a unique combination of both hardware and software
support for Java execution.

A challenge of visible pipeline machines (e.g. most DSPs and VLIW processors)
is interrupt response latency. Visible memory pipeline effects in highly parallel inner
loops (e.g. a load instruction followed by another load instruction) are not typically in-
terruptible because the processor state cannot be restored. This requires programmers
to break apart loops so that worst case timings and maximum system latencies are ac-
ceptable. This convolutes the source code and may even require source code changes
between processor generations.

The Sandblaster core allows any instruction from any thread to be interrupted on
any processor cycle. This is critical to real-time constraints imposed by physical layer
processing. The processor also provides special hardware support for a specific thread
unit to interrupt another thread unit with very low latency. This low-latency cross-thread
interrupt capability enables fast response to time critical events.

3 Tool Chain Generation

Figure 5 shows the Sandblaster tool chain generation. The platform is programmed in
a high-level language such as C, C++, or Java. The program is then translated using
an internally developed supercomputer class vectorizing, parallelizing compiler. The
tools are driven by a parameterized resource model of the architecture that may be pro-
grammatically generated for a variety of implementations and organizations. The source
input to the tools, called the Sandbridge architecture Description Language (SaDL), is
a collection of python source files that guide the generation and optimization of the
input program and simulator. The compiler is retargetable in the sense that it is able to
handle multiple possible implementations specified in SaDL and produce an object file
for each implementation. The platform also supports many standard libraries (e.g. libc,
math, etc.) that may be referenced by the C program. The compiler generates an object
file optimized for the Sandblaster architecture.

The tools are then capable of producing dynamic and static simulators. A binary
translator/compiler is invoked on the host simulation platform. The inputs to the trans-
lator are the object file produced by the Sandblaster compiler and the SaDL description
of the processor. From these inputs, it is possible to produce a statically compiled sim-

Sandbridge Software Tools 275

ulation file. If the host computer is an x86 platform, the translator may directly produce
x86 optimized code. If the host computer is a non-x86 platform, the binary translator
produces a C file that may subsequently be processed using a native compiler (e.g. gcc).

For the dynamically compiled simulator, the object file is translated into x86 as-
sembly code during the start of the simulation. In single-threaded execution, the entire
program is translated and executed, removing the requirement for fetch-decode-read
operations for all instructions.

SaDLSaDL

C

C++

Java

Sandblaster
Compiler

sb.o

Binary
Translator

x86
asm

C x86
asm

compiled
simulator

dynamic
simulator

Fig. 5. Tool Chain Generation

Dynamically compiled single threaded simulation translation is done at the be-
ginning of the execution phase. Regions of target executable code are created. For
each compound instruction in the region, equivalent host executable code is generated.
Within each instruction, sophisticated analysis and optimizations are performed to re-
order the host instructions to satisfy constraints. When changes of control are present,
the code is modified to the proper address. The resulting translated code is then exe-
cuted.

The SaDL description is based on the philosophy of abstracting out the Sandblaster
architecture and implementation specific details into a single database. The information
stored in the architectural description file can be used by various parts of the tool chain.
The goal is to keep a single copy of the information and replicate it automatically as and
when needed. The key part of the architectural description language is a set of python
files which abstract the common information. These files keep information about each
opcode on the Sandblaster processor. The description of an opcode contains a number
of attributes - the opcode name, opcode number, format, and the registers. In addition,
it contains the appropriate host code to be generated for the particular opcode. These
description files are then processed by a generator to automatically produce the C code
and documentation. The produced C code is used by our just-in-time simulator and
other tools.

276 J. Glossner et al.

shr = opcode("shr", opcode = 0xa4, format = (Rt, Ra, Rb),
resources = binop resources(),
jx86 exec = jx86 shu body("shrl") + jx86 intop wback(),
doc full = "Shift Right",
doc stmt = [

EOp(EGP("rt"), "<-", EOp(EGP("ra"), ">>", EGP("rb")))],
doc long = "The target integer register, rt, is set to the
value of the input register ra right shifted by the value of rb;
0s are shifted in to the high bits.")

Fig. 6. Example SaDL Python Descriptions

Figure 6 shows an example of an opcode entry in our architecture description lan-
guage. It contains the opcode name, number, format and the input resources. It also has
calls to the functions (jx86 exec statement) that are called to implement the operation
on the host platform. It contains both the mathematical description (doc stmt) and the
English description (doc long) to document the opcode

Dynamically compiled multithreaded simulation is more complex than the single-
thread case because multiple program counters must also be accounted for. Rather than
translating the entire object file as one monolithic block of code with embedded instruc-
tion transitions, and then executing it, in the multithreaded case we begin by translating
each compound instruction on an instruction-by-instruction basis. A separate piece of
code manages the multiple pc’s, selects the thread to execute, and performs calls to the
translated instruction(s) to perform the actual operation. The fetch cycle for each thread
must be taken into account based on the scheduling policy defined in the SaDL im-
plementation parameters. Properly speaking, the thread scheduling policy need not be
considered for logical correctness; however, it facilitates program debugging. Although
fetching with multiple program counters has an effect on simulation performance, com-
piled dynamic multithreaded simulation is still significantly faster than interpreted sim-
ulation.

When the simulator encounters a particular opcode during simulation, it calls the
appropriate C function (generated from the processed architectural description files)
for that opcode, makes a syntactic and semantic check and generates the host code to
be executed on the host processor. By using this approach, all the modifications to the
architecture description are limited to a small set of files. This minimizes errors and
maximizes productivity.

4 Results and Related Work

Figure 7 shows the simulation performance of the ETSI AMR speech encoder on out-of-
the-box C code [13]. The simulation speed was measured by taking the wall clock time
needed to simulate a certain number of cycles on a 1 GHz Pentium. The results show
that the simulation performance of a single threaded fully optimized and vectorized
AMR encoder is 25 million instructions per second. The performance degrades to 15
MIPS for 8 threads and then very slightly for additional threads. The degradation is due
to the overhead of simulating multiple instruction counters.

Sandbridge Software Tools 277

AMR Encoder Simulation Performance

10

15

20

25

0 4 8 12 16

Number of Threads

M
ill

io
ns

 o
f I

ns
tr

uc
tio

ns
 P

er
 S

ec
on

d

Fig. 7. Simulation Results

Previously, we have compared the simulation speed of our approach with that of
other DSP simulators [14]. Our approach is up to four orders of magnitude faster than
current DSP simulators. Comparatively, we can simulate in real-time on a simulation
model of the processor while other approaches have difficulty achieving real-time per-
formance on their own native platform. This provides a tremendous advantage in pro-
totyping algorithms.

Automatic DSP simulation generation from a C++-based class library was discussed
in [15]. Automatic generation of both compiled and interpretive simulators was dis-
cussed in [16]. Compiled simulation for programmable DSP architectures to increase
simulation performance was introduced in [17]. This was extended to cycle accurate
models of pipelined processors in [3]. A general purpose MIPS simulator was discussed
in [18]. The ability to dynamically translate snippets of target code to host code at ex-
ecution time was used in Shade [19]. However, unlike Shade, our approach generates
code for the entire application and is targeted towards compound instruction set archi-
tectures.

5 Conclusions

We have presented a methodology for generating and simulating the Sandblaster archi-
tecture using the SaDL architecture description language. On a 1 GHz Pentium pro-
cessor, our dynamically compiled simulator is capable of simulating up to 100 million
instructions per second for lightly optimized code. Fully optimized production DSP
code simulates at roughly 25 million instructions per second and fully optimized multi-
threaded simulation provides nearly 15 million instructions per second.

References

1. Blaauw, G., Brooks, F.: Computer Architecture: Concepts and Evolution. Addison-Wesley,
Reading, Massachusetts (1997)

2. Fauth, A., Knoll, A.: Automated generation of DSP program development tools using a ma-
chine description formalism. In: IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP-93). Volume 1. (1993) 457–460

278 J. Glossner et al.

3. Pees, S., Hoffmann, A., Zivojnovic, V., Meyr, H.: Lisa - machine description language for cy-
cle accurate models of programmable DSP architectures. In: Proceedings of the 36th Design
Automation Conference. (1999) 933–938

4. Glossner, J., Raja, T., Hokenek, E., Moudgill, M.: A multithreaded processor architecture for
SDR. The Proceedings of the Korean Institute of Communication Sciences 19 (2002) 70–84

5. Glossner, J., Hokenek, E., Moudgill, M.: Multithreaded processor for software defined radio.
In: Proceedings of the 2002 Software Defined Radio Technical Conference. Volume I, San
Diego, CA (2002) 195–199

6. Yoshida, J.: Java chip vendors set for cellular skirmish. EE Times (2001)
7. Gosling, J.: Java intermediate bytecodes. In: ACM SIGNPLAN Workshop on Intermediate

Representation (IR95). (1995) 111–118
8. Gosling, J., McGilton, H.: The Java language environment: A white paper. Sun Microsystems

Press (1995)
9. Lindholm, T., Yellin, F.: Inside the Java virtual machine. Unix Review 15 (1997) 31–39

10. Glossner, J., Vassiliadis, S.: The Delft-Java engine: An introduction. In: Third International
Euro-Par Conference (Euro-Par ’97), Passau, Germany (1997) 776–770

11. Glossner, J., S. Vassiliadis, S.: Delft-Java dynamic translation. In: Proceedings of the 25th
EUROMICRO Conference (EUROMICRO ’99), Milan, Italy (1999)

12. Ebcioglu, K., Altman, E., Hokenek, E.: A Java ILP machine based on fast dynamic compi-
lation. In: IEEE MASCOTS International Workshop on Security and Efficiency Aspects of
Java, Eilat, Israel (1997)

13. European Telecommunications Standards Institute: Digital cellular telecommunications sys-
tem, ANSI-C code for adaptive multi rate speech traffic channel (AMR). (Ver 7.1.0) (1999)

14. Glossner, J., Iancu, D., Lu, J., Hokenek, E., Moudgill, M.: A software defined communica-
tions baseband design. IEEE Communications Magazine 41 (2003) 120–128

15. Parson, D. Beatty, P., Glossner, J., Schlieder, B.: A framework for simulating heterogeneous
virtual processors. In: Proceedings of the 32nd Annual Simulation Conference San Diego,
CA (1999) 58-67

16. Leupers, R., Elste, J., Landwehr, B.: Generation of interpretive and compiled instruction set
simulators, In: Proceedings of the ASP-DAC ’99, Wanchai, Hong Kong 1 (1999) 339–342

17. Zivojnovic, V., Tjiamg, S., Meyr, H.: Compiled simulation of programmable DSP archi-
tectures. In: Proceedings of the IEEE Workshop on VLSI Signal Processing, Sakai, Osaka
(1995) 187–196

18. Zhu, J., Gajski, D.: An ultra-fast instruction set simulator. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 10 (2002) 363–373

19. Cmelik, R.: Shade: A fast instruction-set simulator for execution profiling. Technical Report
UWCSE 93-06-06, Univ. Of Washington

A Hardware Accelerator for Controlling
Access to Multiple-Unit Resources in

Safety/Time-Critical Systems

Philippe Marchand1 and Purnendu Sinha2

1 Dept. of ECE Concordia University, Montreal, Canada
p marcha@ece.concordia.ca

2 Indian Institute of Information Technology Bangalore, India
psinha@iiitb.ac.in

Abstract. In multitasking, priority-driven systems, resource access-control pro-
tocols such as Priority Ceiling Protocol (PCP) reduce the undesirable effects of
resource contention. In general, software implementation of these protocols en-
tails costly computations that can degrade the system performance to unaccept-
able levels. In this paper, we present the design for a hardware-accelerator to
execute the PCP functionality for controlling access to multiple-unit resources
and illustrate that the proposed implementation accelerates the execution time by
a factor of up to 30.

1 Introduction

In a multitasking uniprocessor environment, improper resource sharing among tasks
could lead to significant performance penalties as well as severe adverse effects. Priority
Ceiling Protocol (PCP) 1 [9] is a resource management protocol that prohibits the occur-
rence of deadlocks and minimizes priority inversion in such an environment. Deadlocks
and priority inversion are serious problems that can have catastrophic effects in safety-
critical real-time systems. Our experience has been that software implementations of
these resource management policies account for a significant portion of performance
degradation in such systems. In order to alleviate system’s degraded performance we
have designed and implemented a hard accelerator to execute the functionalities of the
PCP handling multiple-unit resources. Both software and hardware implementations of
the protocol have been integrated with the μC/OS-II [7] operating system running on
the AVR ATmega103L [2] microcontroller implemented on a Xilinx Virtex XCV300
[12] FPGA board 2.

We first provide a brief description of previous work accomplished in the field of ac-
celerators and give a theoretical background explaining PCP for multiple-unit resource
access. We then discuss the methodology adopted as well as the software and hard-
ware implementations developed. Finally, we present experimental results comparing
the performance of both designs.

1 There are two variants of PCP [9]: Original Ceiling Priority Protocol (OCPP) and Immediate
Ceiling Priority Protocol (ICPP). We utilize OCPP for multiple-unit resources and refer to it
as PCP in the paper.

2 The rationale for using μC/OS-II, ATMega103L and XCV300 is due to their easy accessibility.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 279–288, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

280 P. Marchand and P. Sinha

2 Related Work

Significant work has been done in the area of software/hardware co-design and in the
more specific area of hardware accelerators for embedded computing. Fundamental
software/hardware co-design issues, namely partitioning and scheduling, have been
outlined [5] and examples of accelerator design has been covered in [6, 11]. Several
authors have proposed variations to the deadlock detection and avoidance algorithms
to improve their execution time when executed in software [3, 4]. Mooney et al. devel-
oped a hardware accelerator for deadlock detection based on resource allocation graphs
in multiprocessor systems in [10]. Resource management acceleration using hardware
has also been explored by using a system-on-a-chip lock cache to execute the Immedi-
ate Ceiling Priority Protocol (ICPP) [9] for single-unit of resources on a multiproces-
sor system running the Atalanta-RTOS, achieving impressive performance gains [1]. In
this project, we developed the original PCP [9] (as opposed to ICPP) for resources of
multiple-units in a multitasking, uniprocessor environment.

3 Theoretical Background

A deadlock can occur when a task is waiting on a resource that it can never acquire.
This situation often arises when more than one task in a system must acquire more than
one resource at one specific time. For example, one of the simplest deadlock situations
occurs when a task T 1 owns resource R1 and needs resource R2 to progress and con-
versely, at the same moment task T 2 owns R2 and needs R1 to progress. In order to
prevent deadlocks, a resource management scheme such as PCP must keep a record of
the state of each resource. Using this information, it can determine if the allocation of a
particular resource to a given task would cause a deadlock situation.

Priority inversion occurs when a lower priority task blocks a higher priority task,
and can be is triggered by the sequencing of the resource allocations. Consider the
trivial condition where a low priority task T 1 acquires a resource that is also used by
a high priority task, T 2. If T 2 blocks because it cannot acquire this resource, priority
inversion occurs when T 1 runs. The problem becomes more acute if additional tasks
with intermediate priorities are executing in the system since these would preempt T 1
and in the process further delay the execution of the higher priority task T 2.

Next, we briefly describe the working principles of the PCP for controlling access
to multiple-unit resources. For details, we refer the reader to [8, 9]. PCP implements
deadlock avoidance by assigning a priority ceiling (PC) to every resource in the system.
The PC of resource R is defined as the priority of the highest priority task that uses
R. In an environment where there are multiple instances of the same resource, the PC
becomes a function of not only the resource type but also of the remaining number of
instances of that resource. Given a resource R that has N units, the PC when there are
n≤ N free units of R is equal to the priority of the highest priority task that uses at least
n instances of R. For example, given the following resource allocation graph of Fig. 1,
where task T 1 to T 4 are indexed in decreasing order of their priorities, we obtain the
Priority Ceiling Array of Fig. 1 that displays the PC as a function of resource and units
left. For instance, if there are 2 units of R1 left, the PC will be Π(R1,2) = 3.

A Hardware Accelerator for Controlling Access to Multiple-Unit Resources 281

R1

T1 1

R2

1

T2 1

2

T33

T41
4

Π(R,k)
Resource Number Number of units left, k

of units 0 1 2 3 4 5

R1 5 1 2 3 4 - -
R2 1 1 - - - - -

Fig. 1. Resource allocation graph and corresponding Priority Ceiling Array

PCP states that a task can only acquire a resource if its priority is greater than the PC
of every resource instance currently held by other tasks. PCP protects against priority
inversion by executing Priority Inheritance, which seeks to correlate the time a task is
kept waiting on a resource to the relative importance given to it by its assigned priority.
If a task T 1 is blocked waiting on units of a resource, the task owning those units, T 2 for
instance, will acquire T 1’s priority if the priority of T 2 is less than the priority of T 1.
To implement PCP, we define the system priority ceiling, SysPC, which is the highest
priority ceiling of the currently obtained resource units:

SysPC = max{∀PC(Π(RACQUIRED,n))}
Also, the system task, SysTask, is defined as the task that owns the resource with a
Priority Ceiling equal to SysPC.

The rule used to determine whether a task T 1 with priority π1 can obtain resource
units is:

(π1 > SysPC) or (T 1 = SysTask) (1)

This scheme allows the PCP algorithm to be implemented in either hardware or
software. A list is kept of the resource units presently acquired and their corresponding
owning task. From this list, the SysPC and SysTask variables can be easily computed
and used to evaluate (1) when a task seeks to obtain resource instances.

Priority Inheritance will be carried out when a task fails to acquire a resource and
effectively becomes blocked by the SysTask. In this case, if the priority of the blocked
task is higher than the priority of the SysTask, the tasks will exchange priorities.

When a task fails to obtain requested resource units either because it does not meet
(1), or there simply aren’t enough free instances, a task is blocked waiting on the re-
source and must go in the wait list. The scheduler can then move a task from the wait
list to the ready list when the blocking resource instances become available. In order
to implement PCP, tasks and resources, in this case semaphores, are uniquely identi-
fied. These identification fields are entered into nodes of the list when a task acquires
semaphore units, and used to remove or modify a node when it releases units. Each
node also contains the priority ceiling and amount of semaphore instances.

A hardware implementation of ICPP has been introduced in [1]. Note that ICPP
takes a more straightforward approach and raises the priority of a process to the priority
ceiling of the resource it has just locked. ICPP is easier to implement than OCPP as
blocking relationships need not be monitored. Although ICPP is simpler to implement
and reduces the amount of context switches, this protocol can increase the occurrence
of priority inversion. By immediately raising the priority of a task to the priority ceiling
of the resource it has just acquired, higher priority tasks that do not utilize resources

282 P. Marchand and P. Sinha

could be needlessly blocked by a task that has just acquired resource units with a high
PC. This further highlights our approach as compared to [1].

4 Methodology

In our implementation, PCP has been decomposed into functional blocks: the sema-
phore acquire and release functions, as well as new task management features to sup-
port PCP, which have all been implemented in both hardware and software. The target
platform, running the μC/OS-II operating system, supports up to 64 tasks of unique,
8-bit priorities that are sequenced in reverse numerical order [7]. To facilitate both the
hardware and software implementations, a task is given an ID that is also its assigned
priority. In the rest of the text, a task ID is synonymous with the task’s assigned priority.

4.1 Outline of Acquire Function

Figure 2a shows the flowchart which represents the sequence of actions that take place
when a task wishes to acquire semaphore instances, starting with the function call OS-
SemPend(), which encapsulates the whole operation. If there are enough semaphore
instances left and the task is the SysTask or it has a higher priority than SysPC and the
highest priority blocked task, the task acquires the semaphore units and can progress.

On the other hand, if it fails this condition, the task becomes blocked waiting on
that particular resource. At this point, priority inheritance will be executed if the task
has a higher priority than the priority of the SysTask by exchanging priorities with it by
calling OSTaskSwapPrio(). At the same time, these swapped priorities are pushed onto
the system priority stack, which holds the priorities of every task that have exchanged
priorities. Finally, since the task is now blocked, its assigned priority is removed from

OSSemPend()

Task wishes to
acquire units of a

semaphore

Enough instances
left?

Task is SysTask?

Yes

Task is of higher priority
than SysPC and highest priority

waiting task?

No

No

No

Yes

Yes

Put assigned priority
in wait list

Update TCB with semaphore ID
and count of units needed

Task Priority>SysPC Yes

OSTaskSwapPrio()
(swap priorities of
task and SysTask)

Push SysPC onto
system priority stack

Push task priority onto
system priority stack

No

Task is blocked and
scheduler is called

Insert task/
semaphore ID pair

Decrement
semaphore count

Task has acquired the
resource

OSSemPost()

Task wishes to
release units of a

semaphore

Increment semaphore
count

Recalculate PC and
update semaphore list

SysTask has
changed?

Assigned priority of old SysTask
is lower than highest

inherited priority
(top of system priority stack)

Yes

SysPC is higher priority than
highest inherited priority

(top pf system priority stack)

No

No

Pop system
priority stack

OSTaskPrioSwap()
(swap the popped and
current task priorities)

Yes

Pop system
priority stack

Task has released the
semaphore instances
and the scheduler is

now called

YesNo

OSTaskPrioSwap()
(swap the popped and
current task priorities)

b)a)

Fig. 2. Flowchart representing steps taken when (a) acquiring and (b) releasing a semaphore

A Hardware Accelerator for Controlling Access to Multiple-Unit Resources 283

the ready list and inserted into the wait list. The Task Control Block (TCB) of the
blocked task is updated with the ID and count of the semaphore it is waiting on.

4.2 Outline of Release Function

When releasing semaphore instances, the basic steps include modifying the semaphore
list and reversing priority inheritance. Figure 2b shows the flowchart representing the
sequence of actions that occur during this operation. Function OSSemPost() is called,
the semaphore count is incremented, and the task/semaphore node is updated with a new
count and PC field, or removed completely if the task owns no more instances of the
semaphore. The ”reversing” of Priority Inheritance is accomplished by exploiting the
fact that only a task that is currently the SysTask can inherit a higher priority and yield an
inherited priority. Therefore, if a task is no longer the SysTask after releasing semaphore
instances (in other words, the SysTask has changed), it must ”give up” any inherited
priorities. In this situation, we know a task has inherited a priority if its assigned priority
is lower than the priority on top of the system priority stack. Therefore, the stack is
popped and function OSTaskPrioSwap() is called to swap the priorities of the task with
the assigned priority equal to the popped priority and the current task. This is seen on
the left branch of the chart of Figure 2b. The stack popping and priority swapping is
repeated for any other priorities inherited by the current task. The other situation occurs
if a task remains the SysTask after releasing semaphore instances, but at a lower SysPC
value. In this case, the task gives up any inherited priorities that are of higher value than
the SysPC value.

4.3 Outline of Scheduler Execution

The task scheduler is modified to support PCP because it must now work with a ready
list and the newly added wait list. The highest priority tasks of both the ready and wait
list are obtained and compared. If the latter’s priority is higher and it can obtain the
semaphore instances it was blocked on, this task now becomes the running task. The
task is therefore taken out of the wait list, put into ready list and executed by context
switching to it. If the highest priority ready task is of higher priority, or if the highest
priority wait task cannot obtain the blocking semaphore instances, the task from the
ready list will run.

5 Software Implementation

The most important implementation decision of the software PCP is the choice of the
data structure to hold the semaphore/owning task list. There are two criteria to consider:
the cost of inserting and removing an entry and the price of determining the entry with
the highest PC that holds the SysTask and SysPC values. We chose an ordered circular
linked list where the first entry will have the highest PC. It is then easy to evaluate (1)
each time a task wishes to acquire resource units. The disadvantage of this implemen-
tation is the time it takes to search the list when adding or removing entries, a cost that
is proportional to the number of entries and executes in the order of O(n), where n is
the number of task/resource pairs that currently exist in the system. Utilizing an array

284 P. Marchand and P. Sinha

or hash type data structure would have alleviated this performance drawback at the cost
of having to reanalyze the data structure to find the new SysTask entry every time the
entry with the highest PC was removed. For example, one option would have been to
uniquely identify each entry with a combination of semaphore ID and owning task ID,
in effect giving us a two-dimensional matrix, of size M×N, where M is the number
of tasks and N the number of semaphores in the system, which executes in the order
of O(N×M) to find the entry with the highest PC. For a system with many tasks and
semaphores, this search would become quite expensive and would far outweigh the cost
of the linked list implementation.

The performance drawbacks of the software implementation arise from the fact that
priority ceiling values are not unique: several task/semaphore pairs can have the same
PC value, making it costly to determine the pair or pairs with the highest PC. Task
scheduling is an equivalent problem that is avoided by an RTOS that supports tasks of
unique priorities: the scheduler is able to easily store the list of ready tasks and quickly
determine the highest priority task ready to run. For example, the μC/OS-II scheduler
stores the ready list in an 8-bit variable and uses a bit-map technique to determine the
highest priority of the ready list with just two non-looping, high-level language instruc-
tions [7]. Introducing the software implementation of PCP into a RTOS that ensures
low overhead by foregoing the use of costly data structures might degrade performance
to unacceptable levels. The proposed solution is to implement PCP in hardware and use
parallelism to avoid the performance drawbacks of the software implementation.

6 Hardware Implementation

The software implementation of the PCP has been ported to hardware by developing
an accelerator that is a separate entity from the CPU. Since the AVR ATmega103L
microcontroller uses port-based interfacing, the accelerator is addressed as a peripheral
and communicates with the CPU via I/O Ports. At the heart of the accelerator is a
register file used to hold the list of semaphore/owning task ID pairs that are stored in
a linked-list with the software implementation. The system works as follows: when a
task acquires or releases semaphore units, the accelerator updates the register file. If
a task calls the Acquire function and is not granted the semaphore instances, its ID is
put into the wait list that is stored in the accelerator. When a task Releases semaphore
instances, the accelerator direct the priority inheritance procedure, telling the OS which
priorities to swap. The accelerator will also determine if the highest priority waiting task
can acquire the blocking semaphore instances when the scheduler is called. Finally, the
accelerator must locally store the semaphore counts and the Priority Ceiling Array.

6.1 Accelerator Datapath

As previously stated, the main part of the datapath is the register file module that holds
the semaphore/task ID pairs, comparing them in parallel fashion. Figure 3 shows this
section of the datapath. The register file module consists of 32 entries, each containing
a semaphore ID, task ID, semaphore count and PC field. On the right of Fig. 3, 8-bit
comparators and multiplexers connected in a tree fashion are used to output signals
SysPC and SysTask. The left of Fig. 3 shows 32 13-bit comparators that compare the

A Hardware Accelerator for Controlling Access to Multiple-Unit Resources 285

1

2

PC field (8-bit)Cnt field (3-bit)
taskID field

(8-bit)
SemID field (5-bit)

8-bit
Comp (<)

2-1
Mux

3

4
8-bit

Comp (<)
2-1
Mux

8-bit
Comp (<)

2-1
Mux

32

.

.

.

13-bit
Comp (=)

13-bit
Comp (=)

Comp_line
32-bits

Count_line
3-bits

Data_line
24-bits

flip-
flop

flip-
flop

32 x 24-bit register file

.

.

.

SysTask
8 bits

Select_line
32-bits

13
13

...

1 1

3

16
8

3

32

E
N

B

E
N

B

...

...

... SysPC
8 bits

Fig. 3. Register file module with parallel logic

semaphore ID and task ID of every entry to the Data line. The resulting 32 bits, iden-
tifying which entries have the same value as the Data line, are stored in flip-flops and
outputted by signal Comp line. The outputs of the comparators are also used as the en-
able input to 32 3-bit tri-state buffers, which make up the Count line. Thus, this signal
will yield the count of the entry whose task and semaphore ID match the Data line.

Figure 4 shows the top level view of the accelerator datapath. On the left are the three
registers which hold the data from the CPU. On the bottom left of the diagram are the
Wait List, Sem Array Regfile and Cnt Array Regfile. With its N 1-bit registers, the Wait
List records which tasks are blocked (where N≤ 64 represents the number of tasks). The
encoder translates the N bits of the registers to an 8-bit signal that holds the assigned pri-
ority of the highest priority waiting task. The Sem Array Regfile and Cnt Array Regfile
contain the blocking semaphore ID and number of units needed, respectively, by the
task whose ID indexes them. Two other register files, this time indexed by semaphore
ID, are the Current Cnt Regfile and Max Cnt Regfile, which hold the number of units
currently used and the maximum units of the selected semaphore, respectively. These
numbers, as well as the count of units needed or released, are fed through two stages of
adders and subtractors in order to compute the amount of semaphore units remaining.
This number, along with the semaphore ID, indexes the PC Array Regfile to give the
PC of the semaphore/task pair which can then be fed to the Data line of the Regfile
module.

The SysTask and SysPC output of the Regfile Module is supplied to the combina-
tional logic block that is responsible for determining if semaphore units can be granted
when the accelerator is executing the Acquire function. This block also takes in the as-
signed priority of the highest priority waiting task computed by the encoder of the Wait
List and the task ID input from the CPU. With this information, the logic sets its out-
put bit if (1) evaluates to true. The final component is the priority inheritance module
responsible for implementing the system priority stack.

286 P. Marchand and P. Sinha

Regfile Module

Count_ line
Data_line

SysTask

SysPC
Select_line

Comp_line

SemID_Reg
5 bits

Data_in
16 bits

Sel _ID
Out

In

+

-

Sel_ID
Out

In

Rem_Cnt_Reg
3 bits

Sel
Out

In
Sem _PC_Reg

8 bits

-

Sem_New _Cnt_Reg
3 bits‘111’‘FF’‘11111 ’ ‘FF’

Select_Line_Reg
32 bits

Combinational logic
RSLT

Sel _ID
Out

In

Sem_Array_regfile
Nx5 bits

Sel _ID
Out

In

Priority
Inheritance

Module

Out_Prio
8 bits

24

1 2 3 N...
WAIT LIST

Encoder
N to 8 bits

...

16

8 3

8

5 8

32

316

8 5

5
3

8

3

-

8

8

SemCnt_Reg
3 bits

TaskID_Reg
8 bits

Cnt_Array_regfile
Nx3 bits

PC_Array_Regfile
70x8 bits

Max_Cnt_regfile
10x3 bits

Current_Cnt_regfile
10x3 bits

Fig. 4. Top level view of accelerator datapath

6.2 Hardware Implementation Metrics

The accelerator design was implemented in hardware on the Virtex XCV 300 FPGA by
the Xilinx Design Manager software, giving us the hardware implementation metrics.
The equivalent gate count is 34 871 and a maximum frequency of over 9 MHz for a
design that has 32 Regfile Module entries. The AVR ATmega103L microcontroller has
a maximum frequency of 6 MHz, proving that both components are compatible.

7 Results

The acceleration gains offered by the hardware implementation of the Priority Ceiling
Protocol were quantified by running the PCP functionality in simulation on the soft
CPU executing the AVR ATmega103L instructions. The functions performed were the
Acquire and Release of semaphore instances and scheduler execution. The system con-
sisted of 5 tasks that share 6 semaphores with a maximum of 6 units. Figure 5 shows
the task execution.

Acquire Function Results. Table 1 shows the results obtained when running the Ac-
quire semaphore function under different scenarios. The best case execution time for
the software implementation occurs when the task/semaphore pair list is empty seen as
point 1 on Fig. 5. The worst case happens when it is full with 29 task/semaphore pairs
that must be traversed, at point 2 on Fig. 5. The accelerator, on the other hand, executes
the Acquire function in constant time. We have also measured the execution time for the
case when a task fails to acquire semaphore instances and priority inheritance is carried
out, occurring at point 3 on Fig. 5.

A Hardware Accelerator for Controlling Access to Multiple-Unit Resources 287

T1

T2

T3

T4

T5

Acq 1 of each
sem

Fail to Acq of
each sem

(1)

(2)(3)

(4)

(5)

(6)

(7)

Acq 1 of
each sem

Rel 1 of Sem 6

Rel 2 of
Sem 6

Acq 1 of each
sem

Acq 1 of each
sem

Acq 3 of Sem 6,
1 of the others

Fig. 5. Task execution of test program

The results show that the acceleration is greatest when a task successfully acquires
semaphore units when the list is full: in this situation, the software implementation takes
over 30 times more CPU cycles to execute than with the hardware accelerator. The gain
is smallest when a task fails to acquire semaphore units; in this case priority inheritance
requires considerable processing by the CPU that the accelerator cannot alleviate.

Release Function Results. The best case execution time of the software implementation
takes place at point 4 on Fig. 5, when a task gives up all the units of a semaphore that
it owns. The worst case scenario occurs when a task gives up only a fraction of the
instances of a particular semaphore, occurring on point 5 of Fig. 5, since the list must be
traversed to find the new location for the task/semaphore pair. The execution time with
the hardware accelerator is still constant regardless of the state of the system. Table 1
shows the results of the Release operation. The hardware accelerated implementation
executes more than 12 times faster than the software implementation in this situation.

Scheduler Function Results. The accelerator provides computational assistance when
the CPU is running the scheduler function. Again, execution time depends on the state
of the system: if the wait task remains blocked after the scheduler has finished, both
implementations will take less time to execute because the task will not have acquired
the semaphore units it is blocked on, and the task/semaphore list will not have to be

Table 1. CPU cycles to execute the Acquire and Release functionality and the scheduler function
under different scenarios

Action Implementation Acceleration
Software Hardware Gain

Acquire semaphore units (best case) 31472 5440 x 5.68
Acquire semaphore units(worst case) 165952 5440 x 30.5
Fail to acquire semaphore units and execute priority inheritance 48576 34944 x 1.39

Release semaphore unit (best case) 21504 4672 x 4.60
Release semaphore units (worst case) 58112 4672 x 12.44

Wait task stays blocked (best case) 4544 1344 x 3.38
Wait task unblocks (worst case) 40512 5763 x 7.03

288 P. Marchand and P. Sinha

updated, occurring at point 6 in Fig. 5. Conversely, if the waiting task becomes the
running task, as seen at point 7 in Fig. 5, the execution time of the scheduler will be
longer because semaphore units will have been acquired and the list will have been
updated. Table 1 shows that the accelerator speeds up the scheduler up to 7 times.

8 Conclusion

In this paper, we have proposed a hardware accelerator for an access-control protocol
for multiple-unit resources in a uniprocessor environment. Specifically, software and
hardware implementations of the Priority Ceiling Protocol for multiple-unit resources
were developed and performance numbers of the two implementations were compared.
As expected, the hardware accelerator showed impressive gains over the software im-
plementation. By using a high degree of parallelism to carry out otherwise time consum-
ing computations, the hardware implementation executes PCP in predictable amounts
of time. Future work may involve adapting the accelerator to a multi-processor system,
allowing it to provide even more support to the underlying OS.

References

1. Akgul, B., Mooney, V., Thane, H., Kuacharoen, P.: Hardware Support for Priority Inheri-
tance. In: Proceedings of the IEEE Real-Time Systems Symposium (RTSS’03) (2003) 246–
254

2. Atmel Corporation, ATmega103L Datasheet. (2001) http://www.atmel.com
3. Belik, F.: An Efficient Deadlock Avoidance Technique. IEEE Transactions on Computers 39

(1990) 882–888
4. Cahit, i.: Deadlock Detection using (0, 1)-Labeling of Resource Allocation Graphs. Comput-

ers and Digital Techniques, IEE Proceedings 145 (1998) 68–72.
5. Gupta R., De Micheli, G.: Hardware/Software Co-Design. IEEE Proceedings 85 (1997) 349–

365
6. Kohout, P., Ganesh, B., Jacob, B.: Hardware Support for Real-Time Operating Systems. In:

Proc. First IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS 2003), Newport Beach, CA (2003) 45–51

7. Labrosse, J.J.: MicroC/OS-II: The Real-Time Kernel. CMP Books (2002)
8. Liu, J.W.S.: Real Time Systems. Prentice Hall, New York, NY (2000)
9. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority Inheritance Protocols: An Approach to Real-

Time Synchronization. IEEE Transactions on Computers 39 (1990) 1175–1185
10. Shiu, P.H., Yudong, T., Mooney, III, V.J.: A Novel Parallel Deadlock Detection Algorithm

and Architecture. In: Hardware/Software Codesign, Proc. of 9th CODES (2001) 73–78
11. Wolf, W.: Computers as Components. Morgan Kaufman (2000)
12. Xilinx, http://www.xilinx.com.

Pattern Matching Acceleration for Network Intrusion
Detection Systems�

Sunil Kim

School of Information and Computer Engineering, Hongik University,
72-1 Sangsu-Dong, Mapo-Gu, Seoul, Korea

sikim@cs.hongik.ac.kr

Abstract. Pattern matching is one of critical parts of Network Intrusion Detec-
tion Systems (NIDS). Pattern matching is computationally intensive. To handle
an increasing number of attack signature patterns, a NIDS require a multi-pattern
matching method that can meet the line-speed of packet transfer. The multi-
pattern matching method should efficiently handle a large number of patterns with
a wide range of pattern lengths and noncase-sensitive pattern matches. It should
also be able to process multiple input characters in parallel. In this paper, we
propose a multi-pattern matching hardware accelerator based on Shift-OR pat-
tern matching algorithm. We evaluate the performance of the pattern matching
accelerator under various assumptions. The performance evaluation shows that
the pattern matching accelerator can be more than 80 times faster than the fastest
software multi-pattern matching method used in Snort, a widely used open-source
NIDS.

1 Introduction

In network security, pattern matching is extensively used inside Network Intrusion De-
tection Systems (NIDS) to detect signatures of unauthorized attempts to access and
manipulate information and to render a system unreliable or unusable. A NIDS mon-
itors both ingress and egress network traffic and compares the network packets with
certain intrusion signatures or analyzes network traffic to find any suspicious anoma-
lous/irregular pattern. A NIDS makes use of a set of rules that are applied to matching
packets. A rule includes a signature of a malicious packet and an associated action to
take if all conditions of the rule are met. A multi-pattern matching method is used to
find a match of string patterns specified in rules against the content of a packet pay-
load. Pattern matching is computationally intensive. The pattern matching routines in
a widely used open-source NIDS, Snort account for up to 70% of total execution time
and 80% of instructions executed on real traces [1].

The one of most challenging pattern matching problems for NIDS is the huge num-
ber of patterns to detect whose size ranges from one to more than one hundred bytes [2,
3]. The number of patterns will keep increasing, as more and more different attacks
will continue to appear in the future. Another problem is that many of attack patterns

� This work was supported by 2005 Hongik University Research Fund.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 289–298, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

290 S. Kim

are noncase-sensitive [3]. Therefore, pattern matching methods should handle noncase-
sensitive pattern matching efficiently. The final challenge is that the pattern matching
methods should process more than one incoming characters in parallel. By processing
multiple input characters, we can easily boost the speed of pattern matching process for
NIDS.

There have been many multi-pattern matching methods proposed. One kind of ap-
proaches is based on software implementations of pattern matching algorithms [2, 3,
4, 5, 6]. For a line speed of 10Gbps and beyond, most software approaches likely fail
to meet the speed requirement. The other approaches are based on hardware imple-
mentations [7, 8, 9, 10, 11, 12, 13]. Some of them [8, 9, 10] implement regular expres-
sions (NFAs/DFAs) using FPGA. Other approaches [11, 12, 13] use CAM (content-
addressable memory) or comparator logic circuit. Both approaches require reprogram-
ming of FPGA every time patterns are changed. In addition, incoming characters are
globally broadcast to all character matchers or CAMs. This requires the use of an ex-
tensive pipelined broadcast tree to achieve a high clock rate. The operating frequency
of these architectures tends to drop gradually as the number of patterns to handle is
increased [13].

Another hardware approach implements blooming filters in which hash functions
are used to find a pattern match [7]. A blooming filter is needed for each pattern size,
and the same number of memory ports as the number of blooming filters is required to
feed all blooming filters simultaneously. Therefore, as the number of pattern size is in-
creased, the implementation becomes difficult. Unlike other hardware approaches men-
tioned above, this method does not require reprogramming of FPGA for patterns added.
However, the blooming filter method could generate a false positive match, which re-
quires the match rechecked by software.

In this paper, we propose a hardware pattern matching method. This method is based
on a well-known single pattern matching algorithm, Shift-OR [14]. The algorithm is
mainly performed by Shift and OR bit vector operations that can be efficiently imple-
mented in hardware. The algorithm can be extended to support multi-pattern matching
by concatenating all pattern vectors and process them all together. In general purpose
processors, the algorithm is rather slow because the bit vector operation is limited by the
word size. For a large number of patterns, we need many more iterations of Shift-OR
operations for processing one input character. We propose a specialized pattern match-
ing architecture that efficiently implements the multi-pattern Shift-OR algorithm. The
architecture fully exploits current VLSI technologies that can allow high on-chip mem-
ory bandwidth and efficiently handle large-size bit vector operations. The architecture
satisfies the domain specific pattern matching characteristics for NIDS: a large num-
ber of patterns with wide range of sizes, noncase-sensitive pattern matches and parallel
processing of multiple input characters.

This paper begins by describing Shift-OR algorithm in Section 2. The detail of the
proposed hardware pattern matching architecture will be described and evaluated in
Section 3 and 4 respectively. We conclude in Section 5.

Pattern Matching Acceleration for Network Intrusion Detection Systems 291

2 Shift-OR Pattern Matching Algorithm

In this section, we briefly describe Shift-OR pattern matching algorithm for a single
pattern, which is the basis of the pattern matching architecture we present in this paper.
The algorithm uses bitwise techniques. It keeps a bit array of size m (pattern length), a
state vector R that shows if prefixes of the pattern match at the current place. For exam-
ple, there are a pattern P = p0 . . . pm−1 and input string X = . . .xi+ j After processing
xi+ j, R[j] = 0 if xi . . .xi+ j matches p0 . . . p j, otherwise R[j] = 1. There is another bit
array of size m, a character position vector Sc, denoting the position of character c in
pattern P. For example, Sc[i] = 0 if pi = c, otherwise Sc[i] = 1. If we know that the bit
value of R[j] after processing xi+ j, we can easily compute R[j +1] by knowing whether
the next character xi+ j+1 appear at pattern position p j+1. R[j + 1] can be defined as
follows:

R[j +1] =

⎧⎨⎩
0 if R[j] = 0 and Sc[j +1] = 0 where c = xi+ j+1

1 otherwise.
(1)

R[0] = Sc[0] where c = xi+ j+1 (2)

R[m−1] = 0 means the pattern xi . . .xi+m−1 matches p0 . . . pm−1, that is, the match-
ing pattern is found. The computation of new R for the next input character c reduces
to Shift and OR operations (SHIFT (R) OR Sc).

This algorithm easily handles any finite class of symbols, complement symbols and
even don’t care symbols. If position i of a pattern allows a class of symbols {x,y,z}, then
letting Sx[i] = Sy[i] = Sz[i] = 0 handles the case. Complement symbols and don’t care
symbols can be handled in the same way. Therefore, noncase-sensitive matches can be
easily processed without any additional overhead. The algorithm can be extended for
multiple patterns. It first coalesces all state vector Rs for each pattern into one state vec-
tor. It also coalesces all character position vector Scs for each pattern into one character
position vector for a given character c. The only difference from single pattern match
is that when the new bit value of R corresponding to the first position of a pattern, i, is
computed, the value is only affected by Sc[i], not by shifted value from i−1th position.

3 Hardware Pattern Matching Acceleration for NIDS

This pattern matching hardware accelerator (PMA) consists of four components: char-
acter position vector unit, state vector computation unit, match detection unit, and pri-
ority encoder unit. The character position vector unit takes N input characters from the
input buffer and generates N character position vectors, one for each input character.
The input buffer contains the payload of a packet to examine. N is the shift size of the
accelerator, that is, N input characters are processed in parallel. Figure 1 shows the ar-
chitecture of the first component, character position vector unit. There are N character
position vector tables. Each table has 256 character position vectors, one per an 8-bit
character. The character position vector is a coalesced character position vector for all

292 S. Kim

������������	�
�����������
���������
������������������		
����������		
����������		
����������		
��

………

�����������������������������

���������	����������	����������	����������	�����

………

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����

����

������������

��
��
��

��
��

��������

��������

��������

��
��
��

��
��

��������

��������

��������

��
��
��

��
��

��������

��������

��������

Character Position
Vector Table

Character Position
Vector Table

Character Position
Vector Table

Fig. 1. Character position vector unit

the patterns for a given character. These vectors are precomputed from string patterns
and loaded into the table. All the tables have the same character position vectors. Each
input character is used as an index to the corresponding table to generate a character
position vector Si as shown in Figure 1.

The N character position vectors are fed into the next component that computes
state vector R. The state vector computation unit takes those character position vectors,
state vector R generated from the previous cycle and pattern boundary vector B and
then computes a new state vector and stores it into R. The pattern boundary vector B
denotes boundaries of each pattern by bit value 0 in a vector of the same size of R.
Figure 2 shows the execution of the state vector computation unit. Initially R is ANDed
with B, then shifted and ORed with S0 to generate intermediate state vector T0. Next,
T0 is ANDed with B, then shifted and ORed with S1 to generate next intermediate state
vector T1. The same computation is performed at each stage until TN−1 is generated.
The final result TN−1 will be stored into R again for the next cycle computation. The
computation is represented in the following equations.

Tk(0) = Sk(0)+0 = Sk(0) for all k (3)

T0(i) = S0(i)+(R(i−1)∗B(i−1)) for i > 0 (4)

Tk(i) = Sk(i)+(Tk−1(i−1)∗B(i−1)) for k > 0, i > 0 (5)

The AND operations with B prevent the computation result from propagating cross
pattern boundaries. As shown in Figure 2, the shift operations are performed by simply
connecting the ith position results to one input port of the OR gate of the i + 1th posi-
tion at the next stage. Each stage computation is equivalent to one Shift-OR operation
in Shift-OR algorithm. The state vector computation unit can perform N Shift-OR op-
erations in a single cycle. Combinatorial logic circuit is used for all the computation,
and intermediate state vectors, T0 . . .TN−1, are generated on the fly and does not need to
be stored.

Pattern Matching Acceleration for Network Intrusion Detection Systems 293

�����������������������������

���������� ������ �� �� ����
��
�������
��
�������
��
�������
��
����

�����������������������������

�����������������������������

�����������������������������

�

�

����

����

����

����

����

�����
������
��
�����
������
��
�����
������
��
�����
������
��
����

���������������������� �� �
����
����������������
����������������
����������������
������������

�
�����
�����
�����
����
����

�

�

�

�

�

�

�

�

����
������
������
������
�� ��������
������
������
������
�� ����

����
����

����
����

����
����

�

�

���������

�����������

�����������

�

� ����
�������
�������
�������
�������

���� ��������������������������������

����������	
�

�	������	��

���

Fig. 2. State vector computation unit

������

������

�	��

����

�� �������������������������

�����������������������������

�����������������������������

�����������������������������

���������������������������������

����
����

����
����

����
����

����
����

�

�������
 �!���������
 �!���������
 �!���������
 �!��

�
�����
�����
�����
����

���������������������� �� �����
����������������
����������������
����������������
������������

�
�����
�����
�����
����
����

�

�

�

���������

���������

���������

���������

���������

�

� ����
�������
�������
�������
�������

���� ��������������������������������

Fig. 3. Matching detection unit

In the middle of N input characters being processed, matches can be found. The
third component of this accelerator, match detection unit, detects all the matches from
all the intermediate state vectors. Figure 3 shows the architecture. All the bits at the
same position in the intermediate state vectors are ANDed and then ORed with the bit at
the same position in the pattern boundary vector B. The result is stored into the match
result vector F . If the match result vector has zero bits (match bits), it means there
are matches. The fourth component of the accelerator, priority encoder logic, computes
the index of the first match bit position from the match result vector F . The match bit
position information is used by software to find the pattern that matches. Other detailed
design issues for interactions between the accelerator and the software are not addressed
because these are not main concerns of this paper.

4 Performance Model and Evaluation

We evaluate the performance of the proposed pattern matching hardware accelerator
(PMA) using a simulation model and compare it to the performance of software multi-
pattern matching methods employed in Snort 2.1.2, AC and MWM, which are based

294 S. Kim

on Aho-Corasick [5] and Wu-Manber [6] algorithms, respectively. The implementation
details of these multi-pattern string matching algorithm used in Snort can be found
in [2].

We assume that PMA is used in Snort in the place of the software pattern matching
methods. The performance of PMA is evaluated based on the execution data of software
PMA gathered while executing Snort. The software PMA simulates the execution of the
pattern matching accelerator described in the previous section. Only pattern matching
operations are evaluated. Other operations related to PMA setup, such as loading the
character position vector table and the pattern boundary vector, are excluded because
such operations are not time-critical.

4.1 PMA Execution and Performance Model

We first define PMA pattern matching operation and analyze their execution time. Dur-
ing each pattern matching operation, N characters (shift size) are read from the input
buffer and the character position vector tables are accessed, N intermediate state vector
are computed, and finally the match result vector is generated from the pattern boundary
vector B and the N intermediate state vectors. The execution time for pattern matching
operations can vary depending on implementation technology. For evaluation, we ex-
plore a wide range of execution times for the pattern matching operation. The execution
time is measured in number of cycles.

When a pattern match starts, all the internal vectors including the state vector and the
matching result vector are reset to their initial condition. After that, pattern matching
operations repeat until a match is found, and the match result vector records all the
matches found. When matches are found, an interfacing software finds the first match
bit position from the match result vector by reading the output of the priority encode
logic. The match bit is cleared after its position is read. If there is more than one match
bit, the position of the next match bit is computed by the priority encoder logic for
the next use. This operation continues until all the match bit positions are read and
cleared. The software can find the index of the matching pattern from the match bit
position and performs other operations needed to conclude a rule match. This whole
pattern matching operation will continue until all the characters in the input buffer are
processed.

The execution time of PMA depends on the number of pattern matching operations
and the total execution time of the priority encoder logic. We first assume that reseting
all internal vectors takes one cycle. We largely divide the pattern matching operation
into two parts: memory access and vector computation. The memory access time(Tm)
is the time taken for accessing the input buffer and the character position vector tables.
If the input buffer and the character position vector table are implemented with the
same static RAM technology as that of the first level cache, the access time could be as
fast as one cycle for each input buffer and character position table. If a slower memory
technology is used, the access time could be more than a hundred cycles. For evaluation,
we vary the memory access time from 2 to 64 cycles.

The vector computation consists of N Shift-OR operations to compute intermediate
state vectors and one match detection. The Shift-OR takes two gate delays (one AND
and one OR gates), and the match detection takes one or four gate delays (zero to

Pattern Matching Acceleration for Network Intrusion Detection Systems 295

four AND gates and one OR gates) depending on the number of the intermediate state
vectors. The Shift-OR operation can be very fast. We vary the execution time of the
Shift-OR operation (Tso) from 0.25 to 1 cycle and assume that the match detection takes
2 cycles. We use the roundup value of the vector computation cycles in case that it has
a fraction value.

The total execution time of the priority encoder logic depends on the number of
matches. This priority encoder logic has a large fan-in. The fan-in size is the sum of
all pattern size M, which is about 24K for default rules that come with Snort 2.1.2.
Such a large priority encoder can be implemented using Parallel Priority look-ahead
architecture [15]. The gate delay is approximately log2 M− 3, which is about 12 gate
delays. For evaluation, we vary the execution time of the priority encoder (Tp) from 2 to
8 cycles. The total execution cycles for PMA to process one payload can be expressed
as follows.

PMA execution time = 1+(Tm + �N×Tso +2�)×Npo +Tp×Npm

where Npo is the number of pattern matching operations
Npm is the number of pattern matches
N is shift size
Tm is the memory access time
Tso is the execution time of Shift-OR operations
Tp is the execution time of priority encoder logic

(6)

In the above equation, ’1’ is for reseting all internal vectors. The second term is for
the execution time for all the pattern matching operations performed, and the third term
is for the total execution time of the priority encoder logic. We obtain the information
such as the number of pattern matching operations(Npo) and the number of pattern
matches(Npm) from Snort runs on packet traces and evaluate the execution time for
PMA using the equation 6 and varying N,Tm, and Tp as explained above. We use the
packet trace captured during the Capture the flag contest at DefCon 11 [16]. Defcon’s
Capture the Flag(CtF) game is the largest open computer security hacking game.

4.2 Performance Analysis

The execution time for the software multi-pattern match methods are measured in cy-
cles by running Snort on a Linux PC with 2.4GHz Pentium IV and 512MB memory.
We use a Time-stamp counter [17] and count the number of cycles to run the pattern
match softwares. The Figure 4 shows the speedup of PMA hardware and the software
multi-pattern matching methods with respect to the execution time of MWM. The label
PMA(X,Y,Z) in X-axis denotes the PMA with Tm = X ,Tso = Y , and Tp = Z cycles. The
result shows that MWM is about 2 times faster than AC method. The result also shows
the memory access time Tm affects the performance of PMA significantly more than
the priority encoder logic execution time Tp does. The increase in priority encoder logic
execution time from 1 to 32 cycles does not change the speedup of PMA much, whereas
the increase in the memory time from 2 to 64 cycles dramatically reduces the speedup
of PMA. This is because the number of pattern matching operations Npo is much larger

296 S. Kim

��������	
�

�

�

�

�

�

�

�

�

�

��
��

�

��
��
�	

	
��

��
��
�	

	
��

��
��
	

	
��

��
��

�
	

	�
�

��
��
��
	

	�
�

��
��
��
	

	�
�

��
��
	

	

�

��
��
	

	
��

��
��
	

	
��

��
��
	

	
�

��
��
	

	

�
�

��
��
	

	
��
�

��
��

�
��

Fig. 4. PMA speedup with varying memory access time and priority encoder execution time (Shift
size = 1)

�
�

�
�

��

��

�
��
��
��

��

��

��

	�

�

��

�����

����������

���

��������	
�

Fig. 5. PMA speedup with varying shift size N, memory access time and Shift-OR operation time

than the number of pattern matches Npm. When the execution time of Shift-OR opera-
tion and the priority encoder logic is fixed to 1 and 4 cycles respectively, and memory
access time is increased from 2 to 64 cycles, PMA speedup drop from 8 to 0.5. This
shows the performance of PMA is sensitive to the memory access time.

We also evaluate PMA speed up varying the shift size N from 1 to 32 and Shift-OR
operation time from 0.25 to 1 cycle. Figure 5 shows that increasing shift size improves
the performance of PMA almost linearly. The effect of a large shift size becomes more
significant when the Shift-OR operation time is smaller. This implies that we need to
have a large shift size to fully exploit the fast Shift-OR operation time. The result shows
that when the memory time takes 2 cycle and Shift-OR operations takes a quarter cycle,
PMA could be more than 80 times faster than MWM with 32 character position tables
and about 70 times faster with 16 character position tables. This result shows that the

Pattern Matching Acceleration for Network Intrusion Detection Systems 297

fast memory access time and a large shift size of PMA is very important to achieve a
good performance of PMA.

The shift size is limited by the data read width of the input buffer and chip areas
to accommodate the character position vector tables. The current VLSI technology can
satisfy the implementation requirements for high speed PMA. The memory access time
can be optimized by either using fast memory technologies or pipelining the access path
of the input buffer and character position tables. Memory areas for character position
tables for large shift size N can also be accommodated with current VLSI technology.
For example, Intel is introducing Itanium processor with 26.5MB on-chip cache [18].
Given that each character position vector table takes 768K (256 x 24K bits) bytes, 32
tables (24Mbytes) can be built with the VLSI technology. We can also partition the
architecture into multiple chips if chip area becomes a problem.

5 Conclusion

Pattern matching is one of critical parts of Network Intrusion Detection Systems (NIDS).
Pattern matching for NIDS is computationally intensive and need to handle a large
number of patterns with a wide range of pattern lengths, and noncase-sensitive pattern
matches. It also needs to process multiple input characters in parallel.

We proposed a specialized hardware multi-pattern matching architecture based on
Shift-OR algorithm. The proposed pattern matching architecture efficiently satisfies all
the requirements of pattern matching in NIDS. We evaluated the performance of the
hardware pattern matching architecture in a wide range of timing assumptions and
found that the pattern matching architecture could be more than 80 times faster than
the fastest software pattern matching method used in the current Snort.

References

1. Antonatos, S., Anagnostakis, K.G., Markatos, E.P.: Generating realistic workloads for net-
work intrusion detection systems. In: Proceedings of ACM Workshop on Software and Per-
formance. (2004)

2. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient string
matching algorithms for intrusion detection. In: Proceedings of the 23rd Conference of the
IEEE Communication Society (INFOCOM04). (2004)

3. Liu, R., Huang, N., Chen, C., Kao, C.: A fast string matching algorithm for network proces-
sor based intrusion detection system. ACM Transaction on Embedded Computing Systems
3 (2004) 614–633

4. Markatos, E.P., Antonatos, S., Polychronakis, M., Anagnostakis, K.G.: Exclusion-based
signature matching for intrusion detection. In: Proceedings of the IASTED International
Conference on Communications and Computer Networks. (2002)

5. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Com-
munications of the ACM 18 (1975) 333–340

6. Wu, S., Manber, U.: AGREP - a fast approximate pattern-matching tool. In: Proceedings of
the 1992 Winter USENIX Conference, San Francisco, CA (1992)

7. Dharmapurikar, S., Krishnamurthy, P., Sproull, T.S., Lockwood, J.W.: Deep packet inspec-
tion using parallel bloom filters. IEEE Micro 24 (2004)

s

298 S. Kim

8. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intrusion detection with re-
configurable hardware. In: Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines. (2002)

9. Sidhu, R., Prasanna, V.K.: Fast regular expression matching using FPGAs. In: Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines. (2001)

10. Moscola, J., Lockwood, J., Loui, R.P., Pachos, M.: Implementation of a content-scanning
module for an internet firewall. In: Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines. (2003)

11. Gokhale, M., Dubois, D., Dubois, A., Boorman, M., Poole, S., Hogsett, V.: Granidt: Towards
Gigabit rate network intrusion detection technology. In: Proceedings of the 12th International
Conference on Field-Programmable Logic and Applications. (2002)

12. Cho, Y.H., Navab, S., Mangione-Smith, W.H.: Specialized hardware for deep network packet
filtering. In: Proceedings of the Field Programmable Logic and Applications. (2002)

13. Sourdis, I., Pnevmatikatos, D.: Pre-decoded CAMs for efficient and high-speed NIDS pattern
matching. In: Proceeding of the 12th Annual IEEE Symposium on Field Programmable
Custom Computing Machines. (2004)

14. Baeza-Yates, R.A., Gonnet, G.H.: A new approach to text searching. In: Proceedings of
ACM 12th International Conference on Research and Development in Information Retrieval.
(1989)

15. Kun, C., Quan, S., Mason, A.: A power-optimized 64-bit priority encoder utilizing parallel
priority look-ahead. In: Proceedings of the IEEE Int. Symposium on Circuits and Systems.
Volume 2. (2004) 753–756

16. The Shmoo Group: Capture the RootFu! http://www.shmoo.com/cctf/ (2005)
17. Intel Corp.: IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Pro-

gramming Guide. (2004)
18. Naffziger, S., Grutkowksi, T., Stackhouse, B.: The implementation of a 2-core multi-threaded

Itanium family processor. In: Proceedings of Solid-State Circuits Conference. (2005)

Real-Time Stereo Vision on a Reconfigurable System

SungHwan Lee, Jongsu Yi, and JunSeong Kim

School of Electrical and Electronics Engineering, Chung-Ang University,
221 HeukSeok-Dong DongJak-Gu, Seoul, Korea 156-756

{lshcau, xmxm2718}@wm.cau.ac.kr, junkim@cau.ac.kr

Abstract. Real-time three-dimensional vision would support various applica-
tions including a passive system for collision avoidance. It is a good alternative
of active systems, which are subject to interference in noisy environments. In
this paper, we investigate the optimization of real-time stereo vision with respect
to resource usage. Correlation techniques using a simple sum of absolute differ-
ences(SAD) is popular having good performance. However, processing even a
small image takes seconds. In order to provide depth maps at frame rate around
30fps, which typical cameras can provide, hardware accelerations are necessary.
Regular structures, linear data flow and abundant parallelism make the correla-
tion algorithm a good candidate for reconfigurable hardware. We implemented
versions of SAD algorithms in VHDL and synthesized them to determine re-
source requirements and performance. By decomposing a SAD correlator into
column SAD calculator and row SAD calculator with buffers in between we
showed around 50% savings in resource usage. By altering the shape of corre-
lation windows we found that a ‘short and wide’ rectangular window reduced
storage requirements without sacrificing quality compared to a square one.

1 Introduction

A collision avoidance system for a device with mobility requires the ability to build
a three-dimensional map of its environment. Traditionally, this has been accomplished
by active sensors, which send a pulse - either electromagnetic or sonar - and detect the
reflected return[1, 2]. Such active systems work well in the environments with small
number of moving devices and thus the probability that active sensors will interfere is
low. However, when the density of moving objects becomes high, active systems are
easily left in noisy environments. Lots of moving objects with a wide range of speeds
and directions create that many reflections at various strengths. A sensor could eas-
ily be confused by extremely weak reflections of its own and strong pulses from other
objects. Passive systems, on the other hand, are much less sensitive to environmental
interference. Stereo vision is one of the representative passive systems. Typical cameras
can provide 30 or more images per second and each pair of images can provide a com-
plete three-dimensional map of the environment. However, processing even small low
resolution images takes more than a second in software. This is well below the frame
rates obtainable with commodity cameras and may be far too slow to enable even rel-
atively slow moving objects to avoid colliding each other. Thus, hardware accelerators
are required in order to obtain real-time 3D environment maps. Software simulations

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 299–307, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

300 S. Lee, J. Yi, and J. Kim

have determined that correlation techniques using a simple sum of absolute differences
(SAD) algorithm perform well [3, 4].

In our previous work [5], we showed that accurate real-time three-dimensional maps
are feasible with modern FPGA technology. A SAD correlator with its associated accu-
racy and speed requirements could be fitted onto a single commercially available FPGA.
In this paper, we present versions of optimization of the SAD correlator with respect to
resource usage. By decomposing the original SAD correlator into column SAD calcu-
lator and row SAD calculator with buffers in between we reduced the number of adders
from the original SAD correlator. Also, by utilizing rectangular windows instead of tra-
ditional square windows we saved more resources without sacrificing accuracy. In the
remainder of the paper, Section 2 briefly surveys the stereo image matching techniques,
Section 3 provides the concept of the SAD algorithm and Section 4 introduces our SAD
correlators. Section 5 then provides the results of our experiments. Finally, Section 6
summarizes our results and conclusions.

2 Stereo Image Matching

Stereo vision refers the problem of extracting 3-dimensional structure from two(or
more) images taken from different viewpoints[6]. Image matching is an important part
in stereo vision system involving two main problems: correspondence and reconstruc-
tion. The correspondence problem consists of determining, given a pair of stereo im-
ages, which parts in the left(right) image correspond to which parts in the right(left)
image. Since there are parts of a scene projected on a single image only it must be able
to tell the parts in each image that should not be matched. The reconstruction problem
consists of determining, given a set of corresponding parts of a pair of stereo images,
3-dimensional location and structure of the observed objects.

Ideally, we want to find all matching pixels of a pair of stereo images. However, the
value of brightness of a single pixel is too low to determine its correspondence. Instead,
sets of pixels are used for real stereo matching algorithms. Correlation-based methods
and feature-based methods are the two representation stereo matching classification
[6, 7].

In correlation-based methods, image windows, arrays of neighboring pixels, of fixed
size are used. Given a pair of stereo images, one window is fixed in the left(right) im-
age and the other window is moving in the right(left) image. By comparing the win-
dows from the pair of images correlation is measured and the window, that maximizes
the similarity criterion, is determined. Normalized Cross-Correlation(NCC), Sum of
Squared Differences(SSD), Sum of Absolute Differences(SAD), Census, and Rank al-
gorithms are popular matching metrics[7, 8].

Feature-based methods use a sparse set of features instead of image windows. These
include occlusion edges, vertices of linear structures, prominent surface markings, zero
crossings and patches by the Moravec operator[9]. Corresponding elements from a pair
of stereo images are given by the most similar feature pair, the one associated to the
minimum distance. Feature-based methods cannot detect small changes in stereo im-
ages and is not suitable when images have no boundary.

Real-Time Stereo Vision on a Reconfigurable System 301

3 SAD Algorithm

Area-based correlation algorithms attempt to find the best match between a window
of pixels in one image and a window in the other image[6]. The matching process
is illustrated in Figure 1. The window centerd on pixel P in the left image is moved
through the disparity range until the best match is found with a windwos centerd at P in
the right image. aligning the two cameras to meet the epipdar constraint ensures that P
must lie on the same scan line in each image [6, 7].

Fig. 1. Correlation based matching

In the SAD algorithm, the criterion for the best match is minimization of the sum
of the absolute differences of corresponding pixels in a window. The correlation algo-
rithm has a regular structure and simple data flow making it good for implementation
in reconfigurable hardware. The SAD function is defined to be

C(x,y,δ) =
wh−1

∑
y=0

ww−1

∑
x=0

IR(x,y)− IL(x+δ,y) (1)

The SAD function C(x,y,δ) is evaluated for all possible values of the disparity,
δ, and the minimum is chosen. In the equation, IR() and IL() mean right image and
left image respectively. The x, y represent coordinates in pixel in a single image, ww
and wh represent window width and height, and δ represents disparity number. For
parallel camera axes, δ ranges from 0 for objects at infinity to Δ for objects at the
closest possible to the camera. The correlation algorithm has regular structures having
abundant parallelism - C(x,y,δ) can be evaluated in parallel for each δ ∈ [0,Δ]. The
SAD function requires only adders and comparators for which modern FPGAs provide
good supports. However, accurate depth maps require large disparity ranges and high
resolution images - both of which provide challenges to fitting a full correlator on a
single FPGA.

4 SAD Correlator

We have implemented versions of the SAD correlation algorithm in VHDL and syn-
thesized them to determine their resource requirements and performance. Each version
completely accomplishes the SAD correlation algorithm and has the following features:

302 S. Lee, J. Yi, and J. Kim

Fig. 2. Block diagram for the SAD correlator v1.2

Table 1. SAD Correlator Resource requirements

SAD correlator Object Count Size

shift register register 2 sl× (wh−1)+Δ+1
buffer maker subtractor Δ+1 wh

adder Δ+1 wh−1
buffer buffer 1 ww× (Δ+1)
disparity calculator adder Δ+1 ww−1
minimum detector comparator 1 Δ

– SAD correlator v1.0[5]
fully implements the SAD correlation algorithm without any optimization

– SAD correlator v1.1
decomposes SAD correlator into column SAD calculator (buffer maker) and row
SAD calculator (disparity calculator) placing buffers in between reducing the num-
ber of adders from the SAD correlator v1.0

– SAD correlator v1.2
does a certain approximation in SAD calculation by ignoring the least significant
bit (reducing the number of bits in adders): at the cost of accuracy fo further save
space from the SAD correlator v1.1

A block diagram of the SAD correlator v1.2 is shown in Figure 2. Pixels stream
in from both cameras into the long left and right shift registers, which store sufficient

Real-Time Stereo Vision on a Reconfigurable System 303

pixels so that all the pixels in a correlation window are available to the buffer maker at
the same time. The key parameters determining the size and performance of an SAD
correlator are 1© the scan line length, sl, 2© the window width, ww, 3© the window
height, wh, and 4© the maximum disparity, Δ.

Basic resource requirements are indicated in Table 1. To a first approximation, the
resource requirements for an SAD correlator are given by:

costSAD ≈ 2× (sl× (wh−1)+Δ+1)× creg (shi f t register)
+(Δ+1)× (wh× cAD +(wh−1)× csum (bu f f er maker)

+ww× (Δ+1)× creg (bu f f er)
+(Δ+1)× (ww−1)× csum (disparity calculator)

+Δ× ccomp (comparator)
+coverheads (control, etc.)

(2)

Where cAD is the cost of absolute difference circuit, csum is the cost of an adder, ccomp is
the cost of a comparator, creg is the cost of a pixel register, coverheads is the cost of control
and steering logic. This relation should be a good predictor for low values of all the
application parameters, where all overheads can be lumped effectively into the single
overheads term. Key contributors to the delay of the correlator are from the (wh− 1)
adders in buffer makers and the (ww− 1) adders in disparity calculators. A simple
VHDL model which performs the additions in a loop adds a delay of O(wh + ww−2)
to the circuit. However, for better performance we use a tree adder, which costs delay
of O(log(wh+ww−2)). Note that the synthesizer is able to produce a compact circuit
with the tree adder using the ‘+’ operator, despite the triangular shape of the tree.

5 Experimental Results

For this experiment we use Xilinx Virtex-II XC2V8000 FPGAs[10] with scan line
length, sl = 320 and the maximum disparity, Δ = 32 (accuracy depends on the dis-
parity value, so we ran trials to determine the value of Δ). Figure 3 shows the hardware

Fig. 3. Resource usage vs. window size (ww×wh) for versions of the SAD correlator

304 S. Lee, J. Yi, and J. Kim

resource usage for the SAD correlators with various window sizes. The X-axis repre-
sents the square window sizes used in the experiment and Y-axis is the number of slices
occupied.

(a) original left-image (b) original right-image

Fig. 4. A pair of Tsukuba images for test inputs

Figure 5 shows samples of resulting depth maps of versions of SAD correlator with
windows size of 8×8(ww×wh). A pair of the input images in figure 4 - Tsukuba image
[3, 11] - consisting of 384×288 pixels was used as a test inputs. From the figure 5, we
can see that there is little difference in depth map among the versions of SAD correlator.

(a) SAD correlator v1.0 (b) SAD correlator v1.1 (c) SAD correlator v1.2

Fig. 5. Sample depth maps of versions of the SAD correlator with 8×8 window

Figure 6 shows the simulation waveform using the Tsukuba image. The process time
of one frame image is less than 120,000 c.c. The table 2 summarizes the performance of
the SAD correlator v1.0 with various test images including the Tsukuba images, when
it works in 10 MHz.

It is unnecessarily common to use square matching windows in correlation-style
stereo algorithms. If you carefully look at the algorithm you can see that matching

Real-Time Stereo Vision on a Reconfigurable System 305

Fig. 6. The simulation waveform using the Tsukuba images

Table 2. The performance of the SAD correlator v1.0 in various environments

Image size maximum disparity window size rate
(pixel) (Δ) (ww×wh) (frame/sec)

640×480 64 16×16 31
640×480 64 32×32 30
320×240 64 16×16 122
320×240 64 32×32 115

process only uses a small part of each scan line at any time - specifically, ww from the
left image and ww+Δ+1 from the right image. The remaining pixels are stored in shift
registers for use in subsequent cycles. Pixels in surrounding scan lines are only used
to support matching by reducing noise effects. Figure 7 shows samples of depth maps
of SAD correlator v1.2 for the same Tsukuba input images with various rectangular
windows. We can find that a ‘short and wide (wh < ww)’ window produces similar
matching quality to the square one. However, We can see that a considerable amount
of space can be saved in an FPGA by using rectangular (wh < ww) windows. Figure 8
shows a FPGA resource usage for various rectangular window sizes as well as square
ones. We can conclude that a rectangular window in SAD correlators is worth utilizing,
especially when ww is sufficiently large, since it saves lots of space (nearly 50% profit)
without sacrificing quality.

(a) 16×4 window (b) 16×8 window (c) 16×16 window

Fig. 7. Sample depth maps of the SAD correlator v1.2 with various window sizes (ww×wh)

306 S. Lee, J. Yi, and J. Kim

Fig. 8. Resource usage vs. window size (ww×wh) for various disparities

6 Conclusion

Accurate real-time 3D depth maps are feasible with modern FPGA technology. While
the feasibility of a proposed application can be testified, in principle, by simply count-
ing circuit elements needed to implement a module and using those counts in equation
2, place and route tools have to work from high level models and may have problems
allocating and laying out circuits that a human engineer may not. FPGA implementa-
tions are also constrained by availability of routing resources and this factor is much
harder to estimate than logic cell needs, thus practical trials of the type we carried out
here are counts to determine real cost factors.

Decomposing a SAD correlator into column SAD calculator and row SAD calcu-
lator with buffers in between reduces number of adders: easily saving around 50% in
resource usage. Simulation results show that altering the shape of the correlation win-
dow can further reduce the number of cells needed for inactive parts of scan lines. The
SAD correlator v1.2 described in this paper will provide real-time performance at pixel
clock rates up to ∼ 10 MHz.

Acknowledgements

This research was partially supported by the MIC(Ministry of Information and Commu-
nication), Korea, under the Chung-Ang University HNRC-ITRC(Home Network Re-
search Center) support program supervised by the IITA(Institute of Information Tech-
nology Assessment).

References

1. Olson, C.F.: Maximum-likelihood image matching. IEEE Trans. Pattern Anal. Mach. Intell.
24 (2002) 853–857

2. Sebe, N., Lew, M.S.: Maximum likelihood stereo matching. In: ICPR ’00: Proceedings of
the International Conference on Pattern Recognition (ICPR’00)-Volume 1, Washington, DC,
USA, IEEE Computer Society (2000) 1900

Real-Time Stereo Vision on a Reconfigurable System 307

3. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo corre-
spondence algorithms. Int. J. Comput. Vision 47 (2002) 7–42

4. Leclercq, P., Morris, J.: Assessing stereo algorithm accuracy. In: IVCNZ ’02: Proceedings of
Image and Vision Computing’02, University of Auckland, Auckland, New Zealand (2002)
89–93

5. Yi, J., Kim, J., Li, L., Morris, J., Lee, G., Leclercq, P.: Real-time three dimensional vision. In
Yew, P.C., Xue, J., eds.: Asia-Pacific Computer Systems Architecture Conference. Volume
3189 of Lecture Notes in Computer Science., Springer (2004) 309–320

6. Barnard, S.T., Fischler, M.A.: Computational stereo. ACM Comput. Surv. 14 (1982) 553–
572

7. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans.
Pattern Anal. Mach. Intell. 25 (2003) 993–1008

8. Leclercq, P., Morris, J.: Robustness to noise of stereo matching. In: ICIAP ’03: Proceedings
of the 12th International Conference on Image Analysis and Processing, Washington, DC,
USA, IEEE Computer Society (2003) 606

9. Grimson, E.L.: Computatoinal experiments with a feature based stereo algorithm. IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-7 (1985) 17–33

10. http://www.xilinx.com: Virtex- platform fpgas : Complete data sheet (2002)
11. http://www.middlebury.edu/stereo: Middlebury stereo vision page (2005)

Application of Very Fast Simulated Reannealing (VFSR)
to Low Power Design

Ali Manzak and Huseyin Goksu

Suleyman Demirel University, Isparta, Turkey
manzak@mmf.sdu.edu.tr, goksu@sdu.edu.tr

Abstract. This paper addresses the problem of optimal supply and threshold
voltage selection with device sizing by minimizing power consumption and maxi-
mizing battery charge capacitance using Very Fast Simulated Reannealing (VFSR).
We assume that multiple supply voltages and multiple threshold voltage devices
are available at gate level. Minimizing power consumption does not necessarily
maximize battery charge capacitance. This paper achieves this by implementing
both objectives in the cost function.

1 Introduction

Reducing supply voltage is an effective way of decreasing power consumption. Dy-
namic power is related quadratically and leakage power is related almost linearly to
supply voltage. Dynamic power still dominates the total power consumption of digi-
tal circuits which might change in near future. Automatic design tools generate digital
circuits with predetermined supply and threshold voltages. These values might not be
optimal in terms of power consumption and battery capacitance. New power optimiza-
tion design tools might be necessary for power constrained application specific designs.

Power can be traded-off with delay and area using power optimization methods. The
speed of a circuit is determined by the critical path. Designers minimize critical path
delay with sizing. Since all the paths of circuit are not balanced, extra slack is available
on non-critical paths. This extra slack can be used to minimize power consumption.
Switching activity is also a determining factor since it varies with application software.
Average switching activity of the circuit needs to be estimated for optimal performance.

Decreasing supply voltage is the most effective way of reducing power, since dy-
namic power is quadratically and leakage power is almost linearly proportional to sup-
ply voltage. Decreasing supply voltage however increases the circuit delay and de-
creases the throughput. Lowering threshold voltage increases circuit speed and helps
circuit to satisfy the required frequency. On the other hand, decreasing the threshold
voltage increases the leakage current exponentially. Therefore there is an optimum point
for supply voltage and threshold voltage where delay constraint is satisfied and power
and battery capacitance is optimum.

When gate sizing is added as another optimization parameter, circuit optimization
gets more complex. Reducing supply voltage, using low-Vth transistors or decreasing
transistor width reduces power consumption with the expense of an increase in delay.
Using high voltage, low Vth, and large channel width for the transistors on the critical

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 308–313, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Application of Very Fast Simulated Reannealing (VFSR) to Low Power Design 309

path, thus satisfying timing constraints and using low voltage, high Vth, and small chan-
nel width transistors on the non-critical path, thus minimizing power is a well-known
power optimization method. However, optimal utilizition of extra slack is one of the
design challenges in terms of power optimization and has been studied widely in the
past.

Power minimization with Vth assignment and sizing has been presented in [2] and
[3]. In [2] linear programming was used in combinational circuits and [3] used binary
search to minimize power. Multiple Vdd , multiple Vth, gate sizing and force stacking
methods were simultaneously applied in [4] using a genetic algorithm. Gate sizing and
supply voltage optimization have been used in [5]. The effectiveness of using dual sup-
ply, dual threshold and device sizing has been shown in [6].

Our work tries to find best voltage and threshold voltages and device sizes with
current technology for an automatic design tool which can be used when battery ca-
pacitance and power consumption is a limiting factor. Very Fast Simulated Reannealing
has been used as a global optimization tool to achieve this goal.

The rest of the paper is organized as follows: Section 2 describes the problem and
the condition for energy minimization and battery capacitance maximization. Section 3
describes application of very fast simulated reannealing. Section 4 includes the results
on real-life models. Section 5 concludes the paper.

2 Preliminaries

The total power consumption of CMOS digital circuits may be represented by the fol-
lowing equation:

P = Pdyn +Pleakage +Psc (1)

The first term is the dynamic power consumption, which is due to charging and dis-
charging of parasitic capacitance with the clock frequency. The second term is leakage
power consumption mostly due to subthreshold leakage current. The last term is short
circuit power consumption, which is due to short circuit current. Short circuit current
flows for a short time during logic switching when both nmos and pmos transistors are
ON and there is a direct path from supply voltage to ground. Short circuit power is 10%
of the total power consumption and ignored in this work.

Currently, dynamic power consumption is the dominant power consumption and can
be expressed by

Pdyn = αCLV 2
dd f (2)

Here, CL is the load capacitance, α is the switching activity, Vdd is the supply voltage
and f is the clock frequency. Load capacitance is a combination of parasitic capacitances
and is a function of supply voltage. αCL product refers to switched capacitance. To
calculate the dynamic power of the whole chip, total switched capacitance in 1 second
is multiplied by V 2

dd . Switching activity of each block varies, and is input dependent.
Statistical methods were used widely to estimate switching activities.

Leakage power consumption is mostly due to the subthreshold leakage current, Ileak,
which varies with processing technology.

310 A. Manzak and H. Goksu

Ileak = kμCox
W
L

V 2
T e

Vgs−Vth
nVT (1− e−

Vds
VT) (3)

where μ is mobility, Cox is the gate oxide capacitance per unit area, W is the channel
width, L is the channel length, VT is the thermal voltage, Vth is the threshold voltage, n
is the subthreshold swing coefficient and k is a technogy dependent constant. Here Vth

and temperature are exponentially and W is linearly dependent to leakage current.
Circuit delay is related to supply voltage and threshold voltage by the following

formula:

T = k′CL
Vdd

(Vdd−Vt)α (4)

Minimizing power does not necessarly maximize battery life. Peukert’s equation [1]
shows the nonlinear relationship between battery capacitance C and discharge current
I,

C = TdIα (5)

where Td is discharge time and α is called Peukert’s constant which is typically in the
[1.2,1.4] interval.

3 Method

3.1 Overview

In our optimization method, we try to minimize P/Td , where P is total power and Td

is battery discharge time. We try to find optimum combination of Vdd , Vth, and gate
size. The effectivity of parameters mostly depends on dynamic leakage current ratio
and circuit topology. When extra slack is available, gate width can be reduced in order
to reduce power. Reducing the width of each gate decreases the load capacitance of
driving gates so further downsizing of the gate widths are possible.

Decreasing the suply voltage reduces dynamic power significantly since supply volt-
age is quadratically related to power. Leakage current also decreases linearly. Using
high Vth devices decreases leakage power exponentially. Both methods come with the
expense of increased delay. Dynamic to leakage power ratio of the whole chip deter-
mines which method is more effective.

Our algorithm tries to find best combination of Vdd , Vth, and gate size to minimize
power and maximize battery discharge time. Since these computations require high
complexity, Very Fast Simulating Reannealing algorithm has been used.

3.2 Very Fast Simulated Reannealing

Very Fast Simulated Reannealing (VFSR) is one of the better improved versions of the
Simulated Annealing (SA) algorithm which is originated from the statistical mechanical
model of atoms of metals being first heated and then cooled down slowly for a globally
stable crystal form. An analogy can be formed between the evolution of the energy
of each atom and the error function of a general optimization problem simulating the
formation of the globally stable metal crystal during the SA process.

Application of Very Fast Simulated Reannealing (VFSR) to Low Power Design 311

Simulated Annealing, before reaching the VFSR form, has gone through the stages
of Boltzmann Annealing (BA) which uses a Boltzmann distribution to guide the heuris-
tics and Fast Simulated Annealing (FSA) which uses a Cauchy Annealing.

In Very Fast Simulated Reannealing, transition rules are guided by the parameter yi

where a random number ui is drawn from a uniform distribution U[0,1] which is then
mapped as:

yi = sgn(ui−1/2)Ti[(1+1/Ti)|2ui−1| −1] (6)

VFSR runs on an annealing schedule decreasing exponentially in time k,

T = T0e−ck1/D
(7)

This annealing schedule makes the algorithm faster than fast Cauchy annealing
(FSA), where

T =
T0

k
(8)

and much faster than Boltzmann annealing, where

T = T0/lnk (9)

The introduction of re-annealing also permits adaptation to sensitivities of the pa-
rameters [7].

Although early versions of SA such as BA lacked from the curse of dimensionality,
VFSR is a very fast tool which was shown to be much efficient than Genetic Algorithms
(GA) for six nonconvex functions [8].

3.3 Cost Function

Our strategy performs three-fold power reduction through optimization of the total P/Td

of each noncritical path of the circuit as cost function. P/Td is a function of Wn, Vth
and T of all the elements of the noncritical paths. So the optimization is a search in a
3N dimensional space, where N is the number of circuit elements.

For the conquer part of a divide and conquer strategy, optimization by VFSR can
be used in the conquer part, which is good for the optimization of circuits up to several
hundred elements.

The calculation of the cost function involves the following procedure:

– Find the critical path on the circuit.
– Define the total delay.
– For each other path, do the following:

• Define Ti, Wni and Vthi as free parameters of each element of the path
• Where ∑Ti=mobility
• Calculate Vddi from the constraint equation
• Impose Vddi boundary conditions

– Calculate cumulative cost = P/Td for the whole circuit.

312 A. Manzak and H. Goksu

Table 1. % Results of the VFSR

Example Power reduction Td increase P/Td improvement

c17 14.6 % 15.5 % 16.5 %
s27 18.2 % 19.1 % 20 %
b01 38.1 % 45.4 % 53.5 %
b02 33.7 % 34.2 % 34.8 %

Average 26.2 % 28.6 % 31.2 %

4 Results

We applied our method to some of the ISCAS’85 benchmark circuits. The average
power reduction is 26.2%, while average battery discharge time increase is 28.6%. The
objective function, P/Td improved on average by 31.2% and simulation resulted in
seconds in a P4 processor. We saw that gate sizing is the most effective way of opti-
mizing the cost function, following by Vdd reduction and threshold voltage reduction.
However when switching activity decreases, leakage power consumption dominates the
total power consumption of the circuit so threshold voltage increment becomes more ef-
fective than supply voltage reduction in terms of power saving.

5 Conclusions

In this paper we addressed the problem of optimum supply and threshold voltage se-
lection with device sizing by minimizing power consumption and maximizing battery
charge capacitance using Very Fast Simulated Reannealing (VFSR). VFSR is very ap-
plicable to gate level optimization problems when there are multiple optimization vari-
ables available and there exist a timing dependency among the gates. Objective function
is chosen as P/Td since minimizing power not necessarily maximize battery charge time
by itself.

We found that the most effective way of reducing power is gate sizing when dy-
namic power is comparable to leakage power. Supply voltage reduction is the second
most effective design variable to minimize power and maximize battery discharge time.
However this result will change when the leakage power dominates the total power con-
sumption of the circuit. In that case the most effective way of reducing power is trading
of delay with threshold voltages.

References

1. Linden, H.D.: Handbook of Batteries. 2nd edition. McGraw-Hill, New York (1995)
2. Nguyen, D., et al.: Minimization of dynamic and static power through joint assignment of

threshold voltages and sizing optimization. In: Proc. of the Int. Symp. on Low Power Elec-
tronics and Design. (2003)

3. Pant, P., Roy, R., Chatterj, A.: Dual-threshold voltage assignment with transistor sizing for
low power CMOS circuits. IEEE Trans. on VLSI 9 (2001) 390–394

Application of Very Fast Simulated Reannealing (VFSR) to Low Power Design 313

4. Hung, W., et al.: Total power optimization through simultaneously multiple-Vdd multiple-
Vth assignment and device sizing with stack forcing. In: Proc. of the Int. Symp. on Low
Power Electronics and Design. (2004)

5. Stojanovic, V., et al.: Energy-delay tradeoffs in combinational logic using gate sizing and
supply voltage optimization. In: Proc. European Solid-State Circuits Conf. (2002)

6. Augsburger, S., Nikolij, B.: Reducing power with dual supply, dual threshold, and transistor
sizing. In: Proc of Int. Conf. on Comp. Design. (2002) 316–321

7. Ingber, L.: Very fast simulated reannealing. Mathl. Comput. Modeling 12 (1989) 967–993
8. Ingber, L., Rosen, B.: Genetic algorithms and simulated reannealing. Mathl. Comput. Mod-

eling 16 (1992) 87–100

Compressed Swapping for NAND Flash Memory Based
Embedded Systems

Sangduck Park, Hyunjin Lim, Hoseok Chang, and Wonyong Sung

School of Electrical Engineering,
Seoul National University,

Gwanak-gu, Seoul 151-742 Korea
{parksd, hjlim, chs, wysung}@dsp.snu.ac.kr

Abstract. A swapping algorithm for NAND flash memory based embedded sys-
tems is developed by combining data compression and an improved page update
method. The developed method allows efficient execution of a memory demand-
ing or multiple applications without requiring a large size of main memory. It also
helps enhancing the stability of a NAND flash file system by reducing the num-
ber of writes. The update algorithm is based on the CFLRU (Clean First LRU)
method and employs some additional features such as selective compression and
delayed swapping. The WKdm compression algorithm is used for software based
compression while the LZO is used for hardware based implementation. The pro-
posed method is implemented on an ARM9 CPU based Linux system and the
performances in the execution of MPEG2 decoder, encoder, and gcc programs
are measured and interpreted.

1 Introduction

Embedded systems nowadays have become very powerful to support demanding ap-
plications. This inevitably brought an increase in main memory capacity. The flash
memory device is a critical component in building these systems because of its non-
volatility, shock-resistant, and power-economic nature. A typical embedded multime-
dia system such as a high-end cellular phone usually contains DRAM, NOR flash and
NAND flash memory devices where DRAM is used as a working memory, NOR flash as
a code storage and NAND for non-volatile data storage. Recently, it has been attempted
to eliminate the costly NOR flash memory. In this case, OS and application programs
need to be transferred from NAND flash to the main memory during the boot time and
such process is called ”shadowing.” The shadowing offers the best performance at run-
time but it needs a longer loading time because of the copy overhead. It also requires a
larger DRAM because the DRAM should provide the space for both working memory
and the code.

An alternative to the shadowing is “demand paging” where pages of code or data
are copied from the secondary storage to the main memory only when they are needed
[1]. Thus it demands a less DRAM size and a smaller loading time. However it needs
a page swapping algorithm and that may result in a poor system performance because
of the overhead of swapping. Another concern with the NAND flash based swapping is

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 314–323, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Compressed Swapping for NAND Flash Memory Based Embedded Systems 315

the possible degradation of the system because the number of writes is limited to about
100,000 times. In addition, it needs to be considered that the write cost for evicting a
page is much higher than the read cost in NAND flash memory. Because of these rea-
sons, the study on NAND flash memory based swapping has not been explored much.

The basic idea of this work is reducing the number of page writes using compressed
swap as well as optimization of the update algorithm. In this study, a swapping method
that can not only reduce the overhead but also the number of writes to NAND flash
memory is developed.

The rest of this paper is organized as follows. Next section describes the character-
istics of NAND flash memory and previous related works. In Section 3, the developed
compressed swap algorithm is explained. In section 4, experimental results on ARM9
CPU based Linux environment with some practical applications are shown. Finally,
concluding remarks are shown in Section 5.

2 Background

2.1 Characteristics of the Storage Devices

A most widely used non-volatile memory device would be the hard disk which can
provide a large capacity at a cheap cost-per-byte. But hard disks consume much power
and are less robust to physical stresses. NAND flash memory is a non-volatile, high
density semiconductor device and is usually used for small hand-held devices, such as
MP3 players and digital cameras [2]. Although it provides the highest density compared
to NOR flash and DRAM, its contents are not random accessible. A flash memory
device contains a fixed number of blocks and a block consists of usually 16 to 64 pages.
Each page normally consists of 512 bytes of main data and 16 bytes of spare data
although the page size has an increasing tendency as the density of the flash memory
goes up. For example, a typical 64MByte NAND flash contains 4K blocks, each with
32 pages and a page contains 512 bytes for data.

Table 1. Characteristics of memory [4][]

Device current(mA) Access time(4kB)
Idle Active Read Write Erase

NOR 0.03 32 23us 28ms 1.2sec
NAND 0.01 10 291us 1.8ms 2ms

SDRAM (32MB) 0.50 85 184us 184us N/A
SDRAM (64MB) 1.00 120 184us 184us N/A
Hard disk (20GB) 23 420 15ms 15ms N/A

In order to read a page, commands are given to the NAND flash memory through
I/O pins because read and write operations are conducted on a page basis. The write
operation of NAND flash memory is a little bit complicated since it is only allowed to
erased pages. Note that the erase operation is conducted on a block basis but writes are

3

316 S. Park et al.

allowed on a page basis. Another restriction is that the number of updating a block is
limited to about 100,000 times in a typical single cell NAND flash memory. Because of
these reasons, NAND type flash memory needs a file system that supports a wear level
control such as a journaling file system.

Table 1 shows the characteristics of various types of memory found in embedded
systems. In case of NAND flash, the write operation takes longer, about 6 times the
latency, compared to the read although it has advantages in terms of power consumption
and storage capacity. Mobile SDRAM shows a fast read/write performance but requires
higher power consumption over the other memories. It is notable that an SDRAM device
with a larger capacity requires a higher power not only in the idle time but also in the
active mode. Thus, the demand paging based system implementation is very attractive
for reducing the power consumption without limiting the possibility of executing a large
application [].

2.2 Compressed Swap

Traditional computer systems mainly use hard disks as a secondary storage. A typical
disk access latency is around tens of milliseconds as shown in Table 1, which is much
larger than the access time of other types of memory. Hence there had been many re-
searches for reducing the number of hard disk accesses by compressing pages being
swapped. Compressed swap systems can be implemented as either software [6, 7, 8, 9]
or hardware [10, 11, 12, 13, 14, 15] . A software based approach is shown in Fig. 1.

Pages backed by swap

Compressed Cache

Main memory

Swap
(Backing Stores)

Fig. 1. Software based compressed swap system

2.3 CFLRU (Clean First LRU) Algorithm

Traditional operating systems mainly use the LRU (Least Recently Used) or pseudo-
LRU page replacement whose primary goal is to minimize the hard disk accesses. How-
ever as shown in Table 1, the write and read costs are not the same for the NAND flash
memory devices. Thus it is important to reduce the number of writes even if it incurrs
more read operations. In the CFLRU algorithm, dirty pages are kept as long as possi-
ble so that the number of swap outs can be minimized [16]. Dirty pages mean memory
blocks that have been modified, thus they need to be newly compressed and stored to

5

Compressed Swapping for NAND Flash Memory Based Embedded Systems 317

the file system as being swapped out. As the page fault ratio increases, only the clean
pages within the predetermined window size become candidates for a victim of the
CFLRU. If it does not find any clean pages within the window, it turns into a regular
LRU algorithm and swaps out dirty pages.

3 Compressed Swap Systems for NAND Flash

3.1 Compression Algorithms for Data

We employed two well known algorithms for file compression, WKdm and LZO. The
WKdm developed by Paul Wilson and Scott Kaplan, shows a fast compression perfor-
mance [9]. The LZO is an improved implementation of the well known Lempel-Ziv
algorithm.

Table 2. Performance of the compression algorithms

WKdm LZO

Compress time
(throughput)

248μs
(16.5MB/s)

904μs
(4.5MB/s)

Decompress time
(throughput)

216μs
(18.0MB/s)

233μs
(17.6MB/s)

Compression ratio
mpeg4decode 71% 51%
mpeg4encode 39% 21%

Table 2 shows the performance of the two compression algorithms for MPEG4 de-
coder and MPEG4 encoder. Note that the compression ratio (CR) is defined as com-
pressed data size over the uncompressed data. Thus a smaller compression ratio means
an efficient compression. Table 2 shows that LZO yields a better compression, however
requires approximately three times more execution time. Considering the write time of
1.8ms for a 4KB block in a typical NAND flash memory device, the overhead of 904μs
for the software based implementation is too high. Thus the WKdm algorithm is used
for the software based compression and the LZO in the hardware based one. Note that
the compression and decompression speed becomes more important in the NAND flash
memory based systems because the access time of the NAND flash memory is much
shorter than that of the hard disks.

3.2 Selective Compressed Swapping

While most hard disk based systems conduct read and write operations in the cluster
size of 4KB, the page size for NAND flash memory devices is typically 512B. Therefore
as the compressed page size decreases, it is possible to reduce the number of page writes
[17]. For example, if the compression ratio is 50% which means 2KB of the compressed
size, only four pages are needed for writing. If the compression ratio is too high which

318 S. Park et al.

0

200

400

600

800

1000

1200

0
51

2
10

24
15

36
20

48
25

60
30

72
35

84
40

96

Compressed Size

N
um

b
er

 o
f S

w
ap

 O
ut

s

WKdm

Fig. 2. Mpeg2decode distribution of compressed page size

means poor compression, it is not much beneficial to store the compressed pages since
decompression also demands CPU power while not reducing the IO operations much.
Therefore we store uncompressed pages when the compression does not yield much
data size reduction.

As expected, the compressed size for data is very much different in each page as
exemplified in Fig. 2.

3.3 Update Algorithm for Reducing the Number of Writes

Since NAND flash memory has the limitation in the number of erases, a modification
of swap algorithm is needed to reduce the number of writes. The developed algorithm
is similar to that of CFLRU since it can reduce the number of writes by discarding the
clean pages first. However the original CFLRU algorithm can lead to a worse perfor-
mance when dirty pages can be compressed very efficiently. In this case, it would be
advantageous to swap out highly compressible dirty pages.

(A)
clean

(B)
dirty

(C)
clean

(D)
dirty

(E)
dirtySwap list

CFLRU window

LRU

3 free pages
requested

(A)
clean

(B)
dirty

free free free

CFLRU
(B)

dirty
(D)
dirty

free free free

(D)
dirty

(E)
dirty

2 pages writes

(E)
dirty

1 page write

priority-
compression

0 page writefree free free
(B)

dirty
(D)

dirty
(E)

dirty

Fig. 3. Comparison of swap outs according to update algorithms

In order to resolve this problem, swap out is conducted only when the swap out
priority is at its highest level. In this case, the compression cache acts as a sacrifice

Compressed Swapping for NAND Flash Memory Based Embedded Systems 319

buffer and leads to less number of writes. In the Linux swap system, the priority level
is increased when a required amount of free pages are not obtained while the swap
daemon executes [18, 19, 20]. On the other hand, if it has enough free pages, the priority
decreases.

The original CFLRU algorithm may swap out pages even when free pages can be
reserved by compression as illustrated in Fig. 3. In a proposed system, CFLRU algo-
rithm is applied after compressing the pages to reduce the number of page writes to the
NAND flash based file system.

In the case of the compressed swap system, the delayed write is applied which can
further reduce a significant amount of writes. This is due to the characteristic of the ap-
plication programs which repeatedly create and discard many temporary buffers, where
swap out operations are delayed in many cases until the temporary buffers are discarded.

4 Experimental Results

4.1 Experimental Environment

The experiment was conducted with Samsung’s S3C2410 CPU based system containing
an ARM920T core with 200MHz clock, 64MB SDRAM and a NAND flash memory
based file system. Linux kernel of version 2.4.18 was used . The experiment with the
limited main memory size is also conducted by utilizing the memory restriction feature.
The size of NAND type flash memory used in the experiment was 32MB with the page
size of 512B. The root file system for Linux, YAFFS, was stored in the NAND type
flash region. For the swap device, 8MB swap file was used and was configured in the
NAND type flash region.

Mpeg2decode, mpeg2encode and gcc are used as application programs for the ex-
periment. Note that mpeg2encode is a demanding application while gcc contains mostly
clean pages. The number of writes and the time taken for writing to NAND type flash
was measured. The number of writes is also important because of the restrictions in the
number of erases in NAND flash memory devices.

As for the number of levels for swapping priority, the default value of 6 was used
although the optimal value may be different according to application programs.

4.2 Threshold Determination for Selective Compressed Swapping

The most important variable is α that shows the threshold value for the selective com-
pressed swapping. Note that when the compressed page size is larger than α, the system
swaps out the uncompressed page in order to reduce the decompression overhead at the
read time. Figure 4 shows the execution time according to α for mpeg2decode. In this
case, the optimum value for α is between 2,560 and 3,584 because the compressed
swapping incurs the decompression overhead as well. Since the variation of the perfor-
mance is small, the threshold value is set to 3,584 to utilize the compressed swapping
at its maximum.

320 S. Park et al.

0

10

20

30

40

50

60

70

80

90

0 512 1024 1536 2048 2560 3072 3584

alpha

E
xe

cu
tio

n
T

im
e

(S
ec

)

Fig. 4. The execution time according to α

4.3 Performance Evaluation

Mpeg2decode decodes an MPEG2 file and outputs the result as a file. The system mem-
ory size used is 4MB. The original one (Orig) which is based on LRU without compres-
sion, the CFLRU (CFLRU) without compression, the CFLRU with software compres-
sion (Comp) and the modified CFLRU with software based compression (M-Comp) are
compared. The software based compression uses the WKdm algorithm.

0

20000

40000

60000

80000

100000

120000

140000

Orig CFLRU Comp M-Comp

Compression Algorithm

N
u

m
b

er
 o

f S
w

a
p

O
u

ts

(a) Number of swap outs

0

10

20

30

40

50

60

70

80

90

Orig CFLRU Comp M-Comp

Compression Algorithm

E
xe

cu
tio

n
T

im
e

(S
ec

)

comp
read
write
exec

(b) Execution time

Fig. 5. Experimental results of mpeg2decode

Figure 5(a) shows the number of write operations in each swapping algorithm. The
modified update algorithm with software compression results in about 43% and 23% of
reduction in the number of writes when compared to the original uncompressed swap
system and the CFLRU based one, respectively. Figure 5(b) illustrates the execution
time according to the employed swapping methods. It shows that the execution time of
the software based compression with modified swapping is a little, 6%, longer than that
of the CFLRU based one because of the overhead in the compression.

Comparing the compression only and CFLRU algorithms, the number of writes are
almost the same however the execution time of the compression based one is longer
because of the overhead in the software based compression.

Figure 6 shows the case for MPEG2 encoder. The hardware based compression(HW)
that employs the LZO is also compared. Note that this application shows quite low com-

Compressed Swapping for NAND Flash Memory Based Embedded Systems 321

0

10000

20000

30000

40000

50000

60000

Orig CFLRU Comp M-Comp HW

Compression Algorithm

N
um

be
r

of
 S

w
ap

 O
ut

s

(a) Number of swap outs

265

270

275

280

285

290

295

300

305

310

315

Orig CFLRU Comp M-Comp HW

Compression Algorithm

E
xe

cu
tio

n
T

im
e(

S
ec

)

comp
read
write

exec

(b) Execution time

Fig. 6. Experimental results of mpeg2encode

pression ratio which means a good compression. As a result, it is possible not only to
reduce the number of page writes but also the execution time as well even with the
software compression. As shown in this figure, the number of page writes and the exe-
cution time are reduced to approximately 62% and 3% respectively when compared to
the CFLRU algorithm. The performance gain obtained by using CFLRU is less com-
pared to the previous experiment because the application program has a long execution
time and a large spatial locality. However there is a great improvement in number of
swap outs.

The performance of gcc in spec2000 benchmark programs is also evaluated and the
results are illustrated in Fig. 7.

0

10000

20000

30000

40000

50000

60000

70000

Orig CFLRU Comp M-Comp

Compression Algorithm

N
u

m
b

er
 o

f S
w

a
p

O
u

ts

(a) Number of swap outs

0

20

40

60

80

100

120

140

160

180

200

Orig CFLRU Comp M-Comp

Compression Algorithm

E
xe

cu
tio

n
T

im
e

(S
ec

)

comp
read
write
exec

(b) Execution time

Fig. 7. Experimental results of gcc, main memory 4MB

The result shows that when CFRLU is applied, although the number of writes has
been reduced, the execution time has increased significantly compared to other experi-
ments. This is because gcc makes a lot of reference to data and in the case of CFLRU,

322 S. Park et al.

clean pages are swapped out first. Thus the average duration residing in the main mem-
ory is reduced and the number of reads for referring data increases rapidly. In the pro-
posed algorithm, the efficiency in memory usage is increased therefore it is possible
to reduce the number of writes and minimize the overhead increase due to read. When
compared to CFLRU, the number of writes in the compression based algorithms is much
less because the compression performance of this application is very good.

mpeg2encoder

0

500

1000

1500

2000

2500

3000

3500

3M 4M 5M 6M 7M 8M

Size of Main Memory

N
um

be
r

of
 S

w
ap

 O
ut

s

Original

CFLRU

M-Comp

(a) mpeg2encoder

gcc

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4M 5M 6M 7M 8M 9M

Size of Main Memory

N
um

be
r

of
 S

w
ap

 O
ut

s

Original

CFLRU

M-Comp

(b) gcc

Fig. 8. Changes in the number of swaps according to main memory size

The number of swaps according to different main memory size is also observed and
the results are shown in Fig. 8.

5 Concluding Remarks

In this paper, a swapping method combining the file compression and enhanced swap
scheduling is introduced for NAND flash based virtual memory systems. The results
show that it can reduce the number of writes significantly, 50% ∼ 70%, without af-
fecting the system performance much. Since the total number of writes allowed in
NAND flash is limited, the proposed method enhances the stability of a system. Re-
duced DRAM size helps for lowering the system implementation cost as well as power
consumption. This research also suggests the direction for improved NAND flash ar-
chitecture design that is optimized for demand paging applications.

References

1. Park, C., Seo, J., Bae, S., Kim, H., Kim, S., Kim, B.: A low-cost memory architecture with
nand xip for mobile embedded systems. In: CODES+ISSS. (2003) 138–143

2. Kim, J., Kim, J.M., Noh, S.H., Min, S.L., Cho, Y.: A space-efficient flash translation layer
for compactflash systems. IEEE Trans. Consumer Electronics 48 (2002) 366–375

3. Samsung Electronics: NAND flash memory&SmartMedia data book. (2004)

Compressed Swapping for NAND Flash Memory Based Embedded Systems 323

4. Samsung Electronics: Mobile SDRAM (K4S561633F, K4S511633F) data sheets. (2004)
5. Marsh, B., Douglis, F., Krishnan, P.: Flash memory file caching for mobile computers. In:

HICSS (1). (1994) 451–461
6. de Castro, R.S., do Lago, A.P., Silva, D.D.: Adaptive compressed caching: Design and im-

plementation. In: SBAC-PAD. (2003) 10–18
7. Cervera, R., Cortes, T., Becerra, Y.: Improving application performance through swap com-

pression. In: USENIX Annual Technical Conference, FREENIX Track. (1999) 207–218
8. Roy, S., Kumar, R., Prvulovic, M.: Improving system performance with compressed memory.

In: IPDPS. (2001) 66
9. Wilson, P.R., Kaplan, S.F., Smaragdakis, Y.: The case for compressed caching in virtual

memory systems. In: USENIX Annual Technical Conference, General Track. (1999) 101–
116

10. Abali, B., Banikazemi, M., Shen, X., Franke, H., Poff, D.E., Smith, T.B.: Hardware com-
pressed main memory: Operating system support and performance evaluation. IEEE Trans.
Computers 50 (2001) 1219–1233

11. Nunez, J.L., Feregrino, C., Jones, S., Bateman, S.: X-matchpro: A proasic-based 200
mbytes/s full-duplex lossless data compressor. In: FPL. (2001) 613–617

12. Bunton, S., Borriello, G.: Practical dictionary management for hardware data compression.
Commun. ACM 35 (1992) 95–104

13. Kjelsø, M., Gooch, M., Jones, S.: Design and performance of a main memory hardware data
compressor. In: EUROMICRO. (1996) 423–430

14. Kjelsø, M., Gooch, M., Jones, S.: Performance evaluation of computer architectures with
main memory data compression. Systems Architecture 45 (1999) 571–590

15. Jones, S.: 100mbit/s adaptive data compressor design using selectively shiftable content-
addressable memory. In: Proceedings of IEE (part G). (1992) 498–502

16. Park, C., Kang, J.U., Park, S.Y., Kim, J.S.: Energy-aware demand paging on nand flash-based
embedded storages. In: ISLPED. (2004) 338–343

17. Lee, J.S., Hong, W.K., Kim, S.D.: Design and evaluation of a selective compressed memory
system. In: ICCD. (1999) 184–191

18. Rusling, D.A.: The Linux Kernel. O’Reilly (1999)
19. Bovet, D., Cesati, M.: Understanding the Linux Kernel. O’Reilly (2002)
20. van Riel, R.: Page replacement in linux 2.4 memory management. In: USENIX Annual

Technical Conference, FREENIX Track. (2001) 165–172

A Radix-8 Multiplier Design and Its Extension for
Efficient Implementation of Imaging Algorithms

David Guevorkian1, Petri Liuha1, Aki Launiainen1, Konsta Punkka2,
and Ville Lappalainen3

1 Nokia Research Center, Visiokatu 1, FIN-33721 Tampere, Finland
David.Guevorkian@Nokia.com

2 Tampere University of Technology, P.O.Box 553, FIN-33101 Tampere, Finland
3 Nokia Multimedia Business Unit, Tampere, Finland

Abstract. In our previous work, general principles to develop efficient architec-
tures for matrix-vector arithmetics and video/image processing were proposed
based on high-radix (4,8, or 16) multiplier extensions. In this work, we propose a
radix-8 multiplier design and its extension to Multifunctional Architecture for
Video and Image Processing (MAVIP). MAVIP may operate either as a pro-
grammable unit with DSP-specific operations such as multiplication, multiply-
accumulate, parallel addition or as one or another HWA such as matrix-vector
multiplier, FIR filter, or sum-of-absolute-difference accelerator. Simulations in-
dicate that being a small device, MAVIP has competitive performance in video
coding.

1 Introduction

Research for efficient multiplier structures is as old as digital computers and still is a hot
topic attracting many researchers due to its importance to the efficiency of computations
and due to many possible ways of implementing multiplication operations (see [1]-
[2]). Though the relative efficiency of different types of multipliers changes with the
technology development, probably the most known multiplier type remains to be the
Booth recoded radix-4 multiplier structure (see [2], [3]). In [1], [4], [5], [6], higher-
radix (radix-8, radix-16, etc.) multipliers for nonnegative integers based on generalized
Booth recoding were proposed. Mixed radix multipliers [7], [8], [9] (radix-4 and 8)
multipliers were also suggested.

While Booth recoded radix-4 multipliers achieve lower latency implementations of
multiplications, the use of higher radices may significantly reduce the implementation
cost and power consumption [1]. However, the higher radix methods did not gain much
popularity. The main reason for this is that these higher-radix multipliers involve a num-
ber of addition/subtractions for finding a list of potential partial products at the first step.
This, in general, means larger area and slower implementation of standard multiplica-
tion operations. This also means that in a pipelined higher-radix multiplier design, the
first pipeline stage will be significantly more complex compared to the consecutive ones
(meaning a poor balancing) as well as compared to the case of conventional pipelined
radix-4 Booth recoded multiplier.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 324–333, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Radix-8 Multiplier Design and Its Extension for Efficient Implementation 325

In our previous work [10], [11], we have proposed a methodology that turns these
drawbacks to advantages in some cases such as matrix-vector products (in particular,
discrete orthogonal (Cosine Fourier) transforms), scalar to matrix/vector products, FIR
filtering, etc. Three main principles of this methodology can be summarized as fol-
lows. First, in order to decrease the implementation time in those cases where one
multiplier is to be multiplied with a numerous multiplicands, we omit the first step
in most of the multiplication operations by reusing the potential partial products that
are once computed and are stored. Second, to reduce the effect of grown area we reuse
adder/subtractors involved in the first pipeline stage of a high-radix multiplier to im-
plement other operations thus eliminating the need of separate adders/subtractors that
are usually involved in the system. Third, we propose a principle of balancing between
stages of pipelined devices, which may efficiently be applied to higher-radix multiplier
structures to achieve perfect balancing.

In this work, we apply the principles of [10], [11] to a novel radix-8 non-recoded
multiplier structure to derive an example realization of so called Multifunctional Archi-
tecture for Video and Image Processing (MAVIP). This realization of MAVIP has been
modelled with VHDL showing competitive performance in video coding. In Section
2 the design of the radix-8 multiplier is presented. Section 3 presents MAVIP realiza-
tion as extensions to the radix-8 multiplier. Section 4 presents performance analysis.
Conclusions are given in Section 5.

2 The Radix-8 Multiplier Structure

Basically, multiplication is a process of finding partial products and adding those to-
gether. Multiplication algorithms and multiplier structures differ in the way of par-
tial product generation and summation. The earliest algorithms were based on radix-
2 method where the product y = a · x is obtained by adding n shifted instances aix2i,
i = 0, ...,n− 1, of the multiplicand x masked by the bits ai of the multiplier a = an−1

an−2 . . . a1 a0. Additions are performed iteratively or in parallel using different adder
trees (see [2], [3]). Later on, recoded multipliers were proposed where the multiplier a
is Booth recoded to an alternative signed digital representation in a higher than 2 radix
(see [2]-[9]). The most popular case is the radix-4 Booth-recoded multiplier where the
product is obtained as:

y =
nradix−4−1

∑
r=0

(Arx)22r =
n/2−1

∑
r=0

([−2a2r+1 +a2r +a2r−1]x)22r, a−1 = 0

where the value of Ar ∈ {−2,−1,0,1,2}, r = 0,1, ...,n/2− 1, is chosen according to
three consecutive bits a2r+1,a2r,a2r−1 of the two’s complement representation of the
multiplier a. PP’s that are non-negative multiples of x are readily available (2x is formed
by a hardwired shift). PP’s that are negative multiples of x are formed by inverting the
bits of the corresponding positive multiples of x and then by adding 1.Addition of PP’s
and these 1’s is usually implemented in an adder tree that suppresses the n/2 input PP
rows as well as these n/2 1-bit signals into the two output rows (Sum S and Carry C
terms). A fast final adder then completes the multiplication by adding the S and C terms.

326 D. Guevorkian et al.

The main advantage of the radix-4 Booth recoded multipliers is the reduced number n/2
of PP’s compared to n PP’s to be added in radix-2 multipliers. This leads to significant
advantages in speed performance, area, and power consumption.

The number of PP’s may be further reduced in higher-radix multipliers. In [1],
[4]-[9], higher radix multipliers using generalized multibit recoding were considered.
Similarly, non-recoded higher-radix multipliers may be developed. Below we present a
radix-8 non-recoded multiplier design based on the following proposition.

Let a = an−1an−2...a1a0 and x = xm−1xm−2...x1x0 be the two’s complement repre-
sentations of the n-bit multiplier a and the m-bit multiplicand x, respectively. Let also
n = 3n′ (n′ is an integer1).

Proposition 1. The product y = a · x can be obtained as:

y =
n′−1

∑
r=0

Yr2
3r +2kX̃

where Yr =< Ar ·x >(m+2), Ar = a3r+2a3r+1a3r = 4a3r+2 +2a3r+1 +a3r, r = 0, ...,n′ −1,
are PP values formed from the least m + 2 significant bits of the two’s complement
representation of the number Ar · x, k = min{n,m+2}, and X̃ is the sign correction
term given by

X̃ =
{

xm−1C(n)2m+2−k if an−1 = 0
xm−1C(n)2m+2−k− x2n−k if an−1 = 1

,

where C(n) =− 2n−1
7 = 1 011 011 ... 011︸ ︷︷ ︸

n′−1 times

1. In the case Ar = 0, the value of the corre-

sponding PP should be presented as Yr= xm−1...xm−1︸ ︷︷ ︸
m+2 times

(“signed zero”).

Proof. The radix-8 representation of the multiplier a is a =
n′−1
∑

r=0
Ar23r − an−12n. The

product is obtained as y = ax =
n′−1
∑

r=0
(Arx)23r− (an−1x)2n. In a direct computation, the

terms (Arx)23r must have been sign extended to n + m bits. However, since Ar ≥ 0
(which is not the case in Booth recoding), one can present the value of the (m+3)-bit
number (Arx) having in its (m + 2)-nd position the same sign bit xm−1 as the multi-
plicand x as (Arx) = 〈Arx〉m+2− xm−12m+2 = Yr − xm−12m+2 (Arx = xm−1...xm−1 for
Ar = 0). Therefore,

y =
n′−1

∑
r=0

Yr2
3r− xm−12m+2 2n−1

7
− (an−1x)2n

The proof is complete after combining the two rightmost terms.

1 Multiplier may be sign extended if needed.

A Radix-8 Multiplier Design and Its Extension for Efficient Implementation 327

Fig. 1. The proposed radix-8 multiplier structure

Fig. 1 presents the proposed multiplier structure that implements the following al-
gorithm, based on Proposition 1.

Algorithm 1.
Step1. Find all potential partial products 3x = 2x + x, 5x = 4x + x, and 7x = 8x− x

of all 3-bit positive numbers with the multiplicand x. Also find X̂ = xm−1C(n)2m+2−k−
x2n−k. Note that every potential PP is the result of one addition or subtraction with one
operand being x, and the other being x shifted to the left. This step is implemented in
an array of four parallel adders/subtractors of the multiplier in Fig. 1 in one operating
step.

Step 2. According to every group of three bits Ar = a3r+2a3r+1a3r, r = 0, ...,n′−1, of
the multiplier select n′ partial products Yr =< Ar · x >(m+2) from the list of all possible
partial product values 0, x, 2x,3x 4x, 5x, 6x, and 7x obtained at the first step. Also, if
an−1 = 0, then set the value of the sign correction term X̃ = xm−1C(n)2m+2−k, otherwise

(if an−1 = 1), set X̃ =
�

X where
�

X was obtained at the first step. This step is implemented
in the Selection Block (SB) of the multiplier in Fig. 1. Different realizations of SB
are possible. In the example of Fig. 1, SB consists of a m-bit 2 : 1 multiplexer and n′

SEL units. The multiplexer has
�

X at its first input and xm−1C(n)2m+2−k at its second
input, and is controlled by an−1 so that it produces X̃ = xm−1C(n)2m+2−k−an−1x2n−k.
Every SEL unit has the values of 0, x, 3x, 5x, and 7x at its inputs and is controlled by
corresponding three bits Ar = a3r+2a3r+1a3r of the multiplier a.

Step 3. Find the product y by summing up the n′ selected partial products Yr, r =
0, ...,n′ − 1, and the value of X̃ preliminary shifting Yr by 3r and the value of X̃ by k

328 D. Guevorkian et al.

positions to the left. Step 3 is implemented in the summation block of the multiplier
in Fig. 1, which is composed of a compression array (CA) followed by an adder (later
on referred to as final adder). CA reduces the partial product rows into two rows that
are then added in the final adder. Clearly, the presented multiplier can easily be ex-
tended to multiply-accumulate (MAC) unit if the result of the Step 3 is accumulated.
For this, feedbacks from the outputs of CA to its inputs may be introduced. This way,
partial multiplications excluding the final additions will be executed in a series of MAC
operations.

Note that there are total of n′+ 1 = �n/3�+ 1 PPs to be added in the radix-8 mul-
tiplication method (while in the radix-4 Booth multiplication, this number is �n/2� or
�n/2�+ 1 depending on how the sign extensions are handled). Moreover, some of the
n′ + 1 rows may be merged. For example, the two rows 000101 and 011000 can be
merged into the following one: 011101. It can easily be shown that, after merging the
total number of PP rows is min{�m/3� ,�n/3�}+1.

Also note that no sign extensions are needed in implementing the summation since
all the PP’s Yr are nonnegative and 2kX̃ is an (m+n)-bit number. As the numbers of
rows to be added are reduced when using the radix-8 method instead of radix-4 method,
the numbers of levels within the Compression Arrays and, therefore its delay and size
are significantly reduced. For example, in the case of 13-bit multiplicand (m = 13) and
16-bit multiplier (n = 16) the numbers of levels of the CA in the radix-8 multiplier and
in the radix-8 MAC unit are reduced from 4 to 3 and from 5 to 4 when comparing to
the state-of-the-art radix-4 Booth multipliers and MAC units, respectively. The number
of full adders (FAs) and the number of half adders (HAs) are reduced from 72 and 14
to 36 and 13.

3 An Extension of the Radix-8 Multiplier, MAVIP

In this section, we apply the methodology of [10], [11] to the proposed multiplier de-
sign in order to derive an efficient architecture operations that are frequently used in
image and video processing algorithms. The resulting architecture called Multifunc-
tional Architecture for Video and Image Processing (MAVIP) is depicted in Fig. 2. This
realization is based on the (13x16)-bit multiplier (m = 13,n = 16) where the following
extensions/modifications are applied.

Firstly, the array of four adders/subtractors of the multiplier is transformed to so-
called “reconfigurable” array of eight 8-bit Array of Adders or Difference-Sign units
(AA/DSA) which is controlled by two signals c1 and c2. A possible realization of a
unit within the AA/DSA block is shown on Fig. 3. Depending on the control signals
c1, c2 four of such units involved in the AA/DSA block may implement either eight
8-bit additions/subtractions, or four 16-bit addition/subtraction, or eight difference-sign
operations, or the two subtractions and the two additions of the first step in (13x16)-bit
radix-8 multiplication algorithm. The difference-sign operation is needed to compute
the sum-of-absolute-differences (SAD), which is the base of motion estimation, the
most complex part of video encoders (see [12]). Given two arrays ai, j and bi, j, i =
0, ...,N, SAD is defined as SAD(a,b) = ∑

∣∣ai, j−bi, j
∣∣. It can be shown that SAD(a,b) =

∑
(
d̃i, j + si, j

)
where si, j is the sign bit of the difference ai, j − bi, j, and d̃i, j = dn−1

i, j ⊕

A Radix-8 Multiplier Design and Its Extension for Efficient Implementation 329

Fig. 2. A MAVIP realization

Fig. 3. An example realization of a unit within AA/DSA

si, jd
n−2
i, j ⊕ si, j...d0

i, j⊕ si, j is formed by XORing every significant (non-sign) bit of ai, j−
bi, j with si, j. The difference-sign operation for a pair of n-bit operands outputs the
corresponding n-bit d̃ and 1-bit s values (all these values will later be added together in
the summation block to form the SAD).

Second extension consists of introducing a register memory for storing the lists of
potential PP’s obtained in multiplication operations. The aim of this extension is to
reuse these lists whenever one multiplier is to be multiplied with many multiplicands.
One such example is matrix-vector product where every component of the input vector
is multiplied with corresponding column of the input matrix. Another example is FIR
filtering where every filter coefficient is multiplied with every sample of the input signal.
Reusing the list of PP’s allows excluding the most costly first step from multiplication
process thus saving the execution time and the energy consumption.

Next extension consists of modifying and duplicating the compression array (CA) as
well as introducing a data unifier/multiplexer block. The idea of modification is to derive

330 D. Guevorkian et al.

a unified CA that supports both compression of five PP rows for multiplication and
compression of eight 8-bit rows and eight 1-bit rows for SAD computation. The input to
the data unifier/multiplexer may be either forwarded directly from the AA/DSA block
or taken from the memory depending on control signals c3 and c4. Modification also
consists of introducing “closeable” feedback loops between outputs and inputs of CAs,
which are either open or close depending on control signal c5. When the loop is open,
MAC operations are implemented otherwise simple multiplications are implemented.
Duplicating of CA’s of the multiplier structure is needed because there are about twice
more rows to be compressed in the case of SAD compared to multiplication. At the
same time, it allows of implementing two multiplication or MAC operations with a
shared operand (multiplier) in one cycle. The outputs of the two CA’s may either be
separately outputted to two separate final adders or combined together using the third
CA (4x31 CA) and final adder.

The last modification consists of introducing the output selector-multiplexer, which
allows of reusing the AA/DSA block of the first stage as independent array of
adders/subtractors. Reusing AA/DSA block may, in many cases, eliminate the need
in separate adders within the system where the MAVIP is supposed be used.

MAVIP may be configured to one or another hardware accelerator (HWA) by halting
or activating its blocks (AA/DSA, block of CA’s and the final adders), and by setting
the control signals. For example, it may be configured to a HWA for FIR filtering. In
this case, lists of potential PP’s of the filter coefficients are pre-computed and loaded
to the MAVIP’s internal memory block. Then the AA/DSA is halted and the PP’s are
directly fetched from the memory so that incomplete MACs without the first step (PP
generation) are implemented. If the filter length is M a series of M/2 incomplete “dual-
MAC”s are implemented by the two CA’s. During these M/2 cycles also the final adders
are halted. When all accumulations are implemented, the two final adders are activated
to add the resulting two S and two C terms for two filter outputs. Other HWA accelerator
examples are the matrix-vector product accelerator, SAD accelerator, Discrete Cosine
Transform (DCT) accelerator, scalar-to matrix product accelerator.

4 Performance Analysis

In this section we present performance analysis of the MAVIP example on Fig. 2. First,
VHDL modelling results for the main blocks are summarized in Table 1. The underlying
technology is the GS40 0.11 μm standard cell technology from Texas Instruments [13].
Gate count is the size of the network in terms of the number of equivalent gates (2-input
NAND). Similar figures for the standard radix-4 Booth-recoded multiplier implemented
under the same technology are presented in Table 2. Being smaller in size, MAVIP is
able of implementing two multiplication operations in approximately the same time as
the radix-4 Booth recoded multiplier. At the same time, MAVIP’s functionality is larger
than that of the multiplier.

As follows from Table 1, MAVIP may operate with the time period of 3.4ns or
with the clock frequency of approximately 295 MHz. Multiplication of an 8x8 matrix
with 16-bit unknown entries to a vector with 13-bit components consumes 40 clock
cycles or 136 ns at the least. FIR filtering of a 16-bit signal of the length 1024 with

A Radix-8 Multiplier Design and Its Extension for Efficient Implementation 331

eight 13-bit filter coefficients takes totally 4608 clock cycles or approximately 16 000
ns. Computation of the SAD between two 16x16 blocks of 8-bit data takes 34 clock
cycles meaning it may be computed as fast as in 116ns at the maximum frequency.
Computation of an 8-point DCT (as well as inverse DCT (IDCT)) may be accomplished
in 74.8ns and computation of a 2-D DCT of an (8x8)-block may be implemented in
1200ns. Subtraction or addition of two (16x16) macroblocks consisting of 8-bit data
(motion compensation used in video encoders) may be implemented in 256/8=32 clock
cycles or in 110ns. Finally, a series of multiplications of one multiplicand with a pair of
multipliers, which is the basic operation of the quantization in video encoders may be
implemented with the throughput defined by the period of one clock cycle (3.4ns).

Table 1. VHDL modelling results for the main blocks of the MAVIP

The block Gate count Delay (ns)

Array of Adders/DS units 1277 1.57
Selection Block 764 2.97
Compression Array (CA) 715 1.88
Final Adder (CLA) 311 3.4
Total 3067 9.82

Table 2. VHDL modelling results for a radix-4 Booth-recoded multiplier

The block Gate count Delay (ns)

PP generation block 1742 1.57
Summation Block 3076 1.88
Total 4822 4.8

Based on above estimates, we next examine the performance of a hypothetic system
that incorporates the MAVIP example of Fig. 2 in video encoding. In this example
the internal memory of the MAVIP consists of eight 80-bit registers. In our analysis,
we assume that the full search over the (31x31) search area is implemented in Motion
Estimation (ME) for every macroblock. In a real video encoder most likely much faster
algorithm would be used. On the other hand, we assume that the variable-length coding
(VLC), the rate control operations as well as other control operations are implemented
on the host processor or elsewhere. Assuming that these operations consume 30% of
the encoding time and the kernels implemented on the MAVIP consume 70% of the
encoding time, one CIF frame is encoded in 0.07sec or in other words 14 frames of CIF
resolution in one second (CIF@14 FPS) may be encoded using one MAVIP clocked at
maximum frequency. Thus, CIF@30FPS video encoding may be possible to implement
on a system involving two MAVIPs. Taking into account the small size of the MAVIP
(comparable to the size of one standard multiplier) this is a remarkable result even
though the estimates are somewhat theoretical.

Table 3 presents estimates of the numbers of cycles per second (or the required
frequency in MHz) consumed by the basic video encoder/decoder kernels in the case of

332 D. Guevorkian et al.

Table 3. Estimates of frequencies (in MHz) needed to implement video encoder/decoder kernels
in QCIF@15FPS on the MAVIP

Kernel Encode Decode

Color conversion 2.3 2.3
Motion Estimation (SAD) 11.4 0
Software coprocessor (on host) 5 0
Texture coding 6.3 (DCT&IDCT) 3.2 (IDCT)
Bitstream (on host) 2.7 (coding) 1.6 (decoding)
AC/DC prediction (on host) 0 0.2
Motion compensation 0 0.6
Post-processing (on host) 0 25
Total 27.7 MHz 25 + 7.9 = 32.9 MHz

implementing QCIF@15FPS encoding/decoding on the system consisting of an ARM
processor and one MAVIP. Kernels that cannot be implemented on MAVIP are assumed
being implemented on the host (ARM processor). The motion estimation algorithm
implemented on MAVIP is considered to be full search over search area of the size
(15x15) though typical motion estimation algorithm used in video encoders is usually
much less computationally intensive. The total frequency needed for the decoder is
shown in two parts, the first part indicating the frequencies needed in actual decoding
and the second part indicating the post-processing. As can be seen from Table 3, MAVIP
illustrates a competitive performance.

We have analyzed performance of only one small example of MAVIP. There are
various ways to scale the performance up. The most straightforward way would be to
include several of MAVIP’s into one system. Another possibility is to improve balanc-
ing between pipelined stages by parallelizing them so that slowest stages are accel-
erated more than the faster ones (see [10], [11]). This ways, bank of MAVIP’s with
shared blocks can be derived allowing to increase the throughput with minimum area
extension. Yet another possibility to scale the performance up is to derive MAVIP from
higher(radix-16) and/or from higher precision (m > 13, n > 16) multipliers.

Although no simulations of MAVIP were carried out for its power consumption,
we can expect low energy consumption since MAVIP is small and should not have
higher activity level than conventional designs (moreover, MAVIP should implement
less amount of calculations due to reusing potential partial products in many of multi-
plication operations).

5 Conclusions

A radix-8 multiplier design and its extension to a reconfigurable hardware accelerator
for video and image processing, MAVIP, were proposed. MAVIP may be configured to
one or another hardware accelerator such as matrix-vector multiplier, FIR filter, or sum-
of-absolute-difference accelerator. Being a small device, MAVIP indicates competitive
performance in video coding applications.

A Radix-8 Multiplier Design and Its Extension for Efficient Implementation 333

References

1. Seidel, P.M., McFearin, L.D., Matula, D.W.: Secondary radix recodings for higher radix
multipliers. IEEE Trans. Comput. 54 (2005) 111–123

2. Al-Twaijry, H.A., Flynn, M.J.: Technology scaling effects on multipliers. IEEE Trans. Com-
puters 47 (1998) 1201–1215

3. Shah, S., Al-Khalili, A.J., D.Al-Khalili: Secondary radix recodings for higher radix multi-
pliers. In: 12th Int. Conf. On Microelectronics, ICM2000. (2000) 75–80

4. Sam, H., Gupta, A.: Generalized multibit recoding of two’s complement binary numbers and
its proof with applications in multiplier implementations. IEEE Trans. Computers 39 (1990)
1006–1015

5. Conway, C., Swartzlander Jr., E.: Product select multiplier. In: IEEE 28th Asilomar Conf.
On Signals, Systems, and Computers. (1994) 1388–1392

6. Schwarz, E., III, R.A., Sigal, L.: A radix-8 cmos s/390 multiplier. In: 13th IEEE Symposium
on Computer Arithmetic. (1997) 2–9

7. Williams, T.: US patent No 4,965,762. Mixed Size Radix Recoded Multiplier (1990)
8. Cherkauer, B., Friedman, E.: A hybrid radix-4/radix-8 low power signed multiplier architec-

ture. IEEE Trans. Circuits and Systems–II, Analog and Digital Signal Processing 44 (1997)
656–659

9. Chen, H.Y., Gai, W.X.: US patent No 5,828,590. Multiplier based on a variable radix multi-
plier coding (1998)

10. Guevorkian, D., Launiainen, A., Liuha, P., Lappalainen, V.: A family of accelerators for
matrix-vector arithmetics based on high-radix multiplier structures. In Pimentel, A., Vassil-
iadis, S., eds.: Computer Systems: Architectures, Modeling, and Simulation. Volume 3133 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (2003)
118–127

11. Guevorkian, D., Launiainen, A., Lappalainen, V., Liuha, P., Punkka, K.: A method for
designing high-radix multiplier based processing units for multimedia applications. IEEE
Trans. Circuits and Sustems for Video Technology (2005) to appear.

12. Guevorkian, D., Launiainen, A., Liuha, P., Lappalainen, V.: Architectures for the sum of
absolute differences operation. In: IEEE Workshop on Signal Processing Systems (SIPS
2002). (2002) 57–62

13. Texas Instruments: (2001) http://www-s.ti.com/sc/psheets/srst143/srst143.pdf.

A Scalable Embedded JPEG2000 Architecture

Chunhui Zhang, Yun Long, and Fadi Kurdahi

Department of EECS, University of California,
ET508, zotcode 2625, UCI, Irvine, CA, 92697, USA
{chunhuiz, longy, kurdahi}@ece.uci.edu

Abstract. It takes more than a good tool to shorten the time-to-market window:
the scalability of a design also plays an important role in rapid prototyping if it
needs to satisfy various demands. The design of JPEG2000 belongs to such cases.
As the latest compression standard for still images, JPEG2000 is well tuned for
diverse applications, raising different throughput requirements on its composed
blocks. In this paper, a scalable embedded JPEG2000 encoder architecture is pre-
sented and prototyped onto Xilinx FPGA. The system level design presents dy-
namic profiling outcomes, proving the necessity of the design for scalability.

1 Introduction

JPEG2000 is the latest compression standard for still images [1]. Due to the adaptations
of the discrete wavelet transform (DWT) and the adaptive binary arithmetic coder (Tier-
1), JPEG2000 provides a rich set of features not available in its predecessor JPEG. In
particular, the core algorithm of the standard addresses some of the shortcomings of
baseline JPEG by supporting features like superior low bit-rate performance, lossy to
lossless compression, multiple resolution representation, embedded bit-stream and so
forth.

Several JPEG2000 encoder architectures have been implemented [2][3][4]. They
employed a fixed number of dedicated hardware accelerators for the two compute-
intensive blocks, DWT and Tier-1. However, JPEG2000 aims at a broad application
scope, thus the relative processing demand on DWT and Tier-1 varies tremendously as
the situations alter (e.g. image type as compression ratio). Therefore, such rigid archi-
tectures, which restrict the relative throughput between DWT and Tier-1 only optimal
at specific conditions, will easily lose the balancing points and even be severely unbal-
anced under a changed circumstance.

In this paper, a scalable JPEG2000 encoder is presented and prototyped onto Xilinx
Virtex-II Pro FPGA. It takes the advantages of Virtex-II Pro’s embedded PowerPC RISC
core and the flexible on-chip bus structure. The SW/HW (Software/Hardware) partition
scheme used is based on our profiling experiments and the hardware accelerators are
carefully designed for scalability concern. Beside the performance advantages afforded
by the customized hardware cores, the available scalability facilitates the throughput
exploration for a given specification. The paper is organized as follows: In Section 2, the
proposed JPEG2000 system design is discussed. The two main hardware accelerators
for DWT and Tier-1 are presented in Section 3. Section 4 gives the prototyping results
together with the scalable performance. The paper is then concluded in Section 5.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 334–343, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Scalable Embedded JPEG2000 Architecture 335

2 JPEG2000 System Design

Before prototyping the encoder onto FPGA, intensive simulations have been done to
verify the design. The specification is coded in floating-point C at the beginning and
then translated into fixed-point for hardware verification.

2.1 JPEG2000 Overview

A typical JPEG2000 encoder is composed of the fundamental building blocks shown in
Fig. 1. The decoding process is symmetric to the encoding but in the reverse direction.
This subsection gives a brief overview of the encoding steps and the details are referred
to the standard [1].

Original
Image Data

Pre-
processing

Discrete Wavelet
Transform (DWT)

Uniform
Quantizer

Tier-2
Coder

Compressed
Image Data

Bit-Plane
Coder

Binary Arithmetic
Coder (MQ-coder)

Tier-1 Coder

Fig. 1. JPEG2000 fundamental building blocks

During encoding, the image is partitioned into rectangular and non-overlapping tiles
which are processed separately. Next, unsigned sample values are level shifted to make
them symmetric around zero. Counting the optional inter-component transform (ICT),
those procedures are summarized as pre-processing. The dyadic DWT is applied on the
tile repeatedly to de-correlate it into different decomposition levels (resolutions). For
lossy compression, the wavelet coefficients are fed to a uniform quantizer with central
deadzone.

Each subband is further divided into rectangular blocks namely, code blocks, which
are entropy-coded independently. In JPEG2000, entropy coding is two-tiered. Tier-1 is
a context-based adaptive arithmetic coder composed of Bit-Plane Coder (BPC) and Bi-
nary Arithmetic Coder (MQ-coder). It accepts the quantized wavelet coefficients along
with their corresponding probability estimates generated by the BPC, and produces
highly compressed codestream. This codestream is carefully organized by Tier-2 coder,
constructing a flexible formatted file. New terms and techniques like precinct, packet,
tag-tree, and rate control enable features like random access, region of interest coding
and scalability.

2.2 Profiling and SW/HW Partitioning

Although C open sources for JPEG 2000 are available, e.g. Jasper [1], almost all of
them are software-oriented. Their merits of full specification capture and extra facilities
bring complicated design and inferior performance adversely. Therefore, we program
our own hardware-oriented JPEG 2000 encoder.

We profile the C implementation of the encoding algorithm on a standard PC (Pen-
tium IV 2.4 GHz, 512M RAM) for rough software estimation and subsequent SW/HW

336 C. Zhang, Y. Long, and F. Kurdahi

0.01

0.1

1

10

100

Hdr
 E

nc

Tile
In

i

DC_L
S

IC
T

DW
T

Qua
n

Tier
-1

Tier
-2

Outp
ut

R
un

ni
ng

 T
im

e
D

is
tr

ib
ut

io
n

(P
er

ce
nt

ag
e)

Min Max

(a)

Tile Encoding

DC Level Shifting
DC Level Shifting

Inter-Component
Transformation

Inter-Component
Transformation

Discrete Wavelet
Transformation

Discrete Wavelet
Transformation

Quantization
Quantization

Bit-Plane
Coding

Bit-Plane
Coding Binary Arith-

metic Coding

Binary Arith-
metic Coding

Tier2 Coding

JPEG2000 Enc

Ancillary Infor-
mation Extraction

Image Header
Encoding

Tile Header
Encoding

Tile Init.

Tile Encoding

More
Tile?

Yes

(b)

Fig. 2. (a)The profiling results; (b) Proposed partitioning schemes

partitioning. Based on the profiling results shown in Fig. 2 (a), two candidate partitions
are given in Fig. 2 (b). DWT and Tier-1 coder are computationally, as well as memory,
intensive. Therefore, partition 1 allocates DWT, Quantizer and Tier-1 coder into hard-
ware part while the rests run in the host processor in software manner. Partition 2 further
assigns DC level shifting and ICT to hardware. By contrast, Tier-2 encoder is computa-
tionally inexpensive and showing inferior data locality. Therefore, Tier-2 is appointed to
software although it “appears” complicated. Besides performance improvement through
hardware customization, the partitioning schemes also decrease communication bud-
gets by confining Tier-2 and the initialization parts in the host processor.

An important phenomena can be noticed via the profiling — the distribution of run
time over the blocks varies with large dynamic ranges, prominent for DWT and Tier-
1. Actually, Fig. 2 gives two run times, Min and Max, for each block as the bounds
(those optional blocks have zero Min). The relative throughput between DWT and Tier-
1 alters over ten times in common configuration ranges (e.g. compression ratio from
about 2 to 50). When the compression ratio is low (as lossless as the extreme in medical
image processing), all information are preserved for Tier-1 processing, whereas most
of which could have been eliminated away by the quantizer when the compression ratio
becomes high.

2.3 Proposed JPEG2000 Architecture

We propose a system level architecture for JPEG2000 encoding core algorithm targeting
toward Xilinx Virtex-II Pro. Fig. 3 shows the diagram based on XC2VP7, a cheap device
in Virtex-II Pro family. While the Virtex-II Pro FPGA can be embedded with up to 4
PowerPC cores and 556 multipliers, it is ideal for single-chip embedded system design
with scaling up potential. The corresponding decoder can be realized in almost the
identical structure by inverting the data path.

Both of the two partition schemes presented in section 2.2 are considered in the ar-
chitecture. Tier-2 is completed in PowerPC, while DWT and Tier-1 are implemented us-
ing hardware-specific design with FPGA logic. The remainder optional blocks (DC LS,

A Scalable Embedded JPEG2000 Architecture 337

PowerPC 440
CPU

Inst Data

Processor Local Bus (PLB) 64-bit
PLB

Arbiter

I/F
Controller

System RAM
Input Image

JPEG2000 Bitstream

Input Image
JPEG2000 Bitstream

Tier-2 Driver
Tier-2 Driver

iDMA

Tile Memory
Tile Memory

Entropy Coder
Controller

DMA
Controller

DCR
BUS

Virtex-II Pro

DWT Scheduler

Quantizer M
Code Block
Memory M

Entropy Coder
M

Data & Metric
FIFO M

Double
Frame
Buffer

LS
Kernel

2D DWT
Double
Frame
Buffer

LS
Kernel

2D DWT
Double
Frame
Buffer

LS
Kernel

2D DWT

iDMA

Switcher

Quantizer
i+1

Code Block
Memory i+1

Entropy Coder
i+1

Data & Metric
FIFO i+1

Quantizer i
Code Block
Memory i

Entropy Coder
i

Data & Metric
FIFO i

Quantizer
i-1

Code Block
Memory i-1

Entropy Coder
i-1

Data & Metric
FIFO i-1

Quantizer 1
Code Block
Memory 1

Entropy Coder
1

Data & Metric
FIFO 1

Fig. 3. Proposed JPEG2000 encoder based on Virtex-II Pro XC2VP7

ICT and Quantization) can be either inserted into the data path or run on the PowerPC
because of their fine granularity (full parallelism and scalability) and lesser computa-
tional requirements. The 64-bit width PLB bus sustains most data communication loads
and the DCR bus is utilized for control and parameter-tracing purposes.

The salient feature in the proposed architecture is its scalability. The major blocks,
DWT and Tier-1, are configurable with parameters N and M which represent the num-
bers of DWT and Tier-1 hardware modules respectively. N and M are constrained by
hardware resources. The corresponding peripherals can be also scaled to sustain the
data consuming and delivering. The dedicated hardware accelerators with their scala-
bility will be detailed in Section 3.

2.4 Scheduling Scheme

JPEG2000 fundamental blocks are divided into two parts, DWT part (including inter-
component transform, DC level shifting and DWT) and Tier-1 part (Quantization, Tier-1
and Tier-2). Table 1 lists the comparison of four practical scheduling granularity (S1-
S4): tile, resolution, subband and precinct. Synchronization here is used as between the
two parts. S1 has simple synchronization scheme in contrary with S3 and S4. Further-
more, S3 complicates Tier-2 and S4 conflicts with DWT characteristics. Between the
two preferable candidates, S1 shows advantages in most aspects over S2, such as syn-
chronization, memory size and Tier-2 coding. Throughput of S1 and S2 are the same
for continuous tiles processing. Smaller latency maybe the only merit introduced by S2.
Therefore, S1 is the most appreciated choice which uses tile as the grain size.

The original images, logically divided into tiles, are stored in off-chip memory. Ev-
ery time, one new tile is transferred to the DWT accelerator through the PLB bus. The
decomposed data are stored inside Tile Memory which can contain two tiles and switch
in a “ping-pong” way. Concurrently, the previous tile which has just finished DWT pro-

338 C. Zhang, Y. Long, and F. Kurdahi

Table 1. Comparison of different scheduling granularity

Scheduling Tile Resolution Subband Precinct
Granularity (S1) (S2) (S3) (S4)

Synchronization Simple Moderate Hard Hardest

Memory size 2T+1P1 2T + Almost Almost
1 compressed T no saving no saving

Throughput 1/max{TDWT , TT1}2

Latency TDWT +TT 1 Potential Smaller Smallest
+TPT2

3; or Improvement than S2
2∗TT 1 +TPT2

T2 coding Forward Reverse Complex Reverse

cessing starts the procedure of Tier-1 encoding. Tier-1 can be processed in the order
of the final bitstream. Thus Tier-2 is encoded in a straightforward way without large
amount of buffering.

3 Main Hardware Accelerators

Customized designs for DWT and Tier-1 are primary for our JPEG2000 architecture on
Xilinx platform. The C codes of the two blocks are replaced by their VHDL implemen-
tations at RTL level. We designed all four DWT engines: default lossless and lossy —
LeGal (5, 3) and Daubechies (9, 7); forward and inverse transformations, respectively.
Due to the space concern, only forward Daubechies (9, 7) DWT is discussed in this
paper.

3.1 Scalable DWT Architecture

Lifting Scheme. The basic principle of lifting scheme is to factorize the polyphase ma-
trix of a wavelet filter into a sequence of alternating upper and lower triangular matrices
and a diagonal matrix [5]. Following is one factorization form,

A(z) =
[

He(z) Ho(z)
Ge(z) Go(z)

]
(1)

A(z) =

(
m

∏
i=1

[
1 si(z)
0 1

][
1 0

ti(z) 1

])[
K 0
0 1/K

]
(2)

where si(z) and ti(z) are Laurent polynomials, which are called prediction and up-
dating operations respectively. Lifting scheme has several advantages, such as the re-
duction in the number of multiplications (odd-tap filters only) and additions, “in-place”
computation, symmetric forward and inverse transform, etc. Although problems of bor-
der mirroring, synchronization and programmability caused by lifting scheme have re-
strained some designers back to the classical convolution way [6], lifting scheme is

1 T stands for “Tile”, and P stands for “Precinct”
2 TDWT and TT 1 mean the processing times of DWT and Tier-1 for one tile
3 T1 stands for “Tier-1” and T2, “Tier-2”;TPT 2 is the time for one precinct Tier-2 coding.

A Scalable Embedded JPEG2000 Architecture 339

widespread [7][8]. We find that the main contribution of “in-place” computation is not
to save storage, but to simplify the control. Therefore, lifting scheme is selected in our
design for the sake of computation reduction while the “in-place” feature is replaced
by “switching frame buffers” for an even simpler control. Although frame buffers are
doubled, the whole storage increases less than 1 percent for a 512 by 512 image.

Fixed-Point C Implementation and Precision Analysis. The floating-point C imple-
mentation is translated into fixed-point for the precision analysis. We carried out exper-
iments on the peak signal to noise ratio (PSNR) under different filter coefficient word
length and concluded that the PSNR saturates at 10-bit. For an 8-bit decompressed
image, PSNR is defined as 10log10

2552

MSE , where MSE refers to the mean squared error
between the original image and the reconstructed image. The input signals are shifted
left to decrease the normalization errors. EB, Extra Bits, is introduced as the number of
shifting bits. Extensive simulations proved that 16-bit signal width with EB = 5 satisfy
both the required accuracy and the dynamic range.

“Software Pipelined” Lifting Scheme Kernel (LS Kernel). We proposed a “software
pipeline” method to implement lifting scheme, referred to [9] for details. Illustrated in
Fig. 4 (a), the conventional step by step “zigzag” data flow way is replaced by a single-
step scan. Each shadowed diamond is a lifting scheme element (LS element), containing
2 additions and 1 multiplication. A LS Kernel is composed of four LS elements and 2
extra multiplications, delimited by two neighboring dash lines. In order to eliminate data
dependencies, software pipeline technique is applied, extracting parallelism among LS
kernels thoroughly. Our approach largely improves the data reuse, reducing memory
access count about 5 times for Daubechies (9, 7) transform.

Hierarchical Pipelining. The overall DWT architecture is composed of five blocks:
iDMA, Frame Buffer, LS Kernel, Scheduler and Tile Memory, shown in Fig. 4 (b).
Contrived for image processing, iDMA, or image DMA, is an enhanced DMA en-
gine providing two dimensional addressability. The image is loaded into frame buffer

Iteration
n-2

Input

STEP6

STEP5

STEP4

STEP3

STEP1

STEP2

Iteration
n-1

Iteration
n

Iteration
n+1

(a)

iDMA
Tile

Memory

DWT Scheduler

Lifting
Scheme
Kernel

Double
Frame
Buffers

S
W
I
T
C
H

S
W
I
T
C
H

Frame Buffer
Controller

Lifting
Scheme
Kernel

Double
Frame
Buffers

S
W
I
T
C
H

S
W
I
T
C
H

Frame Buffer
Controller

Lifting
Scheme
Kernel

Double
Frame
Buffers

S
W
I
T
C
H

S
W
I
T
C
H

Frame Buffer
Controller

(b)

Fig. 4. (a)“Software pipelining” illustration for lifting-based Daubechies (9, 7) Filtering; (b) Pro-
posed DWT block diagram

340 C. Zhang, Y. Long, and F. Kurdahi

through iDMA and processed line by line. Above the pipelined LS Kernel (computation
pipeline), Tile Memory, Frame Buffer and LS Kernel form a higher level of pipeline —
task pipeline. Computation pipeline and task pipeline are well balanced. The overall
performance is limited by both of them.

Scalability. Due to the symmetry and independence of line processing during one di-
mensional DWT decomposition at one level, the DWT architecture can be easily scaled
up, referred to Fig. 4 (b). For the LS Kernel, duplication can multiple the throughput
directly and almost linearly. For the peripherals, throughput can be flexibly controlled
by adjusting the data bus width. Such configurability only introduces a little more com-
plexity to the Scheduler.

3.2 Scalable Tier-1 Architecture

Overview. Various architectures of Tier-1 encoder have been proposed. Many of them
[4][10] adopt the default mode (or called sequential mode when juxtaposed with paral-
lel mode) of JPEG2000, processing on the code blocks bit-plane by bit-plane. Although
default mode has the advantage on the compression rate, it is weak on error resilience
and lacks intra-code-block parallelism. To overcome those drawbacks, we use a combi-
nation of parallel mode and stripe-causal mode [1] for the purpose of hardware acceler-
ation. As shown in Fig. 5, Tier-1 coder reads the DWT coefficients from Tile Memory
and writes the Tier-1 coding result to internal buffer, ready to be fetched by Tier-2 coder.
The Tier-1 coder is proposed with full scalability (we use 5 BPCs, each including an
MQ-coder, for better illustration). Data Collector is used to collect and organize the
output of BPCs for Tier-2 coder. The details of the architecture is referred to [11].

Data Dispatcher. Data Dispatcher is the most control intensive part in the whole de-
sign. It is used to load none-all-zero bit-planes to the BPCs. It has an interval state
machine working in 3 phases: initialization, programming, and program execution. The
state machine is reset at the beginning of each precinct. In the initialization phase coun-
ters are initialized and starting/ending addresses of a precinct, which are pre-stored by
PowerPC, and then loaded. In the programming phase, the state machine checks the
code blocks in the order that will be used in Tier-2 coding within a precinct, and assigns
the bit-planes in those code blocks to the 5 BPCs. During each program execution, all
5 BPCs are loaded with a column of data. A program takes 2-5 cycles to execute in
different situations.

Data
dispatcher

FIFO

(Internal) State flag buffer

CF MQ-coder

FIFO

Data
collector

CF MQ-coder

CF MQ-coder

CF MQ-coder

CF MQ-coder

Internal buffer

Tile Memory
Entropy Coding

Fig. 5. Tier-1 coder architecture

A Scalable Embedded JPEG2000 Architecture 341

Entropy Coding. The core Tier-1 coding task performs entropy coding, which in-
cludes Bit-Plane Coding and Binary Arithmetic Coding, by Context Formatter (CF)
and MQ-coder individually, illustrated in Fig. 5. Each BPC acquires the data of one
bit-plane from Data Dispatcher column by column. The difficulty of bit-plane coder
design is that it scans data in 3 passes, where the latter two passes are dependent on the
state bits updated in the earlier passes. Processing data pass by pass requires buffering
and reusing the data pairs and those state flags of the whole bit-plane, which demands
large internal memory space. Fortunately some research work has been conducted on
this problem [10][12]. Our BPC design is inspired by these papers, so that the 3 passes
can be combined into one pass, thereby saving memory cost.

4 FPGA Prototyping and Performance

The architecture has been prototyped on Xilinx Virtex-II XC2VP7-7 FPGA. As men-
tioned before, it can be parameterized with N DWT modules and M Tier-1 coders with
area and performance concerns. The hardware costs are detailed in Table 2. The post-
Place&Route shows that the entire system can operate at 130 MHz. XC2VP7 contains
4,928 slices, 44 multipliers and 44 BRAMs, thus it can roughly support up to 2 DWT
modules with 6 Tier-1 modules.

Table 2. The main prototyping costs (N DWT and M Tier-1 modules)

Building LS Frame iDMA Scheduler Data BPC+ Data Double
blocks Kernel Buffer Dispatcher MQ-Coder Collector buffer

Slice 167×N 165×N 312+0.2×N 342 370 486×M 244 -
Memory and 6 Multi- 8 KB - - - 2.8 KB - 1.2 KB
other costs pliers ×N ×M ×M

0
1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10
BPC number (M)

T
hr

ou
gh

pu
t (

bi
t/c

yc
.) Baboon

Lena

Goldhill

Man

Boat

Ideal

(b)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

64 128 256 512 1024

C
oe

ff
ic

ie
nt

/c
yc

le
e

level=1
level=2
level=3

level=4

level=5

Image size (L)

(a)

Fig. 6. (a) Throughput of DWT accelerator (N=1; test images are square with size L by L; scala-
bility over N is almost linear); (b) Performance scalability of Tier-1 Coder

Fig. 6 (a) demonstrates the experimental evaluation of our DWT architecture in
terms of throughput versus decomposition level and image size. As the decomposi-
tion level increases, the throughput decreases due to more computational budgets. The

342 C. Zhang, Y. Long, and F. Kurdahi

throughput is also affected by image size because of the varying relative cost between
overhead and computation. For a given circumstance, we can easily determine the num-
ber of DWT modules N based on this figure. The measured PSNR is in the range of
48.6-56.52 dB.

The throughput scalability of the proposed Tier-1 architecture is conducted in the
sense of BPC numbers M, shown in Fig. 6 (b). The curves go off the ideal course
because the Data Dispatcher (section 3.2) is not able to feed that many BPCs. However,
such scalability is good enough since 6 BPCs or less satisfy most real-time coding
applications. Furthermore, the linearity can be extended by extracting inter-code-block
parallelism and Data Dispatcher duplication.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Compression Ratio

N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t
(p

ix
el

/c
yc

le
)

N=2, M=6
N=3, M=5
N=4, M=5
N=5, M=3
N=9, M=1

2 5 10 25 50 100

N DWT modules and M Tier−1 modules;
N and M are constrained by XC2VP7−7 hardware resources;
Throughput is bottlenecked by either DWT or Tier−1 accelerators;
Pixel/cycle is as coefficent/cycle in grey image;
Note that the curves are sensitive to the rate control algorithm.

Fig. 7. Throughput exploration by N and M tradeoff (grey image, level = 5, L = 64)

One of the particular characteristics of FPGA is the in-field reconfigurability. While
the number of DWT and Tier-1 modules, (N, M), is constrained by hardware resources,
the field-programmability of FPGAs allows us to trade off N versus M within the hard-
ware constraint. Fig. 7 illustrates the throughput exploration of the overall JPEG 2000
encoder by adjusting different (N, M) pair under various compression ratios. Note that
the curves are also sensitive to the rate control algorithm and the image itself. In this
example, the selection of (N, M) versus the compression ratio CR for optimal through-
put are: (2, 6) when CR ≤ 10; (3, 5), rather than (4, 5) for more efficient power and
area despite the same throughput, when 25 ≤CR ≤ 50; and (4, 5) when CR is around
100. In case the throughput constraint is also known, the (N, M) pair which satisfies the
real-time processing demand and costs least hardware resource is the optimal tradeoff.
For instance, when the throughput constraint is 0.3 pixel/cycle and CR ≥ 25 in Fig. 7,
(N, M) = (5, 3) is the best choice due to its area efficiency.

A comparison of JPEG 2000 encoders on similar FPGA platforms is given in Table
3. It clearly shows the superiority of our proposal with respect to commercially avail-
able IP solutions [2][3]. Actually, the routing costs over half of the critical path delay
in our implementation, and the un-optimized FPGA logic also constrains the poten-
tial throughput. Generally speaking, the custom IC fabrication can further improve the
throughput about two times.

A Scalable Embedded JPEG2000 Architecture 343

Table 3. Comparison of JPEG 2000 encoders

Architecture Family Device Slices CLK (MHz) P(Msample/s) Image size

Amphion CS6510X2[3] Virtex-II - 14,034 40.4 16 1024×1024
CAST JPEG2K E[2] Virtex-II Pro 2VP30-7 12,885 107 34.7 256×256
Our implementation1 Virtex-II Pro 2VP7-7 4,671 130 60.1 1024×1024

1 N = 1, M = 5; 512 by 512 image; 5 level decomposition; 2VP7-7 has the same speed grad of 2VP30-7;

5 Conclusion

A system level JPEG2000 Part I encoder architecture has been proposed in this pa-
per. It is prototyped on Xilinx technology, showing high performance compared with
other designs on similar platforms. The hardware accelerators are carefully designed
for scalability concern with adaptive performance.

References

1. JPEG2000 image coding system, ISO/IEC International Standard 15444-1. ITU Recom-
mendation T.800 (2000)

2. JPEG2000 Encoder Core. Cast Inc. (2002)
3. CS6510 JPEG2000 Encoder. Amphion (http://www.amphion.com/cs6510.html)
4. Andra, K., Chakrabarti, C., Acharya, T.: A high-performance JPEG2000 architecture. IEEE

CSVT 13 (2003) 209–218
5. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting schemes. Journal of

Fourier Anal. Appl. 41 (1998) 247–269
6. Ravasi, M., Tenze, L., Mattavelli, M.: A scalable and programmable architecture for 2-D

DWT decoding. IEEE Trans. on Video Tech. 12 (2002) 671–677
7. Andra, K., et al.: A VLSI architecture for lifting-based forward and inverse wavelet trans-

form. IEEE Transactions on Signal Processing 50 (2002) 966–977
8. Chen, C.Y., et al.: A programmable parallel VLSI architecture for 2-D discrete wavelet

transform. Journal of VLSI Signal Processing 28 (2001) 151–163
9. Zhang, C., et al.: ’software-pipelined’ 2-D discrete wavelet transform with VLSI hierarchical

implementation. In: Proc. of RISSP ’03. (2003) 148–153
10. Chen, K., Lian, C., Chen, H., Chen, L.: Analysis and architecture design of ebcot for jpeg-

2000. In: IEEE ISCAS. (2001) 765–768
11. Long, Y., Zhang, C., Kurdahi, F.: A high-performance parallel mode EBCOT architecture

design for JPEG2000. In: Proc. IEEE SOCC. (2004) 213–216
12. Chiang, J., Lin, Y., Hsieh, C.: Efficient pass-parallel architecture for EBCOT in JPEG2000.

In: IEEE ISCAS. (2002) 773–776

A Routing Paradigm with Novel Resources Estimation
and Routability Models for X-Architecture Based

Physical Design�

Yu Hu1, Tong Jing1, Xianlong Hong1, Xiaodong Hu2, and Guiying Yan2

1 Computer Science and Technology Department, Tsinghua University,
Beijing 100084, P.R.China

jingtong@tsinghua.edu.cn
2 Institute of Applied Mathematics, Chinese Academy of Sciences,

Beijing 100080, P.R.China

Abstract. The increment of transistors inside one chip has been following
Moore’s Law. To cope with dense chip design for VLSI systems, a new routing
paradigm, called X-Architecture, is introduced. In this paper, we present novel
resources estimation and routability models for standard cell global routing in
X-Architecture. By using these models, we route the chip with a compensation-
based convergent approach, called COCO, in which a random sub-tree growing
(RSG) heuristic is used to construct and refine routing trees within several it-
erations. The router has been implemented and tested on MCNC and ISPD’98
benchmarks and some industrial circuits. The experimental results are compared
with two typical existing routers (labyrinth and SSTT). It indicates that our router
can reduce the total wire length and overflow more than 10% and 80% on average,
respectively.

1 Introduction

As very large scale integrated circuit (VLSI) advances, circuits are getting larger and
more complex. Many studies have been focused on high performance integrated circuit
(IC) design. However, while designs are implemented based on traditional Manhattan
routing architecture, i.e., all interconnects route either horizontally or vertically, the
optimization capability is limited due to less routing flexibility. Then, a new routing
paradigm allowing interconnects to explore 0◦, 45◦, 90◦, and 135◦ directions, called
X-Architecture, is proposed, which tries to overcome the intrinsic limitation of tradi-
tional routing architecture. TX79, a Toshiba micro-processor core, has been replaced
and rerouted with the X-Architecture and the liquid routing[1], resulting in an average
over 20% wire length reduction and a 20% performance improvement [2].

To cope with the increasing complexity, designers often explore a global router fol-
lowed by a detailed one. Global routing plays an important role in VLSI physical de-

� This work was supported in part by the NSFC under Grant No.60373012, the SRFDP of China
under Grant No.20020003008, and the Hi-Tech Research and Development (863) Program of
China under Grant No.2004AA1Z1050.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 344–353, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Routing Paradigm with NRE and Routability Models 345

sign. Wong [3] proved that it is a NP-hard problem to get the optimal routing solution.
Useful algorithms have been proposed focusing on routability [4, 5, 6, 7], timing issue
[8, 9, 10], coupling noise[11, 12], and routing tree construction [4, 13, 14, 15, 16, 17].

Ryan Kastner [5] developed a global router based on maze routing, called labyrinth.
Jing et al. [7] presented a congestion reduction global routing algorithm based on search
space traversing technology (SSTT), by which large circuits1 can be routed in a short
running time, while keeping good performance.

Some researches have been done on non-Manhattan routing. Chen et al. [18, 19]
reviewed routing architectures. Non-Manhattan routing is now championed by the X
Initiative [20]. However, there is no much literature focusing on X-Architecture based
routing approaches. Koh et al. [21] proposed a method and implemented a global router
to address modern interconnect problems in Manhattan and non-Manhattan architec-
tures. Agnihotri et al. [22] introduced a layer balance approach for congestion reduction
in both Manhattan and non-Manhattan architectures. [23] presented a grid-less routing
algorithm to reduce both the total wire length and the number of vias.

Motivated by the recent process of X-Architecture, this paper studies X-Architecture
based routing to handle large scale circuits efficiently. The goal of our work is to em-
ploy X-Architecture in the global router, by which we can achieve highly routing per-
formance that can hardly be obtained in Manhattan routing. In this paper, we route in
X-Architecture with a compensation-based convergent (COCO) approach, in which we
use a random sub-tree growing (RSG) heuristic to construct and refine routing trees
within several iterations. Using our global router, the design flow mentioned in [1] can
be accomplished by performing a liquid routing under the guidance of our global router.
Our router is tested on MCNC and ISPD’98 benchmarks and some large industrial cir-
cuits, which shows that our router makes substantial improvements on both wire length
and routability in the reasonable running time while compared with labyrinth [5, 24]
and SSTT [7].

The remainder of this paper is organized as follows: in Section 2, resources esti-
mation and routability models in X-Architecture are proposed. Section 3 describes the
COCO method for routability analysis. Experimental results, showing routing tree wire
length and congestion reduction with MCNC and ISPD’98 benchmarks and industry
circuits, are given in Section 4. We conclude this paper in Section 5.

2 Resources Estimation and Routability Models

2.1 Routing Paradigm

[2] mentioned that, a preferred-direction2 implementation of the X-Architecture is likely
to increase the number of vias and can be worse for delay despite the reduction in wire
length. To solve this problem, people adopt the gridless octilinear routing technology,
called liquid routing, to finish the detailed routing. In our global router, we allow that
a routing can use all possible directions in global routing graph (GRG). To guide the

1 The largest case used has more than 70K nets.
2 The direction of routing in a particular layer is decided in advance.

346 Y. Hu et al.

A
B

C

D E

G

A B

C

D E

F G

(a) (b)

F

net1
net2

net4

net3

Fig. 1. An example for the global-detailed routing flow

liquid routing, a layer assignment (LA) process should be employed to assign the inter-
sectant segments into different layers. Then the gridless liquid routing can be performed
after LA [23].

To explain how to add our global routing results into the design flow in [1], Fig.1
shows an example for routing 4 nets, in which net1 connects pin C and pin B, net2
connects pin C and pin A, net3 connects pin D and pin G, net4 connects pin E and pin
F. Fig.1 (a) shows the routing area partition, GRG, and global routing result for these
nets and the pins’ locations in the chip, in which the green rectangles denote pins. Fig.1
(b) shows the detailed routing result, in which the purple wires are in one layer and the
blue ones are in the other layer.

We obtain the global routing results in Fig.1 (a) by using the router presented in
this paper. Since net3 and net4 have intersectant segment, DG and EF, they should be
assigned to different layers. Then all nets can be connected to their pins following the
global routing results with some local adjustments.

2.2 GRG Generation

As mentioned above, we design our global router to guide a gridless liquid detailed
router. So it’s hard to use the existing GRG generation methods [21, 18] in X-Architecture.

A placement result is needed as an input to our global router. Since the placement
algorithms for X-Architecture seems not so mature [2], we utilize a traditional standard
cell placer to obtain placement results, which can guarantee the same heights of all
rows in standard cell design. We should note that our global router can be performed in
any other given placement results after generating the corresponding GRG based on the
placement architecture.

According to the height of each row, the entire routing region is divided into a set
of rectangular tiles. We prescribe that all non-peripheral tiles (see Fig.2 (a)) should be
squares with the same area, which leads the following methods of routing area partition.
Assuming the die size of the whole chip is w×h, the vertical distance from top of the
chip to the first row is ht , the one from bottom of the chip to the last row is hb, and the
horizontal distance from the left of the chip to the left most cells is wl , the number of
cells rows is nrow. Because all non-peripheral tiles should be squares with the same area,
the horizontal width of these tiles is equal to row height, hrow. We can see these from
Fig.2 (a). The partition parameters can be computed as follows. The number of columns
is ncol = �w−wl

hrow
+2�. The width of the right most tiles is wr = w−wl−(ncol−2)×hrow.

A Routing Paradigm with NRE and Routability Models 347

Cells

Peripheral Tiles

Pads

w

h

wl wr
wrow

h r
ow

h b
h t

(a)

(b)

(c)

Non-peripheral Tiles

Pins map

Fig. 2. GRG generation (a) partition of routing region for a standard cell design, (b) the dual graph
of (a), (c) the GRG in X-Architecture

After obtaining a partition of the routing area, we generate a dual graph of the parti-
tion graph. As shown in Fig.2 (b), each pin is mapped to a vertex corresponding to the
tile it is located in. Two adjacent vertices are connected by a horizontal or vertical edge.
Then we add some diagonal edges into the dual graph to connect each two diagonal
adjacent vertices, except for those in the periphery of the graph, to obtain the GRG in
X-Architecture (see Fig.2 (c)). Thus, a net can be specified as a set of vertices in GRG.
Then, the problem of routing a net in GRG can be stated as the Steiner tree problem of
specified vertices in GRG.

2.3 Routing Resources Assignment (RA) Model

To make sure of the legal via locations in traditional routing algorithms, it’s necessary
to align the diagonal routing grids to intersect with the Manhattan routing grids below
them since each layer employs a preferred routing direction. Then, the result is in an
unacceptable waste of wiring resources [2]. In our routing paradigm, routing can ex-
plore all possible directions in a layer. So we can compute routing resources according
to pitches and routing area, then a liquid detailed router can be used to accomplish the
routing process based on our global routing results as we mentioned above. We can use
the following method to assign the routing resources.

A positive number c, called edge capacity, is assigned to each edge in GRG. Edge ca-
pacity indicates the number of available tracks between the corresponding tiles. Firstly,
we compute the number of tracks assigned to each rectilinear edge based on wire
widths, pitches, layers and routing area in traditional way. Then we remain half of the
capacity of each edge, and reassign the other half to diagonal edges. The Fig.3 shows
an example of this strategy.

Fig.3 (a) shows the initial capacity in each edge in rectilinear GRG is 20. We keep
the capacities in peripheral edges (not labelled in the Fig.) constant and transfer part
of capacities in non-peripheral rectilinear edges to diagonal ones. Then, we half reduce
the capacity of each rectilinear edge, which results in capacity 10 in each edge (see

348 Y. Hu et al.

A B C

D E F

G H I

2020

2020

2020

10

5

5

10

5

5

A B

10 10

D E

C

F

A

G

D E

B C

H

F

I

1
5

1
5

1
5

1
5

1
5

1
5 15

15

10 10

10 10

5 5

5 5

G H I

A B C

D E F

G H I

1010

1010

1010

A B C

D E F

G H I

1010

1010

1010

1
5

1
5

1
5

1
5

1
5

15 1
5

1
5

(a) (b) (c) (e)(d)

Fig. 3. Resource assignment process

Fig.3 (b)). After that, we assign the other half of capacities into diagonal edges. We
consider each non-peripheral square in GRG separately. For example, in square (A, B,
E, D), edge (B, E) is shared with square (B, C, F, E), so we half partition the capacity
in edge (B, E) for the two separated squares sharing it (see Fig.3 (c)). We assign the
total capacities in each square into the two diagonals in it evenly (see Fig.3 (d)). For
example, the total capacities in square (A, B, E, D) is 30, so we assign 15 into diagonal
edge (A, E) and (B, D), respectively. The final assignment is shown in Fig.3 (e).

2.4 Routability-Aware Global Routing Model

In this paper, both total wire length and total overflow of all edges are considered in our
objective. Some basic definitions and formulations are given as follows.

The total wire length is: L = ∑Nn
i=1 ∑Ne

k=1 Sik · lk, where Nn is the number of nets, Ne

is the number of edges, Sik is equal to 1 if edge ek is used by the Steiner tree of net
ni, otherwise it’s equal to 0, and lk is the length of edge ek. The usage of edge ek is:
uek = ∑Nn

i=1 Sik, the overflow of edge ek is:

eo fek =
{

uek − cek , if cek < uek ;
0, otherwise,

(1)

where cek is the capacity of edge ek. The total overflow of all edges is: to f = ∑Ne
k=1 eo fek ,

then, the global routing problem can be described as follows. Find Sik to

Minimize COST = L× (to f β + ε). (2)

where β is a constant, and ε is a small real constant.

3 COCO Method for Routability Analysis

3.1 RSG for Octilinear Steiner Tree Construction

We find that the existing tree algorithms [25, 26, 13] can’t be used directly in our graph-
based router because the produced solution could introduce some Steiner points not
defined in the routing graph. So we present a random sub-trees growing heuristic (RSG)
and integrate it into the global router to construct the initial routing tree for each net and
to generate different topologies for each net through the routing process.

A Routing Paradigm with NRE and Routability Models 349

In our RSG, we denote the given GRG as G = (V,E) and the terminal set as N. The
distance between two vertices is defined as the same as in [13]. We use a random sub-
trees growing strategy to obtain a Steiner minimal tree in the graph G. The pseudo-code
of RSG is shown in Algorithm1.

Algorithm 1 Graph-based Octilinear Steiner Minimal Tree
Input: Graph G and terminal set T
Output: An octilinear steiner minimal tree in G
1: for each terminal p ∈N do
2: tn ← new subtree based on p
3: tn.GP← p
4: end for
5: while the number of subtrees > 1 do
6: t ← select a subtree randomly
7: t grows from t.GP to vertex v based on Eq. (3)
8: if the vertex v ∈ subtree t ′ then
9: tnew ← merging t and t ′

10: Compute the location of tnew.GP
11: end if
12: end while
13: Prune all non-terminal leaves in the last subtree (tree)
14: return tree

Given a subtree t, whose GP is p, the vertex v it’ll grow to is defined as follows:

v = min
k

ηt
p,k, (3)

where k is the neighbor vertex with p, and k is not covered by subtree t. The ηt
p,k is

defined as follows:
ηt

p,k = len(p,k)+ γ ·ψt
k, (4)

where len(p,k) is the length of edge (p,k) in graph G, γ is a constant, and ψt
k is the

shortest distance (in X-Architecture) from vertex p to all the vertices covered by other
subtrees, which makes the current subtree t grows towards others as quickly as possible.

We noted that a sub-tree will be selected randomly in each iteration. Hence the
solution produced by our RSG could vary in different runs. Tested by running randomly
generated cases for tens of times, RSG can produce various topologies while keeping
the stable and high performance in wire length. This characteristic of RSG will be
useful in our global router. Fig.4 shows different topologies for IBM02-net 106 (22
pins), generated by RSG in three runs.

3.2 COCO Method

In this section, we describe our compensation-based convergent (COCO) method for
routability analysis, which tries to achieve a global minimal solution instead of getting
trapped in local minima by finding a near optimal trade-off between total wire length
and total overflow. We use RSG to construct initial trees for all nets. Then several iter-
ations are needed to refine the solution guided by the objective in Eq.(2).

350 Y. Hu et al.

In each iteration, we compute the overflow of each edge in the global routing graph
by Eq. (1) and get a set of congested nets, called Ncong. Then we randomly select a sub
set of Ncong, named Nran, according to a probability pθ. The routing resources used by
nets in Nran are given back to the edges. The nets in Nran will be rerouted simultane-
ously. Obviously, there is no net ordering problem among nets in Nran.

To construct a routing tree for each net in Nran, we use the variation of our RSG
algorithm. A weight we is given in an edge e in the global routing graph, and Eq. (4) is
rewritten as follows:

ηt
p,k = log(len(p,k)+ γ ·ψt

p)+μ · logwe, (5)

where μ is a constant, and we could be w1e, w2e or w3e, which will be defined later.
To avoid trapping into a local minimization, we change rules for weighting an edge

in different iterations. We design three kinds of rules, which have different capabilities
to reduce total overflow and total wire length. The definition of these rules is shown as
follows:

w1e = 1, w2e = {∞, if cek ≤ uek

1, otherwise
, w3e = {20×uek/cek , if cek ≤ uek

(uek + ε)/cek , otherwise.
(6)

where ε is a small real number that validates the equation while uek is 0.
If the w1 is used in a certain iteration, nets in Nran will be rerouted based on wire

length minimization. In the iterations that w2 or w3 is used, the wire length of a net could
be increased for detouring the congested edges. Under w1 rule, a net will be rerouted
as a Steiner minimal tree. By doing so, the total wire length can be reduced, and the
used routing resources can be expected to reduced too, because less GRG edges are
used by a net with a shorter length. For those nets without detours, as mentioned in
Section3.1, the topologies could be expected to change after rerouting, which indicates
the possibility of climbing up from a local minimization.

If the w2 is used, a routing tree will try to avoiding the congested edges, because of
their ∞ weights. In the RSG algorithm, an subtree will avoid choosing an edge if the it’s
congested, otherwise, it’ll choose the shortest path to grow to. So this rule is a tradeoff
between congestion and wire length.

If the w3 is used, a routing tree will grew mainly based on the congestion map.
As shown in Eq. (6), the congested edges are multiplied by 20, which makes weights
increase sharply in these edges. The wire length information should also be added to
consideration because the routing tree with too many detours will lead to the more
serious congestion problem.

Fig. 4. Different topologies for IBM02-net106 generated by RSG in three runs

A Routing Paradigm with NRE and Routability Models 351

The w3 weight could reduce congestion efficiently while expending longer wire
length. On the other hand, the w1 weight could compensate the wire length increase
caused by weight w3, while producing more congested edges. And the w2 rule can be
seemed as a tradeoff between w1 and w3, but it has a limitation of reducing congestion
and always leads to a local minimization. In the experiments, we found that we can
always get a near optimal solution by employing these three rules as a appropriate
sequence.

We run several iterations using w2 after obtaining the initial routing, until the so-
lution (using the Eq. (2) to evaluate our solution) can not be improved any more, then
the weight rule alternates between w1 and w3 in the following iterations, until no im-
provement can be produced. In each iteration, the upper bound of total overflow is given
based on the previous congestion map. The decrease of overflows leads to the decrease
of congested nets and the number of elements in set Nran, which guarantee the conver-
gence of the algorithm.

4 Experimental Results

We implemented our X-Architecture based global router in C Language on a Sun-fire
v880 workstation. We tested our router and compare to SSTT3[7] and Labyrithn [11, 24]
(the benchmarks are also from the respective literature).

Table 1. Wire length of final routing
(COCO vs. SSTT)

Circuit
COCO
(m)

SSTT
(m)

Imp.
(%)

C2 5.05e+05 5.45e+05 7.34
C5 1.09e+06 1.26e+06 13.5
C7 1.53e+06 1.83e+06 16.4
sl3207 9.52e+06 9.74e+06 2.26
avq 9.18e+06 1.08e+07 15.0
u100 3.69e+07 4.12e+07 10.4
ut 9.12e+07 1.15e+08 20.7
ucnt500 2.83e+08 3.02e+08 6.29
u05 1.02e+11 1.19e+11 14.3
u11 1.72e+10 1.97e+10 12.7
Average 1.20e+10 1.39e+10 13.7

Table 2. Total overflow and running time
(COCO vs. SSTT)

COCO SSTT Circuit
ovf cpu ovf cpu

Imp
(%)

C2 9 0 18 0 50.0
C5 2 5 50 0 96.0
C7 12 9 46 5 73.9
sl3207 1 57 23 7 95.7
avq 1 143 2 9 50.0
u100 7 0 53 1 86.8
ut 1 0 2 1 50.0
ucnt500 2 5 13 3 84.6
u05 6 739 43 574 86.1
u11 5 1890 15 1942 66.7
Average 5 285 26.5 254 82.6

Comparisons for group 1 on total wire length of final routing are shown in Tab.1.
Column Imp. shows the wire length reduction percentage of our router (denoted by
COCO) beyond SSTT.

We can see that, our router optimizes the wire length beyond SSTT in all test cases,
and gets an average 13.7% reduction of total wire length of final routing. This result

3 Since both SSTT and our router have strong capabilities of congestion reduction, we reduce
the capacity of each edge in the same proportion until our router fails to achieve a completed
routing. Then SSTT is tested with these shrunken circuits.

Table 1. Table 2.

352 Y. Hu et al.

Table 3. Wire length of final routing
(COCO vs. labyrinth)

Circuits COCO Labyrinth
Imp.
(%)

ibm01 69575 76517 9.07
ibm02 188691 204734 7.84
ibm03 158837 185194 14.2
ibm04 187443 196920 4.81
ibm05 42417 689671 38.5
ibm06 314082 346137 9.26
ibm07 391289 449213 12. 9
ibm08 440612 469666 6.19
ibm09 467727 481176 2.80
ibm10 685521 679606 -0.87
Average 294619 377883 10.2

Table 4. total overflow and running time
(COCO vs. Labyrinth)

COCO Labyrinth Circuits
ovf cpu ovf cpu

Imp.
(%)

ibm01 60 10 398 72 84.9
ibm02 0 30 492 123 100
ibm03 0 26 209 148 100
ibm04 385 42 882 278 56.4
ibm05 0 57 251 233 100
ibm06 0 53 834 171 100
ibm07 0 66 697 381 100
ibm08 1 73 665 364 99.9
ibm09 1 82 505 553 99.9
ibm10 661 115 588 692 -12.4
Average 110 55 552 302 82.9

is a little conservative because the shrink of the chip increases the detours in the final
routing.

Comparisons for group 2 on total wire length of final routing are shown in Tab.3. We
can see that our router optimizes the wire length beyond labyrinth in most test cases,
and gets an average 10.2% reduction of total wire length.

Tab.2/Tab.4 shows the comparison between our router and SSTT/labyrinth on total
overflow (denoted by ov f) and running time. Column Imp. shows the reduction per-
centage of total overflow of our router beyond SSTT/labyrinth. We can find that our
router optimizes both the total overflow beyond SSTT/labyrinth in almost all test cases,
and gets an average 82% reduction of total overflow.

5 Conclusions

This paper presents a novel routing resource estimation and routability analysis models.
Based on these models, we design and implement an X-Architecture based global router
for standard cell design. Tested on two groups of circuits, our router achieved an average
over 10% reduction of wire length and over 80% reduction of total overflow, when
compared with a typical Manhattan global router SSTT. Since the RSG is based on
graph, our router could be easily transplanted to other architectures.

As future work, we will consider timing and coupling issues in our router.

References

1. Mitsuhashi, T., Someha, K.: Performance-oriented layout design, pervasive use of diagonal
interconnects reduces wire-length. Design Wave Magazine (2001) 59–64

2. Teig, S.: The x architecture: Not your father’s diagonal wiring. In: Proc. of SLIP. (2002)
33–37

3. Sarrafzadeh, M., Wong, C.K.: An Introduction to VLSI Physical Design. McGraw Hill,
USA (1996)

Table 3. Table 4. T

A Routing Paradigm with NRE and Routability Models 353

4. Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in recti-
linear steiner trees. IEEE trans. on CAD 22 (2003) 605–615

5. Kastner, R., Bozorgzadeh, E., Sarrafzadeh, M.: Predictable routing. In: Proc. of ICCAD.
(2000) 110–114

6. Hadsell, R.T., Madden, P.H.: Improved global routing through congestion estimation. In:
Proc. of the DAC. (2003)

7. Jing, T., Hong, X., Bao, H., Xu, J., Gu, J.: Sstt: Efficient local search for gsi global routing.
J. of Compute Science and Technology 18 (2003) 632–639

8. Jing, T., Hong, X., Xu, J., Bao, H., Cheng, C.K., Gu, J.: Utaco: A unified timing and con-
gestion optimization algorithm for standard cell global routing. IEEE Trans. on CAD (2004)
358–365

9. Lin, S.P., Chang, Y.W.: A novel framework for multilevel routing considering routability and
performance. In: Proc. of ICCAD. (2002) 44–50

10. Hong, X.L., Jing, T., Xu, J.Y., Bao, H.Y., Gu, J.: Cnb: A critical-network-based timing
optimization method for standard cell global routing. J. of Computer Science and Technology
(2003) 732–738

11. Kastner, R., Bozorgzadeh, E., Sarrafzadeh, M.: An exact algorithm for coupling-free routing.
In: Proc. of ISPD. (2001) 10–15

12. Xu, J., Hong, X., Jing, T., Cai, Y., Gu, J.: A novel timing-driven global routing algorithm
considering coupling effects for high performance circuit design. IEICE Trans. on Funda-
mentals of ECCS (2003) 3158–3167

13. Zhu, Q., Zhou, H., Jing, T., Hong, X.L., Yang, Y.: Spanning graph based non-rectilinear
steiner tree algorithms. IEEE Trans. on CAD (2005)

14. Wang, Y., Hong, X., Jing, T., Yang, Y., Hu, X., Yan, G.: Spanning graph based non-rectilinear
steiner tree algorithms. LNCS3256 (2004) 442–452

15. Alpert, C.J., Hrkic, M., Hu, J., Kahng, A.B.: Buffered steiner tree for difficult instances. In:
Proc. of ISPD. (2001) 4–9

16. Xu, J., Hong, X., Jing, T., Cai, Y., Gu, J.: An efficient hierarchical timing-driven steiner tree
algorithm for global routing. INTEGRATION, the VLSI J. (2003) 69–84

17. Hrkic, M., Lillis, J.: S-tree: A technique for buffered routing tree synthesis. In: Proc. of
DAC. (2002) 578–583

18. Chen, H., Yao, B., Zhou, F., Cheng, C.K.: Physical planning of on-chip interconnect archi-
tecture. In: Proc. of ICCD. (2002) 30–35

19. Chen, H., Zhou, F., Cheng, C.K.: The y-architecture: yet another on-chip interconnect solu-
tion. In: Proc. of ASP-DAC. (2003) 840–846

20. Organization, T.X.I.: http://www.xinitiative.org (2005)
21. Koh, C.K., Madden, P.H.: Manhattan or non-manhattan? a study of alternative vlsi routing

architectures. In: Proc. of the GLSVLSI. (2000) 47–52
22. Agnihotri, A.R., Madden, P.H.: Congestion reduction in traditional and new routing archi-

tectures. In: Proc. of GLSVLSI. (2003) 28–29
23. Paluszewski, M., Winter, P., Zachariasen, M.: A new paradigm for general architecture rout-

ing. In: Proc. of GLSVLSI. (2004) 26–28
24. Labyrinth. http://www.ece.ucsb.edu/ kastner/labyrinth/ (2004)
25. Coulston, C.S.: Constructing exact octagonal steiner minimal trees. In: Proc. of GLSVLSI.

(2003) 1–6
26. Kahng, A., Mandoiu, I., Zelikovsky, A.: Highly scalable algorithms for rectilinear and octi-

linear steiner trees. In: Proc. of ASPDAC. (2003) 827–833

Benchmarking Mesh and Hierarchical Bus Networks in
System-on-Chip Context

Erno Salminen1, Tero Kangas1, Jouni Riihimäki2, Vesa Lahtinen3,
Kimmo Kuusilinna3, and Timo D. Hämäläinen1

1 Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
erno.salminen@tut.fi

2 Nokia Technology Platforms, P.O. Box 88, FIN-33721 Tampere, Finland
3 Nokia Research Center, P.O. Box 100, FIN-33721 Tampere, Finland

Abstract. A simulation-based comparison scheme for on-chip communication
networks is presented. Performance of the network depends heavily on the appli-
cation and therefore several test cases are required. In this paper, generic synthe-
sizable 2-dimensional mesh and hierarchical bus, which is an extended version
of a single bus, are benchmarked in a SoC context with five parameterizable test
cases. The results show that the hierarchical bus offers a good performance and
area trade-off. In the presented test cases, a 2-dimensional mesh offers a speedup
of 1.1x - 3.3x over hierarchical bus, but the area overhead is of 2.3x - 3.4x, which
is larger than performance improvement.

1 Introduction

The increasing complexity of digital systems has forced the adoption of modular design
techniques and the re-use of pre-designed and pre-verified components in the design
process of System-on-Chips (SoC). Due to the increasing number of connected com-
ponents, the communication and interconnect wiring are becoming a serious problem
[1][2][3]. Several architecture and circuit-level alternatives have been proposed to solve
this but proposals frequently only deal with the theoretical limitations of the communi-
cation networks. However, the practical limitations and requirements for the networks
are affected by system-level issues and the data transfer distributions of the targeted
applications. This paper presents a study of hierarchical bus and mesh networks and
examines the effect of transfer distributions in benchmarking SoCs. Furthermore, the
area cost of network area is examined. The following Section briefly introduces the re-
lated work done in the field. The utilized networks are presented in Section 3 and the
transfer patterns in Section 4. Section 5 examines the area costs of the implementations
based on synthesis results and describes the execution time comparison. In Section 6,
the conclusions of the work are given.

2 Related Work

The optimal SoC communication network (network-on-chip, NoC) has been subject to
debate over the last few years. Traditionally, the SoC networks are based on circuit-

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 354–363, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Benchmarking Mesh and Hierarchical Bus Networks in System-on-Chip Context 355

switched techniques, such as bus-based networks [4], crossbars [5], and 2-dimensional
meshes [6][7]. Several packet-switched network topologies have also been proposed,
such as fat trees [8], 2-dimensional meshes [9][10], and rings [11]. Networks are often
compared by the theoretical maximum transfer capabilities. This is straightforward but
the results seldom reflect the performance of real applications accurately, i.e. the order
of performance values may be defined but not their ratio. However, building actual
applications is laborious only for comparison purposes and their simulation is time-
consuming. Furthermore, the execution time of an application is often dependent on
input data.

Communication generators provide flexibility and accelerate simulation with the
cost of reduced accuracy. They use transfer patterns, or profiles, that resemble the exter-
nal behavior of real applications. In statistical generators [12][13], the communication
profile is often independent of the profiles of other agents (processing elements) that are
connected to the network. Statistical methods are suitable for analyzing and optimizing
the network when the system architecture and application mapping are fixed. Transfer
dependent methods [14][15][16], in contrast, enable architecture exploration including
component allocation, application mapping, and communication scheduling. Transfer
dependence refers to a situation in which an agent cannot proceed before it has received
certain data from other agent(s).

Table 1. NoC comparisons in literature

Ref. Topologies Test cases Criteria

[6] mesh, (hier.) bus 5 applications ex.time, throughput
[7] mesh, bus 1 random, 1 statistical offered load, blocking
[8] fat-tree, bus total exchange, ex.time, latency,

1 statistical saturation
[10] mesh 3 statistical ex.time, latency, area
[11] ring 1 application ex.time, area
[12] (hier.) bus, ring tens of statistical throughput
[13] mesh 1 statistical ex.time, utilization,

power
[16] mesh, bus, tree 3 transfer dependent ex.time
[17] mesh, bus total exchange ex.time, max freq.
[18] (hier.) mesh, (at last) 3 applications energy

multibus
this work mesh, (hier.) bus 5 transfer dependent ex.time, area

Table 1 lists some comparisons of different networks. All utilize simulation, except
[17] that uses mathematical models. Three reported studies used real applications while
seven used synthetic methods, only one of which included transfer dependence. Total
exchange (also called pooling) means that all agents send and receive data with all other
agents. A single bus is a viable solution for systems with a limited number of agents
and bandwidth requirements because of its simplicity and the numerous legacy imple-
mentations [8][16][12]. Many comparisons examine single buses or multiple parallel

356 E. Salminen et al.

buses but omit the more versatile hierarchical bus structures. All listed comparisons ne-
glect the cost of network in terms of area, except [10][11] which compare only different
versions of single topology and analytical work in [17]. However, area of NoC routers
varies greatly; between 4-700 kilogates [10][9], and therefore area should be included
in comparison. A single test case is not enough to have reliable performance estimates,
but a set of benchmarks is needed. This work utilizes synthetic, transfer-dependent test
cases for fair benchmarking of hierarchical bus and 2-D mesh. Currently there are no
commonly accepted benchmark sets for SoC networks, but the work presented in this
paper could be proposed as part of such set.

3 Hierarchical Bus and Mesh

To allow fair comparison, bus, hierachical bus, and 2-D mesh are compared for this
study by using generic, synthesizable building blocks. All networks utilize the same
agent interface, transfer data in fixed-size packets, and utilize store-and-forward routing.
Data arrives always in-order.

ControlControl

...

a
0

w
0

a
1

w
1

w
I,0

w
I,1

b
I

w
3

w
2

a
2

a
3

w
6

a
6

...

a
0

w
0

a
1

w
1

w
I,0

w
I,1

w
I,0

w
I,1

b
I

w
3

w
2

a
2

a
3

w
6

a
6

(a) Hierarchical bus

South

Control

&

Switching

Agent

East

North

West

...r
0,1

a
0,0

r
0,0

r
1,0

r
2,0

a
1,0

a
2,0

...

...

a
0,1

...r
0,1

...r
0,1

a
0,0

r
0,0

r
1,0

r
2,0

a
1,0

a
2,0

...

...

a
0,1

a
0,0

r
0,0

r
1,0

r
2,0

a
1,0

a
2,0

...

...

a
0,1

(b) Mesh

Fig. 1. Network implementations

The utilization of the single bus architecture is usually limited to systems with less
than 10-20 agents due to the limited bandwidth and the problems induced by the re-
quired long signal lines. The traditional bus scheme can be extended to a hierarchical
bus scheme by using bridges (marked with bI,i) to connect several bus segments as
shown in Fig 1(a). Agents (ai) are connected to bus segments via wrappers (wi). In
this case, the number of signal lines and the operating frequency are the same in each
segment. Hierarchical bus architecture used in this paper is built as a chain of bus seg-
ments, although a tree like structure could also be used. The implemented bus wrapper
is a fairly simple device with two FIFO buffers and a control unit for arbitration. Ar-
bitration is based on a distributed round-robin scheme where the ownership is passed

Benchmarking Mesh and Hierarchical Bus Networks in System-on-Chip Context 357

to the next agent after each transmitted packet. Bridge components were implemented
by connecting two wrappers together. The bus signal resolution is implemented with
an OR-based structure. The problems inherent in long bus signal wires are solved by
grouping only a limited number of agents, in this case four, in each bus segment.

Table 2. The number of communication links in networks

Number of agents
Network 4 16 36 64 N

Single bus 1 1 1 1 1
Hier. bus 1 4 9 16 N/4
Mesh 8 48 120 224 4(N−N0.5)

A packet-switched 2-dimensional 4-way mesh used in this study is depicted in
Fig 1(b). The agents are connected to an array where router elements (ri) handle the stor-
ing and forwarding of data. Router comprises of a control unit taking care of switching
and routing, and a FIFO buffer for each direction (North, East, South, West, and two for
agent). Routers implement a simple dimension-order routing scheme where the trans-
fers are first directed to the correct row and then to the requested column. The number
of communication links L of networks are listed in Table 2. A single bus has only one
communication link, whereas in a hierarchical bus there are as many links as there are
bus segments. In mesh, there are 4 unidirectional links in each router except on those
residing on edges.

4 Test Cases

The presented communication networks are compared using synthetic benchmarks that
are generated to represent characteristic application properties, such as sequential/parallel
behavior, communication/computation intensiveness, and spatial traffic distribution. The
test cases are executed in a simulation environment called Transaction Generator (TG)
[15] that is independent of the network and runs application descriptions based on the
Kahn process network model [19]. Each process can be either waiting for data, reading
data, processing, writing data, or finished. TG notably accelerates the simulation com-
pared to HW/SW co-simulation with multiple instruction set simulators. At the same
time, the timing error is less than 15% w.r.t. real application.

Fig 2 shows the process network graphs of the benchmarks for 8 agents. The white
nodes depict computation processes that can have any arbitrary processing times of P
clock cycles. The edges represent data transmissions with length of D words. Compu-
tation at a node cannot start until at least one of the arriving transfers has completed
(transfer dependence). The start processes, marked with black nodes, have P = 1 and
D = 1 and are executed only once to trigger computation processes. By changing P
and D, the application model in TG can be made more computation or communication
intensive. Both P and D can be varied randomly within a user-defined range. All these
benchmarks are scaled with N so that there is one computation process and variable

358 E. Salminen et al.

number of start processes per agent. The dashed lines describe a mapping of the pro-
cess graph onto eight agents. For simplicity, a 1-to-1 mapping was utilized. However,
process graphs are totally independent of the hardware architecture so other mappings
can be easily explored.

start process
computation process

mapping to agent

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Fig. 2. Test cases used in comparison

The first benchmark, case 1, (Fig 2(a)) resembles a sequential data flow application
having only one start process. Case 2 (Fig 2(b)) is partly sequential and partly parallel
in nature having N/2 start processes. Case 3 (Fig 2(c)) presents an application where
the transfers are sequential as in case 1 but in hierarchical clusters of four processes
so communication is very localized. Case 4 (Fig 2(d)) has processes in a group of four
transmitting data in parallel to each other. The difference to case 3 is that there are
four simultaneous data transfers in each group of four agents. Cases 2 and 4 can also be
thought as pipelined versions of cases 1 and 3, respectively. In addition, case 5 combines
the cases 1-4 into one simulation to represent heterogeneous behavior. In case 5, cases
1-4 are run together so that each agent executes one computation process from each
case. The mutual order of cases is not specified. For example, all cases have start and
computation processes grouped together in the top left corner (cf. Fig 2(a)-2(d)) and
they all are mapped to first agent in case 5.

The total execution time of an application is a sum of computation time and com-
munication time. It can be estimated in a heuristic fashion for these graphs as

ttot = ∑Pi

min(N,S)
+ ∑(Di ∗ k)

min(N,L,S)
, [clock cycles] (1)

where

k =
payload +header +arbitration

payload
(2)

is an implementation specific factor that is explained later. The divider in (1) defines the
achievable parallelism. The parallelism of an application is defined here as maximum
number of parallel transfers and active computation processes and it equals the number
of start processes (S) in these cases. If there are less agents (N) or communication
links (L) than start processes (S), the maximum parallelism of the application cannot
be achieved. The maximum number of initiated transfers per clock cycle cannot exceed
the number of agents in any network. For example, case 1 is a sequential application
having only one start process and utilizes only one processor or communication link at

Benchmarking Mesh and Hierarchical Bus Networks in System-on-Chip Context 359

a time. Adding more communication links should not speed up the application at all.
The number of start processes is shown in Table 3.

Table 3. The number of start processes in test cases

Number of agents
Test case 4 16 36 64 N

1 1 1 1 1 1
2 2 8 18 32 N/2
3 1 4 9 16 N/4
4 4 16 36 64 N
5 8 29 64 113 7N/4+1

The factor k, caused by arbitration and the overhead from packet headers, is calcu-
lated with (2). It is defined as the number of clock cycles needed to transfer one packet
divided by the amount of transferred payload data. Ideally k would be one. Packet and
header sizes are expressed as multiples of the word size, because one word can be trans-
ferred in one clock cycle. Using distributed arbitration, each agent in a bus segment has
to wait a whole round-robin iteration between consecutive packets. However, there can
be S agents active in each round which reduces the overall arbitration delay. The rout-
ing algorithm of a mesh checks one input each clock cycle for new transfers, thus, on
average 5/2 clock cycles are needed for routing. The term arbitration is assumed to be
(N−1)/S for bus, 6 for hierachical bus, and 2.5 for mesh. Still, (1) does not take data
dependencies into account and assumes uniform mapping of processes. Estimate for
case 5 is a sum of individual estimates for cases 1-4.

5 Synthesis and Simulation Results

The communication networks were implemented using RTL VHDL and synthesized
using a 0.18 μm CMOS technology. The packet size was set to eight 32-bit words. Since
packets have a three-word header and eight-word payload data, the required buffer size
is (3+8)∗32 bits in all the internal network buffers. The resulting network logic areas in
kilogates are depicted in Table 4. The difference is mainly due to buffers: bus wrappers
have two buffers, bus bridges four, and routers have six buffers.

Table 4. Logic areas in kilogates of network implementations

Number of agents
Network 4 16 36 64

Single bus 30 119 269 479
Hier. bus 30 165 390 705
Mesh 102 409 939 1635

360 E. Salminen et al.

In the following simulations, the processing time P = 16 and the transfer length
D = 1024 words which sets tight requirements for the communication network. This
kind of communication intensive transfer patterns can be found, for example, in packet
processing inside an Internet router. The measured execution times are listed in Table 5.
The poor result of the single bus in case 1 is due to inefficiency of the utilized distributed
round-robin arbitration. The transfer times of the mesh and the hierarchical bus are
quite close to each other due to sequential nature of the application. In test case 2, the
differences between the networks are more apparent. The transfer times of the single
bus grow again very fast. On the other hand, the results for hierarchical bus and mesh are
quite close to each other and follow the results predicted by (1), which means that both
networks are able to systematically exploit the inherent parallelism. The same happens
with test cases 3 and 4. The run-time of case 5 is defined by the slowest individual
application when applications 1-4 are run together. Results of case 5 with 64 agents are
not available due to a limitation in the current simulation environment.

Table 5. The execution times in clock cycles for test cases

N

Test case 1 2 3 4 5 1 2 3 4 5

Single bus 17 034 9 788 17 034 9 217 76 278 68 232 38 971 43 008 36 864 933 504

Hier. bus 17 034 9 788 17 034 9 217 76 278 69 325 13 677 16 527 9 346 222 519

Mesh 14 913 5 858 14 913 3 886 23 040 62 240 7 793 14 913 3 886 99 860

N

Test case 1 2 3 4 5 1 2 3 4 5

Single bus 245 556 87 535 96 768 82 944 4 171 264 663 616 233 456 172 032 147 456 x

Hier. bus 159 865 13 727 16 527 9 346 465 375 286 620 13 782 16 527 9 346 x

Mesh 140 040 7 808 14 913 3 886 238 878 248 950 7 823 14 913 3 886 x

4 agents 16 agents

36 agents 64 agents

The results show that the single bus is clearly not applicable for large systems. Mesh
is the fastest network in all cases but also the biggest. Fig 3(a) shows the Pareto curves
for all test cases with 36 agents. Results are scaled so that both area and execution time
of single bus equal one. Fig 3(b) shows the measured speedup of mesh over hierarchical
bus. Speedup is defined as hierarchical bus execution time divided by mesh execution
time. It also shows the area ratio, which is the area of mesh divided by the area of
hierarchical bus. Mesh is faster than hierarchical bus but often the area overhead is
bigger than the speedup; especially in cases 1 and 3 that do not offer much parallelism.
The choice between the mesh and the hierarchical bus is, therefore, a trade-off between
area cost and performance. For comparison, we define the architectural performance as
the inverse of the costs:

Per f ormance = cost−1 = (ttot
wt ∗A)−1 . (3)

The cost is defined as a product of execution time ttot and area A. The weighting
factor wt can be utilized to make the runtime less (wt < 1) or more important (wt > 1)
than the area. In these cases, smaller weights favor hierarcrhical bus and large ones
favor mesh. Fig 4 shows both estimated and measured performance of all networks so
that the best case is scaled to 1 and execution and area have equal weights (wt = 1).

Benchmarking Mesh and Hierarchical Bus Networks in System-on-Chip Context 361

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 1.00 2.00 3.00 4.00

Relative area

R
e
la

ti
v
e
 e

x
.t

im
e

Case 1

Case 2

Case 3

Case 4

Case 5

bus

hier.

bus
mesh

(a) Pareto curves for 36 agents

1
.1

4
1
.6

7

1
.1

4
2
.3

7

1
.1

1
1
.7

6
1
.1

1

1
.1

4

1
.1

1

1
.1

5

1
.1

1
2
.4

0

3
.3

1

2
.2

3

2
.4

0

2
.4

0
1
.9

5

1
.7

6

1
.7

6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

4 agents 16 agents 36 agents 64 agents

Test case

S
p

e
e
d

u
p

;
a
r
e
a
 r

a
ti

o

Speedup

Area ratio

(b) Speedup and area overhead of
mesh over hierarchical bus

Fig. 3. Relation of execution time and area

Measured

0.00

0.20

0.40

0.60

0.80

1.00

1.20

4
1
6

3
6

6
4 4

1
6

3
6

6
4 4

1
6

3
6

6
4 4

1
6

3
6

6
4 4

1
6

3
6

6
4

case 1 case 2 case 3 case 4 case 5

Number of agents

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e

Single bus Hier. bus Mesh

Estimated

0.00

0.20

0.40

0.60

0.80

1.00

1.20

4
1
6

3
6

6
4 4

1
6

3
6

6
4 4

1
6

3
6

6
4 4

1
6

3
6

6
4 4

1
6

3
6

6
4

case 1 case 2 case 3 case 4 case 5

Number of agents

R
e
a
lt

iv
e
 p

e
r
fo

r
m

a
n

c
e

Single bus Hier. bus Mesh

too low

for hier.

bus
too good

for mesh

Fig. 4. Relative overall performance

Hierarchical bus offers the best trade-off for test cases 1, 2, 3, and 5. Mesh is best suited
for the most parallel test case, that is test case 4 with large number of agents. A single
bus is applicable only in sequential test case 1.

The shapes of the estimated and the measured performance curves match rather
well. This implies that equation (1) predicts the ratio between execution times well in
many cases. However, in some cases, denoted with arrows in Fig 4, the estimates are
clearly inaccurate. Furthermore, the estimated times are much smaller than the mea-
sured results. This is mainly due to the implementation of TG network contention, and
inefficiencies in implemented network protocols that were not included in equations.
Furthermore, other than 1-to-1 mappings having more contention are likely to cause
even bigger error in estimates.

362 E. Salminen et al.

6 Conclusions

This paper presented a general way for fair comparison of networks for large SoCs
using synthesized HW models. Single bus, hierarchical bus, and 2-dimensional mesh
networks were used in this study. Application dependence is a factor that cannot be dis-
regarded in communication-based system design. Therefore, the analysis utilizes Trans-
action Generator that makes it possible to simulate the networks with different traffic
patterns. Results show that theoretical performance derived from the number of links
in the network does not reflect the application execution time linearly. The presented
formal equation provides reasonable estaimtes in some case, but not in general. More-
over, more advanced estimates would require rather complex equations. Therefore, fast,
cycle-accurate simulation is preferred.

Many contemporary analyzes often depict buses as poor fits to large systems because
only the single bus is used as a reference. The presented hierarchical bus scales quite
easily to large systems and provides a good area-performance trade-off while retain-
ing many of the advantageous features of simpler bus arrangements. The hierarchical
bus exhibits good run-time results with relatively small implementation area. The an-
alyzed 2-dimensional mesh network provides the highest performance with the largest
area. The architectural performance, defined as a product of area and execution time, fa-
vors the use of hierarchical bus. There is on-going work for developing more test cases
(both synthetic and profiled real applications), exploring different process mappings,
and including other network topologies. Furthermore, more performance and cost fac-
tors, such as energy and latency variation, will be analyzed. Such metrics are definitely
more complex to analyze formally but can be estimated through simulation.

References

1. Benini, L., de Micheli, G.: Networks on chips: a new SoC paradigm. Computer 35 (2002)
70–78

2. Ho, R., Mai, K.W., Horowitz, M.A.: The future of wires. Proc. IEEE 89 (2001) 490–504
3. Sylvester, D., Keutzer, K.: Impact of small process geometries on microarchitectures in

systems on a chip. Proc. IEEE 89 (2001) 467–489
4. Salminen, E., Lahtinen, V., Kuusilinna, K., Hämäläinen, T.D.: Overview of bus-based

system-on-chip interconnections. In: ISCAS, Scottsdale, Arizona, USA (2002) 372–375
5. Lines, A.: Asynchronous interconnect for synchronous SoC design. Micro 24 (2004) 32–41
6. Liang, J., Laffely, A., Srinivasan, S., Tessier, R.: An architecture and compiler for scalable

on-chip communication. TVLSI 12 (2004) 711–726
7. Wiklund, D., Sathe, S., Liu, D.: Network on chip simulations for benchmarking. In: IWSOC,

Banff, Canada (2004) 269–274
8. Andriahantenaina, A., Charlery, H., Greiner, A., Mortiez, L., Zeferino, C.A.: SPIN: a scal-

able, packet switched, on-chip micro-network. In: DATE, Munich, Germany (2003) 70–73
9. Bartic, T.A., Mignolet, J.Y., Nollet, V., Marescaux, T., Verkest, D., Vernalde, S., Lauwereins,

R.: Highly scalable network on chip for reconfigurable systems. In: Symposium on System-
on-Chip, Tampere, Finland (2003) 79–82

10. Moraes, F., Calazans, N., Mello, A., Möller, L., Ost, L.: HERMES: an infrastructure for low
area overhead packet-switched networks on chip. Integration, the VLSI journal 38 (2004)
69–93

Benchmarking Mesh and Hierarchical Bus Networks in System-on-Chip Context 363

11. Saastamoinen, I., Alho, M., Nurmi, J.: Buffer implementation for Proteo network-on-chip.
In: ISCAS, Bangkok, Thailand (2003) 113–116

12. Lahiri, K., Raghunathan, A., Dey, S.: Evaluation of the traffic-performance characteristics of
system-on-chip communication architectures. In: Conference on VLSI design, Bangalore,
India (2001) 29–35

13. Thid, R., Millberg, M., Jantsch, A.: Evaluating NoC communication backbones with simu-
lation. In: Norchip, Riga, Latvia (2003) 27–30

14. Erbas, C., Polstra, S., Pimentel, A.D.: IDF models for trace transformations: A case study in
computational refinement. In: SAMOS, Samos, Greece (2003) 167–172

15. Kangas, T., Riihimäki, J., Salminen, E., Kuusilinna, K., Hämäläinen, T.D.: Using a com-
munication generator in SoC architecture exploration. In: Symposium on System-on-Chip,
Tampere, Finland (2003) 105–108

16. Kreutz, M.E., Carro, L., Zeferino, C.A., Susin, A.A.: Communication architectures for
system-on-chip. In: SBCCI, Pirenopolis, Brazil (2001) 14–19

17. Zeferino, C.A., Kreutz, M.E., Carro, L., Susin, A.A.: A study on communication issues for
systems-on-chip. In: SBCCI, Porto Alegre, Brazil (2002) 121–126

18. Zhang, H., Wan, M., George, V., Rabaey, J.: Interconnect architecture exploration for low-
energy reconfigurable single-chip DSPs. In: Workshop on VLSI, Orlando, Florida, USA
(1999) 2–8

19. Kahn, G.: The semantics of a simple language for parallel programming. In: IFIP Confer-
ence, Stockholm, Sweden (1974) 471–475

DDM-CMP: Data-Driven Multithreading on a Chip
Multiprocessor

Kyriakos Stavrou, Paraskevas Evripidou, and Pedro Trancoso

Department of Computer Science, University of Cyprus,
75 Kallipoleos Ave., P.O.Box 20537, 1678 Nicosia, Cyprus

{tsik,skevos,pedro}@cs.ucy.ac.cy

Abstract. High-end microprocessors achieve their performance as a result of
adding more features and therefore increasing their complexity. In this paper we
present DDM-CMP, a Chip-Multiprocessor using the Data-Driven Multithread-
ing execution model.

As a proof-of-concept we present a DDM-CMP configuration with the same
hardware budget as a high-end processor. In that budget we implement four sim-
pler CPUs, the TSUs, and the interconnection network. An estimation of DDM-
CMP performance for the execution of SPLASH-2 kernels shows that, for the
same clock frequency, DDM-CMP achieves a speedup of 2.6 to 7.6 compared to
the high-end processor. A lower frequency configuration, which is more power-
efficient, still achieves high speedup (1.1 to 3.3). These encouraging results lead
us to believe that the proposed architecture has a significant benefit over tradi-
tional designs.

1 Introduction

Current state-of-the-art microprocessor designs aim at achieving higher performance
by exploiting more ILP through using complex hardware structures. Nevertheless, such
increase in complexity results in several problems and consequently marginal perfor-
mance increases. Palacharla et al. [1] explain that window wakeup, selection and operand
bypass logic are likely to be the most limiting factors for improving performance in fu-
ture designs. The analysis presented by Olukotun et al. [2] proves that the complexity
a large number of structures increases in a quadratic way with different processor pa-
rameters such as the issue width and the number of pipeline stages. Increasing design
complexity does not only limit the performance improvement but also makes the vali-
dation and testing a difficult task [3].

Agarwal et al. [4] derive that the doubling of microprocessor performance every
18 months has been the result of two factors: more transistors per chip and superlinear
scaling of the processor clock with technology generation. Their results show that, due
to both diminishing improvements in clock rate and poor wire scaling as semiconductor
devices shrink, the achievable performance growth of conventional microarchitectures
will slow down substantially.

An alternative design that achieves parallelism but avoids the complexity is the
Chip Multiprocessor (CMP) [2]. Several research projects have proposed CMP architec-

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 364–373, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

DDM-CMP: Data-Driven Multithreading on a Chip Multiprocessor 365

tures [2, 5, 6, 7]. In addition, commercial products have also been proposed (e.g. IBM’s
Power5 [8] and SUN’s Niagara [9]).

Parallel architectures often suffer from large synchronization and communication
latencies. Data-Driven Multithreading (DDM) [10, 11] is an execution model that aims
at tolerating the latencies by allowing the computation processor to produce useful work
while a long latency event is in progress. In this model, the synchronization part of the
program is separated from the communication part allowing it to hide the synchroniza-
tion and communication delays [10]. While such computation models usually require
the design of dedicated microprocessors, Kyriacou et al. [10] showed that the DDM
benefits may be achieved using commodity microprocessors. The only additional re-
quirement is a small hardware structure, the Thread Synchronization Unit (TSU).

The contribution of this paper is to explore the DDM concept with the new CMP
type of architectures. The proposed architecture, DDM-CMP, is a chip multiprocessor
architecture where the cores are simple embedded processors operating under the DDM
execution model. Along with the cores, the chip also includes the TSUs and an intercon-
nection network. The use of embedded processors is justified by Olukotun et al. [2] who
showed that the simpler the cores of the multiprocessor, the higher their frequency can
be. In addition, embedded processors are smaller and therefore we are able to include
more cores in the same chip. A prototype will be build using Xilinx Virtex II Pro [12]
chip.

Our experiments use kernels from SPLASH-2 benchmark suite and compare the
estimated performance of a DDM-CMP system composed of four simple cores to that
of an equal hardware budget high-end processor. For this analysis we use Pentium III
and Pentium 4 as representatives of simple and high end processors, respectively. The
results show that a DDM-CMP configuration clocked at the same frequency with the
high-end processor achieves a speedup of 2.6 to 7.6. DDM-CMP’s benefits may be
explored for low-power configurations as the results show that even when clocked at a
frequency less than half of the high-end processor’s, it achieves a speedup of 1.1 to 3.3.

The rest of this paper is organized as follows. Section 2 describes DDM execution
model, the proposed DDM-CMP architecture and its prototype implementation. Sec-
tion 3 describes the case study used as the proof of our concept. Finally we present our
conclusions in Section 4.

2 DDM-CMP Architecture

The proposed DDM-CMP architecture is the evolution of the DDM architecture pre-
sented in [10, 11]. In this section, we present the DDM model of execution and describe
the DDM-CMP architecture, its prototype implementation and its target applications.

2.1 DDM Model

Data-Driven Multithreading (DDM) provides effective latency tolerance by allowing
the computation processor produce useful work, while a long latency event is in progress.
This model of execution has been evolved from the dataflow model of computation.
In particular, it originates from the dynamic dataflow Decoupled Data Driven (D3)

366 K. Stavrou, P. Evripidou, and P. Trancoso

graphs [13, 14], where the synchronization part of a program is separated from the
computation part. The computation part represents the actual instructions of the pro-
gram executed by the computation processor whereas the synchronization part contains
information about data dependencies among threads and is used for thread scheduling.

A program in DDM is a collection of re-entrant code blocks. A code block is equiv-
alent to a function or a loop body in the high-level program text. Each code block
comprises of several threads. A thread is a sequence of instructions equivalent to a
basic block. A producer-consumer relationship exists among threads. In a typical pro-
gram, a set of threads called the producers create data used by other threads called the
consumers. Scheduling of code blocks, as well as scheduling of threads within a code
block, is done dynamically at run time according to data availability. While the instruc-
tions within a thread are fetched by the CPU sequentially in control-flow order, the CPU
may apply any optimization to increase ILP (e.g. out-of-order execution).

As we are still in the process of developing a DDM-CMP compiler, the procedure
of partitioning the program into a data-driven synchronization graph and code threads
(as presented in [15]) is currently done by hand.

Fig. 1. Thread Scheduling Unit (TSU) internal structure

TSU - Hardware Support for DDM. The purpose of the Thread Synchronization Unit
(TSU) is to provide hardware support for data-driven thread synchronization on con-
ventional microprocessors. The TSU is made out of three units: The Thread Issue Unit
(TIU), the Post Processing Unit (PPU) and the Network Interface Unit (NIU). When
a thread completes its execution, the PPU updates the Ready Count (Ready Count is
set by the compiler and corresponds to the number of input values or producers to the
thread) of its consumer threads, determines whether any of those threads became ready
for execution and if so, it forwards them to the TIU. The function of the TIU is to

DDM-CMP: Data-Driven Multithreading on a Chip Multiprocessor 367

schedule and prefetch threads deemed executable by the PPU. The NIU is responsible
for the communication between the TSU and the interconnection network. The internal
structure of the TSU is depicted in Figure 1. A detailed description of the operation of
the TSU can be found in [15].

CacheFlow. Although DDM can tolerate communication and synchronization latency,
scheduling based on data availability may have a negative effect on locality. To over-
come this problem, the scheduling information together with software-triggered data
prefetching, are used to implement efficient cache management policies. These poli-
cies are named CacheFlow [16]. The most effective CacheFlow policy contains two
optimizations False Conflict Avoidance and Thread Reordering.

False conflict avoidance prevents the prefetcher from replacing cache blocks re-
quired by the threads deemed executable, and so reduces cache misses. Thread reorder-
ing attempts to exploit both temporal and spatial locality by reordering the threads still
waiting for their input data.

2.2 CMP Architecture

The proposed chip multiprocessor can be implemented using three hardware structures:
the microprocessor cores, the TSUs and the interconnection network.

Fig. 2. Several alternatives of the DDM-CMP architecture: (a) Each microprocessor has its own
TSU, (b) One TSU is shared among two microprocessors and the number of cores increases, (c)
One TSU serves all the microprocessors of the chip, and (d) Saved space is used to implement
on-chip shared cache

Our first proposed CMP architecture (Figure 2-(a)) is one that simply performs the
integration of the previously proposed D2NOW [11] into a single chip. While having
one TSU per processor was required in a NOW system, when all processors are on the

368 K. Stavrou, P. Evripidou, and P. Trancoso

same chip it is possible to optimize the use of the TSU structure and share it among
two or more processors (Figure 2-(b)). Ultimately we may consider the extreme case
where one TSU is shared among all CPUs on-chip (Figure 2-(c)). Notice that by saving
hardware with the sharing of the TSUs it may be possible to increase the number of
on-chip CPUs or alternatively add internal shared cache (Figure 2-(d)).

Although the impact of the interconnection network to the performance of an archi-
tecture that uses DDM execution model is small [15], there is still potential for study-
ing several alternatives. This is specially interesting as the number of on-chip CPUs
increases. The tradeoff between the size and the performance of the interconnection
network will be studied as a larger, more complex, interconnection network may result
in a decrease of the number of CPUs that can be embedded in the chip.

2.3 Prototype Implementation

To prove that the proposed DDM-CMP architecture offers the expected benefits, a hard-
ware prototype will be implemented. This prototype will use the Xilinx Virtex II Pro
chip [12]. This chip contains, among others, two embedded Power PC 405 [17] proces-
sors and a programmable FPGA with more than 30000 logic cells. We aim at imple-
menting the TSU and the interconnection network on the FPGA portion and execute the
application threads on the two processors.

2.4 Target Applications

The DDM-CMP architecture can be used to speedup the execution of parallelizable
loop-based or pipeline-like applications. On the one hand, the proposed architecture
is explicitly beneficial for parallelizable applications as it provides multiple parallel
execution processors. On the other hand, protocol stack applications, that are repre-
sentative examples of pipeline-like applications, can benefit from DDM-CMP, by map-
ping the code corresponding to each layer to a different DDM thread. Each layer, or
DDM-thread, will be running in parallel providing a pipelined execution model with
significant performance enhancement.

Overall, we envision the DDM-CMP chip to be used in a single chip system as a
substitute of a high-end microprocessor or as a building block for larger multiprocessor
systems like BlueGene/L [18].

3 DDM-CMP Performance Potential Analysis

3.1 Design

The objective of the proposed DDM-CMP architecture is to achieve better performance
than a current high-end microprocessor, given the same hardware budget, i.e. the same
die area. For our analysis we consider the Intel Pentium 4 as the baseline for the high-
end microprocessor. As mentioned before, DDM-CMP is build out of simpler cores. For
the purposes of our analysis we consider Intel Pentium III as a representative of such
a core. From the information reported in [19], the number of transistors used in im-
plementing Intel Pentium 4 3.2GHz 1MB L2 cache 90nm technology is approximately

DDM-CMP: Data-Driven Multithreading on a Chip Multiprocessor 369

125 million while the number of transistor used in implementing the Intel Pentium
III 800MHz 256KB L2 cache 180nm technology is 22 million. Therefore, the Pen-
tium 4 requires approximately 5.7 times more transistors than what is needed to build
Pentium III.

In addition to the processors, other hardware structures are needed to implement the
DDM-CMP architecture: the TSUs and the interconnection network. As explained ear-
lier, these structures can be implemented using a relatively small number of transistors.
If we use the Pentium 4 chip in order to implement four Pentium III processors, about 37
million transistors will be left unused. This number of transistors is more that enough
to implement the four TSUs and the appropriate interconnection network. Therefore,
a DDM-CMP architecture with four Pentium III processors can be implemented with
the same number of transistors needed to build a Pentium 4. This is the DDM-CMP
configuration that will be used for our proof-of-concept experiments.

3.2 Experimental Setup

As we do not have yet a DDM-CMP simulator, its performance results are derived from
the results obtained by Kyriacou et al. [10] for the D2NOW implementation. In this case,
we will use the results for the D2NOW architecture configured with four Pentium III
800MHz processors including all architecture optimizations. Notice that the D2NOW
results are conservative for the DDM-CMP architecture as the on-chip interconnection
network has both larger bandwidth and smaller latency than the D2NOW interconnect.

As for the baseline high-end processor we have selected the Pentium 4 3.2GHz. To
obtain the results for this setup we measure the execution time of the application’s native
execution on that system. The execution time is determined by measuring the number
of processor cycles consumed in the execution of the main function of the program, i.e.
we ignore the initialization phase. The processor cycles are measured by reading the
contents of the hardware program counter of the processor [20]. Notice that as this is
native execution, in order for the results to be statistically significant we execute the
same experiment ten times and exclude the largest and smaller measurement.

For this proof-of-concept analysis the workload considered to test the proposed ar-
chitecture is composed of three kernels from the SPLASH-2 benchmark suite [21]: LU,
FFT, and Radix.

3.3 Experimental Results

The results collected from [10] and from the native execution on the Pentium 4 system
are summarized in Table 1. It is possible to observe that the 4 x Pentium III DDM-CMP
achieves better performance than the native Pentium 4 for only the Radix application.
For both FFT and LU the DDM-CMP performance is worse than the one obtained for
the Pentium 4. It is interesting to note that these results may be correlated with the fact
that for both FFT and LU the execution time is much smaller than the one for the Radix
application. From a brief analysis of the execution of the applications we were able
to determine that the main function that performs the calculations for the algorithm
accounts for more than 80% of the total execution for Radix, while it accounts for
approximately only 50% for both FFT and LU. This is an indication that in order to

370 K. Stavrou, P. Evripidou, and P. Trancoso

Table 1. Performance results with different implementation technology

DDM-CMP CPU
4 x Pentium III 800MHz Pentium 4 3.2GHz Speedup
Cycles [x1000] Time [ms] Cycles [x1000] Time [ms]

FFT 29825 37.3 80283 25.1 0.67
LU 25319 31.6 66485 20.8 0.66
Radix 125491 156.9 952970 297.8 1.90

obtain more reliable results for both FFT and LU we will need to use larger data set
sizes. This issue will be covered in the near future as we complete the DDM-CMP
simulator. Nevertheless, at this point we do not consider this result to be a problem as
we expect that there will always be applications that will not show better performance
when executing on the DDM-CMP.

The results presented in Table 1 are significantly affected by technology scaling. It
is important to notice that the Pentium III is implemented using 0.18μm technology and
its clock speed is 800MHz whereas the Pentium 4 is implemented using 0.09μm tech-
nology and a clock of 3.2GHz. If pipeline stalls due to off-chip operations are not taken
into account, the number of clock cycles needed to execute a series of instructions is in-
dependent of the implementation technology. If we consider that the off-chip operations
are not dominant in the applications studied, the execution time for the specific appli-
cation on the specific architecture will decrease with the same rate that the frequency
increases. In this analysis we will consider two frequency scaling scenarios. The first
one is a realistic scaling where instead of considering the original Pentium III 800MHz
we consider the highest clock frequency which it was produced. From [22], the Pentium
III code named Tualatin had a clock frequency of 1.4GHz. The second scaling is the up-
per most limit scenario where we consider that we would use a Pentium III equivalent
processor which would be able to scale up to the Pentium 4 frequency (3.2GHz).

An additional optimization that will be considered in the future is the fact that the
TSU may be modified to be shared among more than one processor. This will minimize
the hardware overhead that is introduced due to the DDM architecture. The extra space
that is saved from sharing the TSU may be used to increase the number of cores on the
chip.

One more factor that will have an impact on the performance of DDM-CMP is the
type of processor used as the core. In this analysis we are using the Pentium III given the
restrictions that originate from the use of the results obtained with the D2NOW study.
In a real implementation, as we discussed previously, we will use embedded processors
as the core for the DDM-CMP. As these embedded processors are simpler, they require
fewer transistors for their implementation and consequently we will be able to fit more
cores into the same chip. Given the above arguments, in addition to the frequency scal-
ing, we also consider the case where we would be able to fit eight processors on the
same chip. Notice that as we use the results from a D2NOW configured with eight Pen-
tium III processors the results are not accurate, but they can be used as an indication of
the upper limit that may be achieved. The results from these scaling scenarios together
with the original results are depicted in Figure 3.

DDM-CMP: Data-Driven Multithreading on a Chip Multiprocessor 371

0.7 0.7

1.9
1.3 1.4

3.7

1.2 1.1

3.3
2.3 2.5

6.5

2.7 2.6

7.6

5.3 5.8

14.9

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

FFT LU Radix FFT LU Radix

4 Core CMP 8 Core CMP

sp
ee

du
p

co
m

pa
re

d
to

 P
4

3.
2G

H
z

PIII 800MHz PIII 1.4GHz PIII 3.2GHz

Fig. 3. Speedup when frequency and core scaling is taken into account

In Figure 3 we have depicted three bars for each application. The one on the left
represents the original results, the one in the middle represents the Pentium III scaling
for 1.4GHz, and the one on the right represents the upper limit scaling with the 3.2GHz
clock frequency. The group of results on the left represent the original chip design with
four cores while the group on the right represents the scenario where the optimizations
used allowed for the scaling of the number of cores to eight.

As it was already observed with the original results, both FFT and LU have a
speedup smaller than 1 and therefore their performance is better on the Pentium 4 sys-
tem. In contrast, Radix achieves almost a 2x speedup when executing on the original
DDM-CMP. The speedup values increase as the scaling is applied to the Pentium III
processor. It is relevant to notice that even with the first scaling all three applications
already show a better performance on the DDM-CMP compared to the execution on the
Pentium 4. This configuration has also the advantage of being more power-efficient than
the original Pentium 4 as it is clocked at less than half of its frequency. When scaling the
frequency to the same as the baseline we observe larger speedup values ranging from
2.6 to 7.6. It is also interesting to observe that Radix presents a superlinear speedup as
with the upper limit scaling it achieves a speedup of 7.6 with only four processors. This
may be justified by the effectiveness of the CacheFlow policies.

The results for the eight core DDM-CMP present, for all applications at any scaling
scenario, a speedup larger than one.

Overall, the results show very good speedup for both the high-performance and low-
power DDM-CMP configurations.

4 Conclusions

In this paper we have presented DDM-CMP, a Chip-Multiprocessor implementation
using the Data-Driven Multithreading execution model. The DDM-CMP architecture

372 K. Stavrou, P. Evripidou, and P. Trancoso

turns away from the complexity path taken by recent high-end microprocessors. Its
performance is achieved by combining several simple commodity microprocessors to-
gether with a small overhead, an extra hardware structure, the Thread Scheduling Unit
(TSU).

As a proof-of-concept we present a DDM-CMP implementation that utilizes the
same hardware budget as a current high-end processor, the Pentium 4, to implement four
Pentium III processors together with the necessary TSUs and interconnection network.
The results obtained are very encouraging as the DDM-CMP configuration clocked at
the same frequency as the Pentium 4 achieves a speedup of 2.6 to 7.6. DDM-CMP
can alternatively be configured for power-efficiency and still achieve high speedup. A
configuration clocked at less than half of the Pentium 4 frequency achieves speedup
values ranging from 1.1 to 3.3. We are currently evaluating the different architecture
alternatives for DDM-CMP, a larger set of applications, and are starting to implement a
prototype of this architecture on a Virtex II Pro chip.

Acknowledgments

We would like to thank Costas Kyriacou for his contribution in the discussions and
preparation of the results. Also, we would like to thank the anonymous reviewers for
their valuable comments.

References

1. Palacharla, S., Jouppi, N., Smith, J.: Complexity Effective Superscalar Processors. In: Proc.
of the 24th ISCA. (1997) 206–218

2. Olukotun, K., et al.: The Case for a Single Chip Multiprocessor. In: Proc. of the 7th ASP-
LOS. (1996) 2–11

3. Silas, I., et al.: System-Level Validation of the Intel(r) Pentium(r) M Processor. Intel Tech-
nology Journal 7 (2003)

4. Agarwal, V., et al.: Clock rate versus IPC: The end of the Road for Conventional Microar-
chitectures. In: Proc. of the 27th ISCA. (2000) 248–259

5. Hammond, L., et al.: The Stanford Hydra CMP. IEEE Micro 20 (2000) 71–84
6. Barroso, L., et al.: Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing.

In: Proc. of the 27th ISCA. (2000) 282–293
7. Taylor, M., et al.: Evaluation of the Raw Microprocessor: An Exposed Wire Delay Archi-

tecture for ILP and Streams. In: Proc. of the 31st ISCA. (2004) 2–13
8. Kalla, R., Sinharoy, B., Tendler, M.: IBM POWER5 Chip: A Dual-Core Multithreaded Pro-

cessor. IEEE Micro 24 (2004) 40–47
9. Kongetira, P.: A 32-way Multithreaded SPARC Processor. In: Proc. of Hot Chips 2004.

(2004)
10. Kyriacou, C., Evripidou, P., Trancoso, P.: Data Driven Multithreading Using Conventional

Microprocessors. Technical Report TR-05-4, University of Cyprus (2005)
11. Evripidou, P., Kyriacou, C.: Data driven network of workstations (D2NOW). J. UCS 6

(2000) 1015–1033
12. XILINX: Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Version 3.0 (2004)

DDM-CMP: Data-Driven Multithreading on a Chip Multiprocessor 373

13. Evripidou, P.: D3-machine: A Decoupled Data Driven Multithreaded architecture with vari-
able resolution support. Parallel Computing 27 (2001) 1015–1033

14. Evripidou, P., Gaudiot, J.: A decoupled graph/computation data-driven architecture with
variable resolution actors. In: Proc. of ICPP 1990. (1990) 405–414

15. Kyriacou, C.: Data Driven Multithreading using Conventional Control Flow Microproces-
sors. PhD dissertation, University of Cyprus (2005)

16. Kyriacou, C., Evripidou, P., Trancoso, P.: CacheFlow: A Short-Term Optimal Cache Man-
agement Policy for Data Driven Multithreading. In: Proc. of the 10th Euro-Par, Pisa, Italy.
(2004)

17. IBM Microelectronics Division: The PowerPC 405(tm) Core (1998)
18. The BlueGene/L Team: An Overview of the BlueGene/L Supercomputer. In: Proc. of the

2002 ACM/IEEE supercomputing. (2002) 1–28
19. Intel: Intel Microprocessor Quick Reference Guide. http://www.intel.com/ pressroom/kits/

quickreffam.htm (2004)
20. PCL: The Performance Counter Library Version 2.2 (2003)
21. Woo, S., at.: The SPLASH-2 Programs: Characterization and Methodological Considera-

tions. In: Proc. of 22nd ISCA. (1995) 24–36
22. Topelt, B., Schuhmann, D., Volkel, F.: The mother of all CPU charts Part 2.

http://www6.tomshardware.com/cpu/20041221/index.html (2004)

Modeling NoC Architectures by Means of Deterministic
and Stochastic Petri Nets

H. Blume, T. von Sydow, D. Becker, and T.G. Noll

Chair for Electrical Engineering and Computer Systems,
RWTH Aachen University, Schinkelstraße 2, 52062 Aachen
{blume, sydow, dbecker, tgn}@eecs.rwth-aachen.de

Abstract. The design of appropriate communication architectures for complex
Systems-on-Chip (SoC) is a challenging task. One promising alternative to solve
these problems are Networks-on-Chip (NoCs). Recently, the application of deter-
ministic and stochastic Petri-Nets (DSPNs) to model on-chip communication has
been proven to be an attractive method to evaluate and explore different commu-
nication aspects. In this contribution the modeling of basic NoC communication
scenarios featuring different processor cores, network topologies and communi-
cation schemes is presented. In order to provide a test bed for the verification of
modeling results a state-of-the-art FPGA-platform has been utilized. This plat-
form allows to instantiate a soft-core processor network which can be adapted in
terms of communication network topologies and communication schemes. It will
be shown that DSPN modeling yields good prediction results at low modeling
effort. Different DSPN modeling aspects in terms of accuracy and computational
effort are discussed.

1 Introduction

With the advent of heterogeneous Systems-on-Chip (SoCs), on-chip communication is-
sues are becoming more and more important. As the complexity of SoCs is increasing
a variety of appropriate communication architectures are discussed, ranging from ba-
sic bus oriented to highly complex packet oriented Network-on-Chip (NoC) structures
[1], [2]. These communication structures have to be evaluated and quantitatively op-
timized presumably in an early stage of the design process. Various approaches have
been developed in order to evaluate SoC communication performance and to compare
architectural alternatives. Examples for such communication modeling approaches are:

– simulative approaches, e. g. applying SystemC [3], [4],
– combined simulative-analytic approaches [5],
– formal communication modeling and refinement systems applying dedicated mod-

eling languages like the Action Systems Formalism [6],
– stochastic approaches applying Markov Models [7], Queuing Theory [8] or deter-

ministic and stochastic Petri Nets [9], [10].

Each of these techniques provides its individual advantages and disadvantages. For ex-
ample, simulative approaches like [3] provide highly accurate results but suffer from

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 374–383, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Modeling NoC Architectures by Means of Deterministic and Stochastic Petri Nets 375

long simulation times, making them not appropriate for an early stage of communica-
tion modeling and evaluation. Recently, communication modeling approaches which
are based on so-called deterministic and stochastic Petri-Nets (DSPNs) have been pre-
sented. In [9], it could be shown that applying these DSPN modeling techniques it
is possible to efficiently trade modeling effort and modeling accuracy. Applying very
simple but exemplary test scenarios like resource conflicts in state-of-the-art DSP ar-
chitectures and basic bus-based communication test cases a very good modeling ac-
curacy with low modeling effort could be achieved. In order to prove that these tech-
niques are also suitable for more complex communication scenarios the application of
these DSPN-based modeling techniques to NoC-communication problems like on-chip
multi-processor communication is investigated in this paper. In order to verify the mod-
eling results a generic NoC test bed has been built first. Therefore, an FPGA-based
platform has been utilized on which several proprietary so-called soft-core processors
(Nios [11]) besides other components like DMA-controllers, on-chip memories or ded-
icated (custom-made) logic blocks can be instantiated and connected using different
communication architectures. The FPGA based generic platform allows to determine
NoC performance in terms of latency, throughput respectively bandwidth etc. These
results will be compared to the results which were achieved by the DSPN model. Due
to limited hardware resources, highly complex communication scenarios with for ex-
ample different topologies of processor clusters (different hierarchy levels etc.) are not
emulated using RISC-like Nios soft-cores. Instead, such processor networks were tested
with rudimentary processor cores which implement the functionality of a sender and/or
a receiver. The following issues have been addressed within this contribution: Model-
ing effort, modeling accuracy and required computation time depending on the DSPN
solving methods. The paper is organized as follows: Chapter 2 sketches the basics of
DSPN modeling. In chapter 3 some details on the FPGA-based test bed which has been
utilized in the experiments are described. The modeling of NoC test scenarios and the
corresponding results are described in chapter 4. Conclusions are given in chapter 5.

2 Short Synopsis of Modeling with DSPNs

A comprehensive overview of the modeling possibilities with deterministic and stochas-
tic Petri nets (DSPNs) and all corresponding options are not in the scope of this paper.
Here, only those basics will be shortly sketched which are used in the following sec-
tions. DSPNs consist of so-called places, arcs and transitions. Places, depicted as circles
in the graphical representation, are states of system components. E.g. a place could be
named compute result to make clear that this place represents the state of computing a
result in the belonging component. Places can be untagged or marked with one or more
tokens which illustrate that the corresponding place is actually allocated. The change of
a state can be described by so-called transitions. Three types are differentiated: There
are immediate transitions, transitions with a probability density function for the delay
(e.g. negative exponential) or deterministically delayed transitions. Furthermore, prior-
ities can be assigned to each transition. Transitions and places are connected via arcs.
Arcs can be of two types, regular or inhibitor. Inhibitor arcs are identified by a small
inversion circle instead of an arrowhead at the destination end of it (see Fig. 1). If more

376 H. Blume et al.

arg_1_available

2

Place

Token

Deterministic Transition
p(T=t) = δ(t - λ-1)

Immediate Transition
p(T=t) = δ(t)Arc

Inhibitor
Arc

Stochastic Transition
p(T=t) = λ·e-λt

arg_2_available

res_available

1

enable

Fig. 1. Exemplary Section out of a deterministic and stochastic Petri-net model

than one input place is connected to a transition via regular arcs, the transition will
only be activated when all connected places are marked. If one or more of these arcs is
an inhibitor arc the transition will not fire if the corresponding place is marked. Once
a Petri net model is implemented, performance measures, such as marking probabil-
ities and the expected number of tokens for places and throughput for deterministic
and exponential transitions can be defined and subsequently computed by simulation,
mathematical approximation or mathematical analysis.

The different alternatives vary in terms of accuracy and computational effort. E.g.
in the case of two or more concurrently enabled deterministic transitions, mathematical
analysis is not possible [12]. Fig. 1 depicts a section of a very simple modeling exam-
ple where the transition 1 will fire only when both connected places (arg 1 available,
arg 2 available) contain at least one token. Then this transition will fire with a de-
terministic delay time, modeling the processing time for e.g. a computational kernel.
The corresponding delay time T1 for this transition is a configuration parameter of this
DSPN. After this delay time has been elapsed, one token will be taken from all of the
transitions input places (here: arg 1 available and arg 2 available), and one token will
be placed in all connected output places (here only one: res available). Depending on
the status of its other input places (here: enable) - the next transition 2 (in this case a
stochastic transition) is going to fire with a random delay with an exponential distribu-
tion. In principle, each communication scenario can be modeled by DSPNs. Some SoC
modeling examples can be found in [9] and a comprehensive overview of modeling
with DSPNs is given in [12]. A variety of DSPN modeling environments is available
today [13]. In the course of the modeling experiments described here, the DSPN model-
ing environment DSPNexpress [14] has been used. DSPNexpress provides a graphical
editor for DSPN models, as well as a solver backend for numerical analysis of DSPNs.
Experiments can be performed for a fixed parameter set and for a parameter sweep
across a user-defined range of values. The package supports the computation of the
transient response e.g. the distribution of tokens after a certain amount of cycles (using
Picards Iteration Algorithm) as well as computation of the steady state behavior of the
realized DSPN model. The latter can be realized by iteratively using the Generalized
Minimal Residual Method, by employing the direct quadrature method or by utiliz-
ing the discrete event simulator backend [12]. These methods correspond to the DSPN
computation methods mentioned in the beginning of this chapter.

Modeling NoC Architectures by Means of Deterministic and Stochastic Petri Nets 377

3 FPGA Based NoC Testbed

As a test bed for the evaluation of NoC communication scenarios and architectures
an FPGA-based system has been applied. As a reference platform an FPGA develop-
ment board featuring an APEX20K200EFC484 FPGA, 1 MByte of flash memory, 256
KBytes of SRAM, serial interfaces (e.g. for downloading the program to the on-board
flash memory) and several display options (e. g. LC display) has been used. Multi pro-
cessor networks have been implemented on this platform by instantiating Nios soft-core
processors. The Nios embedded processor is a general-purpose load/store RISC CPU,
that can be combined with a number of peripherals, custom instructions, and hard-
ware acceleration units to create a custom system-on-a-programmable-chip solution.
The processor can be configured to provide either 16 or 32 bit wide registers and data
paths to match given application requirements. Both versions use 16 bit wide instruction
words. Version 3.2 of the Nios core, as used here, typically features about 1100 logic
elements (LEs) in 16 bit mode and up to 1700 LEs in 32 bit mode incl. hardware accel-
erators like hardware multipliers. More detailed descriptions of the components can be
found in [11]. Based on such a Nios core a processor network consisting of a general
communication structure that interfaces various peripherals and devices to various Nios
cores can be constructed. The so-called Avalon [15] structure is used to connect devices
to the Nios cores. It is a dynamic sizing communication structure that allows devices
with different data widths to be connected, with a minimal amount of interfacing logic.
In order to realize processor networks on this platform the so-called SOPC (system on
a programmable chip) Builder [16] has been applied. It is a tool for composing hetero-
geneous architectures including the communication structure out of library components
such as CPUs, memory interfaces, peripherals and user-defined blocks of logic. The
SOPC Builder generates a single system module that instantiates a list of user-specified
components and interfaces incl. an automatically generated interconnect logic. It al-
lows modifying the design components, adding custom instructions and peripherals to
the Nios embedded processor and configuring the connection network.

4 Modeling NoC Test Scenarios

4.1 Nios-Based NoC Test Scenario

The first analyzed system is composed of two Nios soft-cores which compete for access
to an external shared memory (SRAM) interface. Each core is also connected to a pri-
vate memory region containing the program code and to a serial interface which is used
to ensure communication with the host PC. The proprietary communication structure
used to interconnect all components of a Nios-based system is called Avalon [15] which
is based on a flexible crossbar architecture. The block diagram of this fundamental re-
source sharing experiment is depicted in Fig. 2. Whenever multiple masters can access
a slave resource, SOPC Builder [16] automatically inserts the required arbitration logic.
In each cycle when contention for a particular slave occurs, access is granted to one of
the competing masters according to a Round Robin arbitration scheme. For each slave,
a so-called share is assigned to all competing masters. This share represents the fraction
of contention cycles in which access is granted to this corresponding master. Masters

378 H. Blume et al.

Avalon comm.

structure

Fig. 2. Block diagram of fundamental resource sharing experiment

incur no arbitration delay for uncontested or acquired cycles. Any masters that were
denied access to the slave automatically retry during the next cycle, possibly leading to
subsequent contention cycles.

In the modeled scenario the common slave resource for which contention occurs is a
shared external memory unit (shaded in gray in Fig. 2) containing data to be processed
by the CPUs. Within the scope of this fundamental resource sharing scenario several
experiments with different parameter setups have been performed to prove the valid-
ity of the DSPN modeling approach. Adjustable parameters include e.g. the priority
shares assigned to each processor, the ratio of write and read accesses, the mean delay
between memory accesses etc. These parameters have been used to model typical com-
munication requirements of basic operators like digital filters or block read and write
operations running on these processor cores. In addition, an experiment simulating a
more generic, stochastic load pattern, with exponentially distributed times between two
attempts of a processor to access the memory has been performed. Here, each mem-
ory access is randomly chosen to be either a read or a write operation according to
user-defined probabilities. The distinction between load and store operations is impor-
tant here because the memory interface can only sustain one write access every two
cycles, whereas no such limitation exists for read accesses. The various load profiles
were implemented in C, compiled on the host PC and the resulting object code has
been transferred to the Nios cores via the serial interface for execution. In the case of
the generic load scenario, the random values for the stochastic load patterns were gen-
erated in a MATLAB routine. The determined parameters have been used to generate
C code sequences corresponding to this load profile. The time between two attempts
of a processor to access the memory has been realized by inserting explicit NOPs into
the code via inline assembly instructions. Performance measurements for all scenarios
have been achieved by using a custom cycle-counter instruction added to the instruc-
tion set of the Nios cores. In a first step, a simple DSPN model has been implemented
(see Fig. 3) in less than two hours. Distinction between read and write accesses was
explicitly neglected to achieve a minimum modeling complexity. The DSPN consists of
four sub-structures; two parts represent the load generated by the Nios cores (CPU #1
and #2), a simple cycle process subnet providing a clock signal and the most complex
part being the arbitration subnet. Altogether this simple model includes 19 places and
20 transitions. The immediate transitions T1, T2 and T3 and the belonging places P1,

Modeling NoC Architectures by Means of Deterministic and Stochastic Petri Nets 379

Fig. 3. DSPN for rudimentary Nios example (cycle generator)

P2 and P3 (see Fig. 3) are an essential part of the Round Robin arbitration mechanism
implemented in this DSPN. The marked transition P2 denotes that the memory is ready
and memory access is possible. P1 and P3 belong to the CPU load processes and in-
dicate that the corresponding CPU (#1, #2) tries to access the memory. If P1 and P2
or P3 and P2 are tagged the transition T1 or accordingly transition T3 will fire and re-
move the tokens from the connected places (P1, P2 or P2, P3). CPU #1 or CPU #2 has
been assigned the memory access in this cycle. A collision occurs if P1, P2 and P3 are
tagged with a token. Both CPUs try to access the memory in the same cycle (P1 and
P3 marked). Furthermore, the memory is ready to be accessed (P2 marked). A higher
priority has been assigned to transition T2 during the design process. This means that
if the conditions for all places are equal the transition with the highest priority will fire
first. Therefore, T2 will fire and remove the tokens from the places. Thus, the transitions
T1, T2 and T3 and the places P1, P2 and P3 handle the occurrence of a collision.

Though the modeling results applying this simple DSPN model are quite accurate
(relative error less than 10%, see Fig. 4), it is possible to increase the accuracy even
more by extending the modeling effort for the arbitration subnet. For example it is pos-
sible to design a DSPN model of the arbitration subnet which properly reflects the dif-
ferences between read and write cycles. Thus, the arbitration of write and read accesses
has been modeled in different processes resulting in different DSPN subnets. This re-
sults in a second and more complex DSPN model. The implementation of this complex
model has taken about three times the effort in terms of implementation time (approx-
imately five hours) than the simpler model described before. Now, the DSPN model
consists of 48 transitions and 45 places. Compared to the simple model the maximum
error has been further reduced (see Fig. 4). The complex model also properly captures
border cases caused e. g. by block read and write operations. The throughput measured
for a code sequence containing 200 memory access instructions has been compared to
the results of the simple and complex DSPN model. Fig. 4 shows the relative error for

380 H. Blume et al.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0.1 0.3 0.5 0.7 0.9

mean number of comp. cycles between two memory instructions

re
la

ti
ve

 e
rr

o
r

fo
r

th
ro

u
gh

pu
t

simple (80% read access) complex (80% read access)
simple (50% read access) complex(50% read access)

Fig. 4. Comparison of simple and complex DSPN model for different load scenarios

the throughput which is achieved by varying the mean number of computation cycles
between two attempts of a processor to access the memory. Furthermore, the results are
depicted for two cases, where 50% and 80% of the memory accesses are read accesses,
respectively. For example in case of 50% read accesses and a mean of 0.9 computa-
tion cycles between two memory accesses, the maximum relative error is reduced from
about 10% achieved with the simple model to about 6% with the complex model. As
mentioned before, the evaluation of DSPNs can be performed by different methods.
The effort in terms of computation time has been compared for a couple of experi-
ments. Generally, the time consumed when applying the simulation method is about
two orders of magnitude longer than the time consumed by the analysis methods (direct
and iterative). For the example of the complex model the computation time of the DSPN
analysis method only amounts to 0.3 sec. and the DSPN simulation time (107 memory
accesses) amounts to 30 sec. on a Linux-based PC (2.4 GHz, 1 GByte of RAM).

4.2 Generic Processor Core Network

As an example for a more complex network, the DSPN model for a hierarchical net-
work featuring three processor cores, three memory sections and two hierarchically
connected switches has been developed. All components are connected by full-duplex
links capable of transmitting one data word each clock cycle (see Fig. 5). Because of
the limited amount of available logic elements, this network cannot be implemented us-
ing Nios cores. Furthermore, SOPC Builder only provides limited configuration options
with regard to the Avalon structure in the form of priority shares, and specifically can-
not accommodate hierarchical interconnects. Therefore, a flexible generic NoC testbed
has been implemented to facilitate implementation of complex networks and arbitrary
interconnect structures. To keep the logic element count at a tractable level, the network
components are reduced to provide only the functionality that directly affects network
traffic. For example, simplified load generators acting as pseudo-CPUs are used instead
of Nios cores. Implementation of different routing and arbitration schemes is possible
by realizing corresponding interconnection components, e.g. switches. In the example

Modeling NoC Architectures by Means of Deterministic and Stochastic Petri Nets 381

Switch 1

Switch 2

Fig. 5. Exemplary NoC architecture

discussed here, write accesses consist of a single request going from the CPU to the
target memory section, whereas read accesses consist of two transactions: An initial
request by the CPU, followed by a response from the memory section. The entities for
which arbitration has to take place are the output ports of the switches. Access is granted
according to a Round Robin scheme with equal priorities. Upon contention, all masters
that have been denied access wait until the port is available again. A single-cycle ac-
cess delay is incurred for the winning master or in the absence of contention. Initiating
masters successively acquire all output ports on the path to the addressed slave, and
release them once the whole transaction is completed. For the modeled experiment, the
processors generate a memory access pattern that is stochastic in space and time: The
addressed memory section for each access is determined based on a Bernoulli trial,
and the time between consecutive memory accesses for each CPU is exponentially dis-
tributed. CPU 1 and 2 generate both local and remote memory accesses, whereas CPU 3
only accesses local memory sections. Fig. 5 sketches the network topology and the log-
ical connections between components.

The DSPN developed to model this setup consists of 64 places and 61 transitions,
and provides several parameters defining the network behavior that have been used to
set up various experiments. Fig. 6 shows results from two examples: In the experiment
whose results are depicted in Fig. 6 a), the ratio between local and remote memory ac-
cesses of CPU 1 was varied, and the resulting throughput for all three CPUs was mea-
sured. The results show that the mean throughput for CPU 1 is reduced with increasing
percentage of remote accesses. This is obvious from the fact that remote transactions
require acquisition of two switch ports, whereas local transactions require only one.
CPUs 2 and 3, on the other hand, undergo a slight decrease in throughput. This is be-
cause CPU 2 and 3 become more likely to collide with CPU 1 while trying to access
the output port from switch 1 to switch 2 and memory section 3, respectively. In Fig. 6
b) the mean computational delay between consecutive memory accesses at each CPU
was varied. As a performance measure, the ratio between actual measured throughput
and the upper bound for the throughput (i. e. assuming instantaneous memory accesses)
is depicted. CPU 1 and CPU 2 were assigned fixed remote memory access probabili-
ties (Prma) of 50% and 20%, respectively. The figure shows that longer delays between
memory accesses lead to throughput values closer to the upper bound. This can be ex-
plained by the fact that collisions become less likely, and that the delay caused by a
collision becomes smaller relative to the computational delay. It can also be seen that

382 H. Blume et al.

the increase in throughput occurs faster for CPUs that have a higher percentage of lo-
cal memory accesses. As in the previous experiment, this is caused by the additional
requests for switch output ports required for remote accesses. Modeling of this hierar-
chical network took about eight hours. Evaluation of the DSPNs took approximately
half a second on the Linux PC mentioned in the previous section, whereas simulation
required about 30 sec. on the same machine.

(a) (b)

Fig. 6. Results for the modeling of the hierarchical NoC: a) mean throughput vs. percentage of
remote memory accesses b) ratio of actual throughput to offered load vs. mean computational
delay

This example shows how important design parameters of an NoC can be explored in
an early stage of the NoC design flow by application of DSPN modeling techniques. For
subsystems which require higher accuracy, successive refinement of the corresponding
DSPN subnets can be applied to gain additional accuracy.

5 Conclusion

The DSPN modeling of basic NoC architectures has been presented in this paper. Ap-
plying Nios soft core processors which are connected via an Avalon communication
structure it could be shown that the modeling results are very close to the values mea-
sured on an FPGA test bed. For this example it could also be shown that modeling effort
can be efficiently traded for modeling accuracy. Quantitative results for modeling effort
and computational complexity have been presented. Furthermore, a more complex hi-
erarchical NoC has been modeled and the influence of parameters like the distribution
of read and write accesses has been studied. This example shows that DSPNs can be
leveraged for early stage modeling of communication processes.

Modeling NoC Architectures by Means of Deterministic and Stochastic Petri Nets 383

References

1. Jantsch, A., Tenhunen, H.: Networks on Chip. Kluwer Academic Publishers (2003)
2. Nurmi, J., Tenhunen, H., Isoaho, J., Jantsch, A.: Interconnect Centric Design for Advanced

SoC and NoC. Kluwer Academic Publishers (2004)
3. Kogel, T., Doerper, M., Wieferink, A., Leupers, R., Ascheid, G., Meyr, H., Goossens, S.:

A modular simulation framework for architectural exploration of on-chip interconnection
networks. In: CODES+ISSS. (2003) 7–12

4. Madsen, J., Mahadevan, S., Virk, K.: Network-centric system-level model for multiprocessor
soc simulation. In Nurmi, J., ed.: Interconnect Centric Design for Advanced SoC and NoC.
Kluwer Academic Publishers (2004)

5. Lahiri, K., Raghunathan, A., Dey, S.: System-level performance analysis for designing on-
chip communication architectures. IEEE Trans. on CAD of Integrated Circuits and Systems
20 (2001) 768–783

6. Plosila, J., Seceleanu, T., Sere, K.: Network-centric system-level model for multiprocessor
soc simulation. In Nurmi, J., ed.: Interconnect Centric Design for Advanced SoC and NoC.
Kluwer Academic Publishers (2004)

7. Mickle, M.H.: Transient and steady-state performance modeling of parallel processors. Ap-
plied Mathematical Modelling 22 (1998) 533–543

8. Kleinrock, L.: Queueing Systems. Volume 1. John Wiley and Sons (1975)
9. Blume, H., von Sydow, T., Noll, T.G.: Performance analysis of soc communication by ap-

plication of deterministic and stochastic petri nets. In: SAMOS. (2004) 484–493
10. Ciardo, G., Charkasova, L., Kotov, V., Rokicki, T.: Modeling a scalable high-speed intercon-

nect with stochastic petri nets. In: Proc. of the Sixth International Workshop on Petri Nets
and Performance Models PNPM’95. (1995) 83–94

11. Altera: Nios Embedded Processor Software Development Reference Manual. (2001)
12. Lindemann, C.: Performance Modeling with Deterministic and Stochastic Petri Nets. JOHN

WILEY AND SONS (1998)
13. Petri net tools data base: http://www.daimi.au.dk/PetriNets. (2004)
14. DSPNexpress: http://www.dspnexpress.de. (2003)
15. Altera: Avalon: Bus specification manual, http://www.altera.com/literature/manual/mnl

avalon bus.pdf. (2003)
16. Altera: SOPC Builder, http://www.altera.com/products/software/products/sopc/sop-index.

html. (2004)

High Abstraction Level Design and Implementation
Framework for Wireless Sensor Networks

Mauri Kuorilehto, Mikko Kohvakka, Marko Hännikäinen, and Timo D. Hämäläinen

Tampere University of Technology, Institute of Digital and Computer Systems,
P.O. Box 553, FIN-33101 Tampere, Finland

mauri.kuorilehto@tut.fi

Abstract. The diversity of applications, scarce resources, and large scale set de-
manding requirements for Wireless Sensor Networks (WSN). All requirements
cannot be fulfilled by a general purpose WSN, but a development of application
specific WSNs is needed. We present a novel WIreless SEnsor NEtwork Simula-
tor (WISENES) framework for rapid design, simulation, evaluation, and imple-
mentation of both single nodes and large WSNs. New WSN design starts from
high level Specification and Description Language (SDL) model, which is simu-
lated and implemented on a prototype through code generation. One of the novel
features is the back-annotation of measured values from physical prototypes to
SDL model. The scalability and performance of WISENES have been evaluated
with TUTWSN that is a very energy efficient new WSN. The results show only
6.7 percent difference between modeled and measured TUTWSN prototype en-
ergy consumption. Thus, WISENES hastens the development of WSN protocols
and their evaluation in large networks.

1 Introduction

Wireless Sensor Networks (WSN) are the most demanding area of wireless communi-
cations. Challenges for WSNs are large scale, potentially constantly changing network
topology, error prone environment, and demanding functional features. These features
include multi-hopping, adhoc network creation, positioning, and autonomous operation
with error recovery. Moreover, nodes should be small in size, which leads to limited
processing and storage capacities. The energy should be scavenged from the environ-
ment or nodes should operate on batteries for a long time [1, 2].

In a typical WSN scenario depicted in Fig. 1(a) nodes gather data around the in-
spected phenomenon, aggregate the data, and send them to a sink node. The commu-
nication is done through a layered protocol stack, an example of which is depicted
in Fig. 1(b) in correspondence to the OSI reference model. A Medium Access Con-
trol (MAC) protocol on the data link layer manages the channel access and adhoc net-
work topology. A routing protocol in the network layer creates multi-hop paths between
nodes. Transport and presentation layers are typically omitted in order to reduce com-
munication. A middleware abstracts underlying protocol and hardware inconsistencies
from applications.

Due to the strict requirements a general purpose WSN is not feasible. This means
that WSN protocols and node platforms must be configured to meet the requirements

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 384–393, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

High Abstraction Level Design and Implementation Framework for WSN 385

of the current application. The complexity of the design space [3] encourages the uti-
lization of design automation tools and higher abstraction levels both for the design of a
single node and the overall network. It is very important to consider all design issues at
the same time, since a single unoptimized part can e.g. ruin the overall energy efficiency
or lead to an excessive memory usage. This is often the case when protocol layers are
developed independently.

The selection of an acceptable WSN design requires evaluation of different pro-
tocol and platform configurations. Hardware prototyping is suitable for a single node
and small scale WSN testing (tens to hundreds of nodes). However, prototypes are not
applicable for verifying a long term deployment of e.g. a 10,000-node network, but
simulation tools are required. Pure functional network simulator, such as ns-2, is not
feasible for WSNs because environmental constraints and physical phenomena must be
considered.

Inspected phenomenon Sink node

Aggregated data

Inactive

Sensor node

Sensed data

Inspected phenomenon Sink node

Aggregated data

Inactive

Sensor node

Sensed data

(a)

Application layer

Transport layer

Session layer

Presentation layer

Network layer

Data link layer

Physical layer

OSI stack

Application layer

Middleware

Routing protocol

MAC protocol

Transceiver unit

WSN stack

Application layer

Transport layer

Session layer

Presentation layer

Network layer

Data link layer

Physical layer

OSI stack

Application layer

Middleware

Routing protocol

MAC protocol

Transceiver unit

WSN stack

(b)

Fig. 1. A typical (a) WSN deployment and (b) WSN protocol stack in comparison to seven layer
OSI-model

Current WSN design frameworks vary from low level emulators to high level mod-
eling tools. Several low level node simulators [4, 5, 6] implement an environment for the
simulation of applications above a widely used WSN Operating System (OS), TinyOS
[7]. VisualSense [8] implements a framework for WSN application design and evalua-
tion with Ptolemy II. It allows protocol and application design using different Models
of Computation (MoC), but estimates the resource consumption in nodes only roughly.
A comprehensive simulation framework for WSNs with accurate platform and resource
modeling is implemented by SensorSim [9], but it does not support high level WSN
design. The basic problem is that those based on low level tools are restricted in their
scalability for large network configurations, whereas the high abstraction level frame-
works do not give accurate information about the network and node performance.

Our WIreless SEnsor NEtwork Simulator (WISENES) is a novel, complete frame-
work for the design, simulation, evaluation, and implementation of both nodes and
WSNs. WISENES is based on our previous experience on automated HW/SW pro-
tocol implementations from high-level SDL (Specification and Description Language)
and UML2.0 protocol models [10]. Unlike the other WSN design and simulation tools,
WISENES uses high abstraction level for the protocol design but still outputs accurate

s

386 M. Kuorilehto et al.

results from the network and node performance. In addition, WISENES allows imple-
mentation of the final protocol stack through an automatic code generation.

WISENES has been used for the design and evaluation of our TUTWSN that cur-
rently has, to our best knowledge, the highest energy efficiency without sacrificing WSN
functionality. A prototype network comprising tens of nodes exists. The key protocol is
MAC that uses energy optimized Time Division Multiple Access (TDMA) for channel
access. Compared to other TDMA or Carrier Sense Multiple Access (CSMA) WSN
MAC protocols, e.g. [11, 12], TUTWSN achieves better energy efficiency due to the
minimized idle listening times [13]. Results from WISENES prove the applicability of
TUTWSN also for large scale networks.

This paper is organized as follows. Section 2 presents WISENES design and frame-
work. In Section 3, TUTWSN design, implementation, and evaluation in WISENES are
shown. Conclusions and future work are presented in Section 4.

2 WISENES Design Flow

Fig. 2 shows an overview of the WSN design with WISENES. The designer creates
protocol layers and applications in SDL. A simulator is automatically generated for the
evaluation of a single node and the network of nodes. In addition, code generation is
used for the final executable for each node. WISENES does not support HW synthesis
from the SDL, but creates interfaces for existing HW blocks on a node.

For simulations nodes are parameterized very accurately for WISENES in eXtensi-
ble Markup Language (XML). A unique feature in WISENES is the back-annotation of
measured results from a physical prototype to the simulator. Measured values include
e.g. the energy consumption per sequences of operations and even per an executed func-
tion. In this way WISENES combines the high abstraction level design and the accurate
node performance evaluation into a single framework.

The basic steps in the flow are the creation of SDL model, functional simulations,
the implementation of a limited scale prototype network, the back-annotation of the
performance measurements for SDL model consistency checking and for improving
simulator accuracy, and again simulations but now for a large scale network. Finally,
the production ready WSN implementation is obtained. It is also possible to perform
only simulations and based on that give constraints for the platform. This is useful
when no physical platform is available or it is being designed.

2.1 WISENES Framework

A more detailed view to the WISENES framework is depicted in Fig. 3. The designer
implements protocols and application tasks in SDL, produces XML configuration files,
and integrates them to the WISENES framework. The framework consists of four main
components, which are central simulation control, transmission medium, phenomena
channel, and sensor node. WISENES outputs information both visually through a Graph-
ical User Interface (GUI) and in detail to log files for postprocessing.

SDL in WISENES. The SDL hierarchy has multiple levels, of which system level con-
sists of a number of blocks that clarify the representation. The behavior of a block is

High Abstraction Level Design and Implementation Framework for WSN 387

Fig. 2. WISENES design steps and their relations

Designer SDL

Implementation

- Node parameters

- power, memory, and
power characteristics

- Transceiver unit
- Peripherals

- Application parameters

- Protocol parameters

- Network parameters

- Phenomena parameters

WISENES Framework

Sensor node

Transmission medium

Phenomena channel

Central

simulation

control
Application layer

Transceiver unit

Node

control
GUI

Sensor

WISENES XML

configuration files

Protocol layer n

Protocol layer 0

Protocol layer n-1

Application task
Application task

Log files

power,

memory,
protocol

event log
app

event log
data log

Designer SDL

Implementation

- Node parameters

- power, memory, and
power characteristics

- Transceiver unit
- Peripherals

- Application parameters

- Protocol parameters

- Network parameters

- Phenomena parameters

WISENES Framework

Sensor node

Transmission medium

Phenomena channel

Central

simulation

control
Application layer

Transceiver unit

Node

control
GUI

Sensor

WISENES XML

configuration files

Protocol layer n

Protocol layer 0

Protocol layer n-1

Application task
Application task

Log files

power,

memory,
protocol

event log
app

event log
data log

Fig. 3. User input and WISENES framework components

s

388 M. Kuorilehto et al.

implemented in a number of processes described by Extended Finite State Machines
(EFSM). A part of process functionality can be implemented as a procedure that is
implemented by EFSM or in low level programming language. SDL processes commu-
nicate by asynchronous signals or synchronously by calling remote procedures.

We utilize Telelogic TAU SDL Suite 4.4 for the graphical SDL design and c-code
generation. WISENES uses a discrete event simulation engine, in which events are pro-
cessed in order of occurrence. The time concept is fully parallel allowing realistic mod-
eling of multiple nodes.

Framework Components. WISENES framework components, except GUI, are im-
plemented in SDL. The central simulation control parses input parameters, relays pa-
rameters to sensor nodes, maintains logs and GUI, and finishes simulations. The trans-
mission medium models signal propagation in the wireless medium. A transmission
success, failure, or attenuation is determined by the signal attenuation graph, which is
specific to a transceiver unit. The phenomena channel models physical quantities that
are measured by sensors. The communication between the framework components is
implemented as SDL signals.

The sensor node is a dynamic block that has as many instances as there are nodes
in a simulation. The sensor node has four framework components that implement in-
terfaces for protocols and application tasks. The transceiver unit interfaces the trans-
mission medium and models the power consumption of the transmitter and the receiver.
The sensor models phenomena sensing and consumes energy while Analog-to-Digital
Converter (ADC) and physical sensors are active. The application layer schedules and
issues application tasks.

The node control is divided into two subcomponents. NodeOSCtrl implements OS
routines that control execution scheduling, memory usage, and node sleep states and
activation. NodeSimulationCtrl implements a per-node interface to the central simula-
tion control for input parameterization and GUI updating. Further, NodeSimulationCtrl
manages node power model in remote procedures that are called from other framework
components during processing and peripheral or transceiver unit activation.

WSN Protocol Stack. The composition of a protocol stack implemented by the de-
signer and the interfaces between the protocols are not restricted. Predefined interfaces
must be met at the upper interface to the application layer, and at the lower interface to
the transceiver unit. Further, a control interface for initiation, shutdown, and OS routines
must be implemented for the node control.

Each protocol layer is implemented as an SDL block and may consist of any number
of processes. The processes communicate with each others and with processes on other
protocol layers. Application tasks are implemented as SDL procedures, which must
implement a WISENES specific call interface.

WISENES Input and Output. XML configuration files specify node platforms and
their processing, memory, and power consumption characteristics accurately. The plat-
form parameters are divided into four separate files. Peripheral and transceiver unit
parameters define available components and their energy and operational details. Node
types are parameterized in a file referencing transceiver unit and peripheral parameters.

High Abstraction Level Design and Implementation Framework for WSN 389

Individual nodes are specified in a file that defines only their node type and position
coordinates, which makes automatic creation of large network configurations easy.

Application tasks are implemented in SDL but their resource requirements are de-
fined in the input parameters. Protocol parameters consist of designer defined param-
eters for each layer. The signal propagation in the transmission medium is defined in
network parameters and modeled physical quantities in phenomena parameters.

During a simulation run the progress of the simulation and the network topology
are depicted in GUI, shown in Fig. 2. Accurate performance evaluation is done by post-
processing extensive logs that are gathered during simulations and stored into files. The
log information defines data processing at each layer, protocol and application events,
network topology changes, transmission medium characteristics, and power, memory
and processing capacity consumption for each node separately.

3 TUTWSN Implementation and Evaluation in WISENES

In this section we show an example how TUTWSN design and evaluation are carried
out with WISENES. The target is a clustered network that consists of headnodes with
full WSN functionality and subnodes that only transmit sensor data to a headnode.
TUTWSN utilizes TDMA for intra-cluster communication and for data transfers be-
tween headnodes. Frequency Division Multiple Access (FDMA) is used to interleave
nearby clusters to the available frequency band. This scheme and the very low activity
times due to energy saving set strict timing requirements for the MAC protocol.

An environmental monitoring application is considered. It consists of two main
tasks, temperature sensing and aggregation. All nodes acquire temperature in their sur-
roundings and send the value to the cluster headnode. Headnodes aggregate data and
send them to a sink node.

TUTWSN protocol stack in WISENES implements the MAC protocol and a routing
protocol. The MAC protocol is divided into four parts. These are headnode functional-
ity, subnode functionality, inter-cluster scanning, and data buffering. The routing pro-
tocol broadcasts active routing requests to its neighbors except the one it received the
request from. The responses are sent selectively to those nodes pending for the route.

3.1 Prototype Platform

For the small scale network evaluation one of our existing TUTWSN prototypes de-
picted in Fig. 2 is chosen. The MicroController Unit (MCU) is a 2 MIPS Xemics
XE88LC02 consisting of a CoolRisc 816 processor core, a 16-bit ADC, 22 KB pro-
gram memory, 1 KB of data memory, and 8 KB EEPROM.

The transceiver unit is a 2.4 GHz NordicVLSI nRF2401 with 1 Mbps data rate. An
integrated 16-bit CRC error detection is utilized by the TUTWSN MAC protocol. The
energy for the prototype is supplied by a 0.22 F capacitor.

3.2 Code Generation from WISENES to Prototypes

A final executable is generated from a bounded SDL module that can vary from the
complete protocol stack to a single SDL process implementing a part of a protocol

s

390 M. Kuorilehto et al.

layer. We use complete TUTWSN MAC protocol module as an example. The module
is first detached from WISENES and then the C code is generated.

The generated code requires an SDL kernel for state, processing, and signaling con-
trol. A more lightweight kernel than the standard Telelogic TAU SDL Suite kernel,
which is used in simulations, has been implemented for the prototypes. Our lightweight
kernel implements the state control, processing scheduling, and signal exchange within
the SDL module and a set of SDL library functions, e.g. for supporting standard SDL
data types.

The module is connected to the environment with customizable input and output
functions. In addition, the lightweight kernel includes the functions of NodeOSCtrl.
These either interface OS routines, if available on the prototype, or offer restricted func-
tionality. For the TUTWSN MAC protocol module, small scale controllers for memory
and node state are implemented.

The lightweight kernel integrates the module to the rest of the system, which is then
compiled and linked to the executable binary. The binary is then programmed to the
nodes, one by one. Due to the required kernel functionality and the inefficiencies in the
automatic code generation, the binary size for the TUTWSN MAC protocol is around
115K instructions.

The resources in our prototype are very scarce, which means that the final protocol
and application implementations after simulations must be carried out manually. The
optimized C and assembly implementation take 5.4K instructions. However, the opti-
mized implementation is done only once per design and only for this kind of platforms
with very limited resources.

3.3 Prototype Modeling in WISENES

We refer the detailed modeling of platforms in the XML configuration parameters to
as prototype mapping. The modeled aspects in the prototype mapping are timing and
power, memory, and processing capacity consumption. The power consumption model-
ing concerns the activation times of peripherals, transceiver unit, and MCU. The mem-
ory consumption is handled by a memory controller implemented in NodeOSCtrl. For
processing the protocols reserve time slots by issuing a remote procedure on NodeOSC-
trl. The timing is modeled accurately by generating delays during the execution, the
transceiver unit and peripheral access, and the signal propagation in the transmission
medium.

For evaluating the accuracy of prototype mapping, similar test environments are
constructed with prototypes and in WISENES. The measured nodes from the statically
defined network topology are presented in Fig. 4(a). The subnodes (S1, S2) send their
sensor reading once in an access cycle to the headnode H1, which aggregates and routes
the data to the sink node through the headnode H2. We present results only for power
consumption as the mapping of other aspects is straightforward.

Simulated and prototype power consumption results are depicted in Fig. 4(b) for S1,
H1, and H2 with 1, 2, 5, and 10 second access cycles. The results are closely analogous,
overall average difference being 6.73%. The averaged differences are 4.05% for H1,
4.80% for H2, and 11.34% for S1. The main reason for the less precise accuracy of

High Abstraction Level Design and Implementation Framework for WSN 391

S1 is the slight timing inaccuracies in the WISENES modeling of node state changes.
As the activity and the power consumption of subnodes are low, the state changes are
crucial on overall power consumption.

3.4 TUTWSN Performance in Large Scale Networks

A 10,000-node deployment on a 400m x 400m area is simulated to evaluate TUTWSN
performance in large networks. Ten sink nodes are evenly scattered within the area. All
nodes are able to act as both headnodes and subnodes. Their ratio at the beginning is
1:9. The most demanding simulations with 1 second access cycle lasted 21 days and

s

H1

H2

S2 S1

Sink node

Sensed

data

Aggregated

data

H1

H2

S2 S1

Sink node

Sensed

data

Aggregated

data

H1

H2

S2 S1

Sink node

Sensed

data

Aggregated

data

(a)

0

200

400

600

800

1000

0 2 4 6 8 10
Access cycle length (s)

P
o
w

er
 (

u
W

)

H1, Prototype
H1, WISENES
H2, Prototype
H2, WISENES
S1, Prototype
S1, WISENES

(b)

Fig. 4. (a) Static topology and (b) power consumption results for prototype mapping accuracy
evaluation

produced 45 GB of log data. The average power consumption of different components
calculated over ten arbitrarily selected headnodes and subnodes are depicted in Fig. 5
(a) and (b), respectively.

0

400

800

1200

1600

1 2 5 10
Access cycle length (s)

P
o
w

er
 (

u
W

)

T ransceiver

Peripherals
MCU, sleep

MCU, active
Power unit

(a)

0

50

100

150

200

1 2 5 10

Access cycle length (s)

P
o
w

er
 (

u
W

)

T ransceiver

Peripherals

MCU, sleep
MCU, active

Power unit

(b)

Fig. 5. Average power consumption in 10000 node TUTWSN simulations for (a) headnode and
(b) subnode

392 M. Kuorilehto et al.

Fig. 5(a) clearly shows that the transceiver unit consumes most energy in the
headnodes. As MCU must be active while the transceiver unit is powered up, its share
is large. Due to the limited gain and leakage currents, also power unit is a major energy
consumer. In the subnodes, the power consumption of transceiver unit is not as notable
as in the headnodes, as shown in Fig. 5(b). All components are quite even due to the low
activity of the subnodes. The scale of the vertical axis is eight times larger in Fig. 5(a).

The lifetimes of TUTWSN are 3.41, 5.07, 8.81, and 10.95 hours, when the access
cycle is 1, 2, 5, and 10 seconds respectively. The network lifetime is considered as the
time until half of the nodes have run out of energy. The reason for the short lifetimes
is the small capacity of the capacitor. For comparison, with two serially connected AA
batteries, the corresponding lifetimes are approximately 11, 16, 29, and 36 months.

4 Conclusions and Future Work

WISENES implements a complete flow for rapid WSN design and implementation.
The high abstraction level modeling eases the design and evaluation of new WSNs, and
final software executables for nodes are obtained through automatic code generation.
Moreover, WISENES can be used to define constraints to node platform design for
different application and protocol configurations.

WISENES has been implemented and it is fully functional. Results show that the
modeling of node resource consumption is very accurate. Function-level energy con-
sumption information is achieved from SDL designs.

Our future research on TUTWSN focuses on automated application distribution.
The prototype mapping accuracy in WISENES will be further refined. The goal is to
extend platform energy consumption modeling to instruction level. It would be a very
challenging to optimize the use of instructions based on overall network requirements.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40 (2002) 102–114

2. Stankovic, J.A., Abdelzaher, T.F., Lu, C., Sha, L., Hou, J.C.: Real-time communication and
coordination in embedded sensor networks. Proceedings of the IEEE 91 (2003) 1002–1022

3. Römer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless
Communications 11 (2004) 54–61

4. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of en-
tire tinyos applications. In: Proc. 1st ACM Conference on Embedded Networked Sensor
Systems, Los Angeles, USA (2003) 126–137

5. Perrone, L.F., Nicol, D.M.: A scalable simulator for tinyos applications. In: Proc. Winter
Simulation Conference 2002, San Diego, USA (2002) 679–687

6. Karir, M., Polley, J., Blazakis, D., McGee, J., Rusk, D., Baras, J.S.: Atemu: A fine-grained
sensor network simulator. In: Proc. 1st IEEE International Conference on Sensor and Ad
Hoc Communication Networks, Santa Clara, USA (2004) 145–152

High Abstraction Level Design and Implementation Framework for WSN 393

7. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. In: Proc. 9th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Cambridge, USA (2000) 94–
103

8. Baldwin, P., Kohli, S., Lee, E.A., Liu, X., Zhao, Y.: Modeling of sensor nets in ptolemy
II. In: Proc. 3rd International Symposium on Information Processing in Sensor Networks,
Berkeley, USA (2004) 359–368

9. Park, S., Savvides, A., Srivastava, M.B.: Simulating networks of wireless sensors. In: Proc.
Winter Simulation Conference 2001, Arlington, USA (2001) 1330–1338

10. Kukkala, P., Riihimäki, J., Hännikäinen, M., Hämäläinen, T.D., Kronlöf, K.: Uml 2.0 profile
for embedded system design. In: Proc. 8th Design, Automation and Test in Europe Confer-
ence, Munich, Germany (2005) 710–715

11. IEEE standard 802.15.4: Wireless medium access control (mac) and physical layer (phy)
specifications for low-rate wireless personal area networks (lr-wpans) (2003)

12. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated, adaptive sleep-
ing for wireless sensor networks. IEEE/ACM Transactions on Networking 12 (2004) 493–
506

13. Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Energy-efficient mac protocol for a
wireless sensor network. Unpublished (2004)

s

The ODYSSEY Tool-Set for System-Level Synthesis of
Object-Oriented Models

Maziar Goudarzi and Shaahin Hessabi

Department of Computer Engineering, Sharif University of Technology, Tehran, I.R.Iran
gudarzi@mehr.sharif.edu, hessabi@sharif.edu

Abstract. We describe implementation of design automation tools that we have
developed to automate system-level design using our ODYSSEY methodology,
which advocates object-oriented (OO) modeling of the embedded system and
ASIP-based implementation of it. Two flows are automated: one synthesizes an
ASIP from a given C++ class library, and the other one compiles a given C++
application to run on the ASIP that corresponds to the class library used in the
application. This corresponds, respectively, to hardware- and software-generation
for the embedded system while hardware-software interface is also automati-
cally synthesized. This implementation also demonstrates three other advantages:
firstly, the tool is capable of synthesizing polymorphism that, to the best of our
knowledge, is unique among other C++ synthesizers; secondly, the tools generate
an executable co-simulation model for the ASIP hardware and its software, and
hence, enable early validation of the hardware-software system before full elabo-
ration; and finally, error-prone language transformations are avoided by choosing
C++ for application modeling and SystemC for ASIP implementation. 1

1 Introduction

Embedded systems are all around us. They are getting more complex and we are getting
used to using them in all aspects of our everyday life. More complex devices in lighter
packages with longer battery life-time are demanded by consumers who would change
their device for a new one in a few months and who expect to see prices falling every-
day. Such complex embedded systems can no longer be designed in an ad hoc manner;
automated design processes starting from higher levels of abstraction are essentially
required. This is confirmed by emergence of Electronic System-Level (ESL) design as
next level of abstraction in the move toward higher levels [1] and the studies that show
current system-based design flows still incorporate several manual and time-consuming
steps [2]. Addressing these requirements and shortcomings requires system-level de-
sign methodologies, to define the design flow, along with tool chains, to implement the
methodology and facilitate manipulation and use of its artifacts.

In the ODYSSEY methodology [3], summarized in Section 2, we suggest to start
design of embedded systems from an object-oriented (OO) model and to implement

1 This work is supported by a research grant from the Department of High-Tech. Industries,
Ministry of Industries and Mines of the Islamic Republic of Iran.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 394–403, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

The ODYSSEY Tool-Set for System-Level Synthesis of Object-Oriented Models 395

them as software running on Application-Specific Instruction-set Processors (ASIPs)
customized to that embedded application. This provides embedded system designer
with the reuse, flexibility, and complexity management advantages of OO modeling
along with the reusability and extendability of ASIP (as opposed to ASIC) for system
implementation.

The methodology [4, 5] treats OO designs in general, with no specific OO language
or tool in mind. To implement it, however, specific languages and tools need to be
chosen. We decided to use a single language for hardware and software parts of the
system so as to avoid error-prone language transformations. Such transformations com-
prise a well-known source of many difficulties and errors, in developing system-level
design-automation tools, that arise due to semantic difference between languages as
well as complicated tool operations. Further to the above single-language requirement,
the chosen HDL must be synthesizable by available tools to enable us report experimen-
tal results of complete implementation in addition to simulation results. Three major
alternatives were OO variants of VHDL, Java, and C++. Several extensions to VHDL
exist [6, 7, 8, 9] that include OO constructs, but they differ in their interpretation of OO
concepts and only a few of them provide a path to synthesis. Hardware synthesis from
Java [10, 11, 12] is also reported in the literature. However, its reported synthesis tools
are academic and their level of support for various language constructs were unknown
to us. We finally chose C++ since it offers necessary modeling features, it is widely
used by system designers for early system modeling and validation, and its SystemC
class library is a synthesizable HDL that is executable and provides high simulation
efficiency.

In the rest of this paper, the big picture of our system-level design methodology is
presented in next section. Section 3 provides our proposed synthesis flow from C++
to final implementation. Section 4 presents the details of our system-level synthesizer
tools. Testing procedure of the tool and system-synthesis experiments are given in Sec-
tion 5 and finally Section 6 concludes the paper.

2 The ODYSSEY System-Level Design Methodology

Our system-level design methodology, named ODYSSEY (Object-oriented Design and
sYntheSiS of Embedded sYstems) [3], consists of two parts: a modeling methodol-
ogy and an implementation methodology. In modeling the system-under-design, we ad-
vocate the OO methodology, while for system implementation it follows the idea of
programmable platforms. The rationale behind our modeling methodology is the dom-
inance of software over hardware in embedded systems [13] and the high reputation of
OO in the software design community due to its good support for design abstraction and
reuse. As the motive for our implementation method, the high cost of design along with
the high cost and risk of manufacturing application-specific integrated circuits (ASICs)
in today very deep submicron technologies [14] justifies our decision.

ODYSSEY wishes to view the system model as a collection of concurrently commu-
nicating objects (application-level objects, not implementation-level ones). The model
of computation is objects communicating through structured messages. Multiple threads

396 M. Goudarzi and S. Hessabi

of control can co-exist in the system. Guarded operations are considered for synchro-
nization between concurrent threads.

To implement such a system model, a two-level mapping is performed. First, the
concurrency in the system model is mapped to a network of interconnected processors.
Then, each processor is specialized to the set of objects that it is to serve by moving
some functionality to hardware; we call such a specialized processor an object-oriented
application-specific instruction processor, or an OO-ASIP2. The quantum of this migra-
tion to hardware, and hence the hardware/software partitioning quantum in ODYSSEY,
is a method of a class; methods assigned to the hardware partition are called hardware
methods and the others are software methods. We have previously presented two archi-
tectures for an OO-ASIP [4, 15]. The latter gives a scalable efficient implementation
for virtual method dispatch to hardware- as well as to software-methods and is im-
plemented by our tool; however, it necessitates additional care during synthesis that is
discussed in Section 4.2.

As mentioned above, we have broken implementation of the ODYSSEY design flow
into two parts: mapping the objects to the processors, and implementing the thread(s)
assigned to each processor. In this paper, we present the latter where a single processor
is to be synthesized and a single thread of execution is considered.

3 Single Processor Synthesis Flow

Fig. 1 shows the synthesis flow for a single-processor target. The input program is given
as a set of header and program files that together define the class library as well as the
main() function where the objects are instantiated and the sequence of method calls
among them is specified. The entire process is divided into two layers: we consider the
upper layer as system-level synthesis; this layer takes the system model and produces
the software- along with the hardware-architecture in a mix of structural and behav-
ioral modeling styles. The lower layer is considered downstream synthesis; it takes
the above-mentioned hardware and software partitions and produces gate-level hard-
ware and object-code software. We focus on the system-level synthesizer in this paper.
Downstream synthesis uses traditional tools and is not of particular interest here. It is
noteworthy, however, that since we pass the hardware partition directly to downstream
synthesis (so as to take advantage of the available SystemC-synthesis technology) the
subset of C++ constructs that such tools accept defines the synthesizable subset that our
tool allows in method code.

In system-level synthesis (the part above dashed line in Fig. 1), the input program
and class library are parsed and analyzed to extract class-inheritance hierarchy, symbol
table, and definitions of methods. Then the methods are, currently manually, assigned
to either hardware or software partitions (the “Partitioning” box in Fig. 1) and then
the method definitions are transformed to suit their assigned partition (boxes labeled
“Transformations”). Moreover, the partitioning box generates some macros (shown as
“Instr-set extensions” box) that are required for proper compilation of the software

2 The OO-ASIP does have other features than simple hardware acceleration. Interested reader is
referred to [4, 15] for more details.

The ODYSSEY Tool-Set for System-Level Synthesis of Object-Oriented Models 397

Fig. 1. The ODYSSEY Single-processor synthesis flow

partition; these macros represent hardware methods wherever they are called in the
software partition. Transformed methods in each partition are then passed to their cor-
responding structure generator box that appropriately assembles them together. The
resulting hardware (in SystemC) and software (in C++) can be simulated together, as
the co-simulation of the post-synthesis system, in any environment that supports the
SystemC class library.

4 System-Level Synthesis

The big picture of system-level synthesis and the correspondence between model and
implementation elements are depicted in Fig. 2. The input consists of a set of classes
along with a main() function (the left hand side of Fig. 2). The output is a synthesiz-
able processor architecture comprised of some hardware units and a traditional proces-
sor core, along with a software architecture containing a set of software routines and a
single thread main() function (the right hand side of Fig. 2). The implementations of
hardware methods are put in the hardware modules in the middle of the OO-ASIP box in
Fig. 2, whereas the implementations of software methods are put in the “traditional pro-
cessor” module. The input main() function is converted to the thread main() routine
in the processor software. The objects’ data are put in an object-identifier-addressable
memory unit, referred to as object management unit or OMU.

4.1 Structure of the Tool

The synthesis tool is object-oriented itself. It consists of three major types of objects:
an input parser object, an output writer object, and per partition synthesizer objects re-

398 M. Goudarzi and S. Hessabi

Fig. 2. The big picture of transformations in the system-synthesis process

siding between the previous two. The big picture of these objects and their functionality
are briefly presented below. For ease of referencing, the following definitions are made:

Definition 1: The input OO model consists of a class library that declares and defines
all available classes. We refer to this class-library-under-synthesis as CLUS hereafter.

Definition 2: The declaration of objects and the sequence of method calls among them
is defined in a main() function in the input OO model. This application-under-synthesis
is referred to as AUS hereafter.

Input Parser: This object reads in the input file and produces a parse tree along with
other necessary data structures for further processing. If the input model contains sev-
eral files, they are all concatenated into a single one for easier parsing. The input file
contains both the CLUS and the AUS. At the construction time of this object, the input
file is parsed, the hierarchy of classes is built, the symbol table is generated, and the
member functions and their definitions are found. Then, the system is partitioned by
assigning each method to the hardware or the software partition.

Synthesizers: These are the main objects responsible for synthesizing hardware and
software methods. They operate on individual method definitions and transform them
to suit hardware or software implementation according to their assigned partition. More
details of these transformations are presented in Section 4.2.

Output Writer: This object assembles all hardware and software methods synthesized
by above Synthesizer objects and writes out the complete co-simulation model of the
OO-ASIP (see Section 4.3).

4.2 Model Transformations

Since SystemC is actually a C++ class library itself, support for several C++ constructs
is provided effortlessly. However, some constructs need special handling and transfor-
mations, explained below, due to the special architecture of the OO-ASIP. This spe-
ciality arises from the partitioning quantum of our methodology; we assign each class
method to either partition, and consequently, dispatching a call to method implementa-

The ODYSSEY Tool-Set for System-Level Synthesis of Object-Oriented Models 399

tions, passing parameters to them, and returning values from them needs to be carefully
worked out so that all four cases of hardware or software caller to hardware or software
callee are appropriately handled. Furthermore, the methodology allows redefinitions of
the same virtual method to reside in different partitions. This is a significant feature
of the methodology that enables systematic application of software patches to extend,
upgrade, or correct missing or faulty hardware units. To provide efficient dispatching
of a virtual method call to hardware- as well as software-method implementations, we
have devised a network-based dispatching mechanism presented in [15]; we view each
method call as a packet to be sent over a network from the caller to the callee, carry-
ing the call parameters as its data payload. This approach necessitates a special object
numbering scheme, instead of the traditional address-in-memory scheme, that in turn
necessitates special treatment of object instantiation and pointer-to-object declaration
and use. The following paragraphs discuss each of the above special handlings and
presents the corresponding transformations applied to the source C++ routines.

Object Instantiation. In a traditional processor, each object is assigned a memory por-
tion whose starting address identifies the object. In the same way, we also allocate
memory portions for object data; however, our special object-numbering scheme re-
quires each object to be identified by a new object-identifier comprised of the identifier
of the class of the object (i.e. cid) and the unique-in-this-class number assigned to this
object (i.e. objn). We refer to this (cid, objn) pair as oid hereafter. This change in the ob-
ject identifier introduces two issues: allocating a unique oid per object, and mapping it
to the memory address when the object data is to be accessed. The first issue is handled
by keeping track of per-class objn numbers already assigned to objects. The second is-
sue is handled by a mapping hardware (the OMU) that translates the oid to its physical
address. In other words, the OMU is an oid-addressable memory.

Object-Pointer Declaration and Use. The change we have proposed in the object iden-
tifier results in a change in the values that the pointers hold; a pointer holds oid values
now. In transforming a class method (regardless of its being hardware- or software-
method), wherever the address of an object is assigned to a pointer, the oid of that
object is replaced instead.

Access to Object Attributes. To access the attributes of an object, the physical address
of the object data in memory must be known. This was readily available in traditional
processors as the object identifier, but in our methodology this needs to be extracted
from the oid. To do this, our synthesis tool identifies all object access statements in
the input program and replaces them with an OBJ ATTR(oid, attr index) macro
in the output. The first operand of the macro is the oid of the desired object, which is
translated by the macro to the starting address of the object, and the second operand is
the index of the desired attribute in the object data storage.

Virtual Method Calls. To invoke the packet-based method-dispatching mechanism in
hardware- and software-methods, the virtual method calls in the input program are
replaced by special macros of VMC BY HW and VMC BY SW respectively. Both

400 M. Goudarzi and S. Hessabi

macros take two parameters; the first parameter is the oid of the called object and the
second one is the identifier of the called method.

Passing Parameters to Virtual Methods. The same packet that dispatches a method
call can indeed carry the parameters of the call. Simple data types, e.g. int, char, float,
are trivial in this regard; however, more interesting cases arise when considering com-
plex data types such as objects, arrays, pointers, and references. Objects and arrays
can be passed by value, but this incurs an overhead due to transfer of possibly large
amounts of data between the caller and the callee. Call by reference, and also pointer
parameters, are only supported for objects since only objects are stored in the global
data memory that is equally accessible to all hardware and software method implemen-
tations; if pointer parameters and/or call-by-reference are desired for other data types,
the actual parameters can be declared as objects instead.

Returning Values from Virtual Methods. As in C++ programs, method calls are
blocking in the system implementation; i.e. the caller waits for the callee to finish
its operation. This end-of-operation is announced by a METHOD DONE packet from the
callee to the caller. This same packet can also carry the return value. All return and
return(val) statements in method definitions are respectively replaced by RETURN and
RETURN VAL(val) macros that accomplish the necessary packet assembly and posting.

4.3 The Co-simulation Model

Our tool-set not only generates the hardware and software partitions, but also produces
a simulatable post-synthesis model to allow integration-test before completion of down-
stream synthesis steps. This co-simulation model is in SystemC and contains hardware-
as well as software-methods in their transformed C++ form; consequently, it not only
provides integration-test earlier in the synthesis process, but also runs much faster than
detailed post-downstream-synthesis co-simulation. This enables the designer to verify
the system-synthesis process in isolation from the downstream process.

The architecture of the co-simulation model is shown in Fig. 3. The OO-ASIP mod-
ule has two network lines, net in and net out, to connect to other OO-ASIPs on a
network. The reset input is used to restart the OO-ASIP. The clk input is required
by the SystemC synthesis tool (it only supports SC CTHREAD, i.e. clocked thread,
processes for synthesis) and could be omitted if only co-simulation were desired. As-
sertion of the reset signal starts the co-simulation. This triggers restarter() pro-
cess which invokes the thread main() routine. This routine first calls constructors of
the objects, and then continues as in the original main(). To make a method call, the
thread main() routine assembles a packet, sends it to the net out output of the cpu
module, and waits for the method completion. In our current implementation, net in
and net out ports of the OO-ASIP module are externally connected together while all
hardware modules and the cpu itself are listening to the network and get invoked by
any new packet sent there. Everybody checks the packet destination against its own ad-
dress and takes it if they match. Each hardware module implements only one hardware
method, whereas the cpu can contain several software methods. Thus, if the recipient
is a hardware module, its single transformed-by-the-tool method code is run; but if the

The ODYSSEY Tool-Set for System-Level Synthesis of Object-Oriented Models 401

Fig. 3. The architecture of the post-synthesis co-simulation model

cpu receives the packet, it is internally dispatched to the appropriate software routine
implementing the called method. Every hardware or software method may also call a
virtual method; the procedure of method dispatching is the same as non-virtual calls. All
software and hardware methods may also access attributes of an object; this is redirected
to the OMU which implements an object-identifier-addressable memory.

5 Experiments

We implemented our system-synthesizer tools in C++; the implementation, in its current
state, consists of about 3000 lines of code. It has taken about two man-months to devise
the co-simulation model and manually develop and test it and an additional 5 man-
months to develop and test the tools.

Table 1. Summary of the test cases devised for the tools

Test Description

test1 Object instantiation + constructor invocation.
test2 Pointer declaration, assignment, and use.
test3 Virtual method call (VMC) by the main() function. The call is dispatched to

a hardware-method, it finishes, and then control is passed back to main().
test4 The same as above, but to a software-method callee.
test5 VMC by the main() to a hardware method. This time both the hardware

method and main() access and manipulate the object attributes.
test6 The same as above, but to a software-method callee.
test7 VMC by the main() while passing two parameters: a by-value parameter, and

a by-reference object.
test8 The same as above, but to a software-method callee.
test9 VMC by the main() to a hardware-method that returns a value
test10 The same as above, but to a software-method callee.
tests The same as test3 to test10 above, but this time a hardware method starts

11-18 the transactions.

402 M. Goudarzi and S. Hessabi

To thoroughly verify proper operation of the tool, we devised a comprehensive set
of test cases that incrementally covered all aspects that the tool should handle (Sec-
tion 4.2). Table 1 gives a summary of these test cases and the points that each adds to
previous ones. The first two test cases deal with object instantiation and object-pointer
declaration and use. Tests number 3 to 10 verify proper synthesis when a software caller
makes a virtual method call (tests 3 and 4), when attributes of the object are manipulated
by the caller and the callee (tests 5 and 6), when by-value and by-reference parameters
are passed to the callee (tests 7 and 8), and finally when a value is returned by the callee
(tests 9 and 10). This same set of tests are performed for a hardware caller by tests
number 11 to 18.

The co-simulation capability of our generated hardware-software system enabled
us to make sure that the system-synthesis is correctly performed on each test case
by running the pre- and post-synthesis programs and comparing their outputs against
each other. This same capability can benefit system-designers in verifying the system-
synthesis process and validating the partitioned system before proceeding to down-
stream synthesis steps.

6 Summary and Conclusion

The main thrust of this paper is to describe and discuss implementation details and
advantages of an EDA tool-set that automates design of embedded systems in the
ODYSSEY methodology. These tools automatically generate hardware, software, and
their interface from a given class library and application. Although the methodology
is language-neutral, its implementation (i.e., the EDA tool-set) cannot stay neutral on
this. We chose C++ as the input language and SystemC-C++ as the output for hardware
and software components respectively; these choices eliminated error-prone language
transformations. Furthermore, this paper introduced a hardware-software co-simulation
model that our EDA tool-set generates as the result of system-level synthesis. This
co-simulation model is in SystemC, and hence, is an executable model of the hardware-
software partitioned system generated by the tools. This property was used in this paper
to efficiently verify correct operation of our design automation tools by comparing the
results of executing pre- and post-synthesis models. This same approach can be used
to validate consistency of generated hardware and software partitions and their inter-
face. This efficient validation, due to executable high-level co-simulation model, allows
early detection of probable mistakes or inconsistencies and serves as a design check-
point before diving into time-consuming and intricate process of elaborating hardware
and software partitions.

We are currently working on downstream synthesis steps (see Fig. 1) to complete
the automated tool-chain from concept to working implementation on an FPGA board
so as to make it practically possible to realize embedded systems in ODYSSEY style.
Real-life case studies will be conducted afterwards to evaluate, tune, and/or amend the
tool chain and/or the methodology.

The ODYSSEY Tool-Set for System-Level Synthesis of Object-Oriented Models 403

References

1. Flaherty, N.: On a higher level. The IEE Review (2004) 22–24 Report from the 41st Design
Automation Conference.

2. Schubert, T., Hanisch, J., Gerlach, J., Appell, J., Nebel, W.: Evaluating a system-based design
flow. IEE Electronics Systems and Software (2004) 29–33

3. ODYSSEY Project: Online Homepage. (2005) http://ce.sharif.ir/˜ odyssey.
4. Goudarzi, M., Hessabi, S., Mycroft, A.: Object-oriented ASIP design and synthesis. Proc.

of Forum on specification & Design Languages (FDL) (2003) Frankfurt.
5. Goudarzi, M., Hessabi, S., Mycroft, A.: Object-oriented embedded system development

based on synthesis and reuse of OO-ASIPs. Journal of Universal Computer Science (J.UCS)
(2004) In press.

6. Ashenden, P., Wilsey, P., Martin, D.: SUAVE: Painless extension for an object-oriented
VHDL. Proc. of VHDL Int’l Users’ Forum (VIUF) (1997)

7. Radetzki, M.: Synthesis of Digital Circuits from Object-Oriented Specifications. PhD thesis,
University of Oldenburg, Germany (2000)

8. Schumacher, G., Nebel, W.: Inheritance concept for signals in object-oriented extensions to
VHDL. Proc. of EURO-DAC with EURO-VHDL (1995)

9. Radetzki, M., Putzke-Roming, W., Nebel, W., Maginot, S., Berge, J., Tagant, A.: VHDL
language extensions to support abstraction and re-use. Proc. of Workshop on Libraries,
Component Modelling, and Quality Assurance (1997)

10. OASE Project: Objektorientierter hArdware/Software Entwurf: Online Home Page. (2004)
http://www-ti.informatik.uni-tuebingen.de/˜ oase/.

11. Kuhn, T., Oppold, T., Winterholer, M., Rosenstiel, W., Edwards, M., Kashai, Y.: A frame-
work for object oriented hardware specification, verification, and synthesis. Proc. of Design
Automation Conference (DAC) (2001) Las Vegas, Nevada.

12. Young, J., MacDonald, J., Shilman, M., Tabbara, A., Hilfinger, P., Newton, A.: Design and
specification of embedded systems in Java using successive, formal refinement. Proc. of
Design Automation Conference (DAC) (1998)

13. International Semiconductor Roadmap Committee: International Technology Roadmap for
Semiconductors (ITRS)-Design. (2003) http://public.itrs.net.

14. Keutzer, K., Malik, S., Newton, A.: From ASIC to ASIP: the next design discontinuity. Proc.
of Int’l Conference on Computer Design (ICCD) (2002)

15. Goudarzi, M., Hessabi, S., Mycroft, A.: Overhead-free polymorphism in network-on-chip
implementation of object-oriented models. Proc. of Design Automation and Test in Europe
(DATE) (2004) Paris.

Design and Implementation of a WLAN Terminal Using
UML 2.0 Based Design Flow

P. Kukkala, M. Hännikäinen and T.D. Hämäläinen

Tampere University of Technology, Institute of Digital and Computer Systems,
P.O. Box 553, FIN-33101 Tampere, Finland

petri.kukkala@tut.fi

Abstract. This paper presents a UML 2.0 based design flow for real-time embed-
ded systems. The flow starts with UML 2.0 application, architecture and mapping
models for our TUTWLAN terminal with its medium access control protocol.
As a result, the hardware/software implementation on Altera Excalibur FPGA is
achieved. Implementation utilizes eCos real-time operating system, and hardware
accelerators for time-critical protocol functions. The design flow is prototyped in
practice showing rapid UML 2.0 application model modification, real-time pro-
tocol processing in an image transfer application, and execution monitoring.

1 Introduction

Several design frameworks have been proposed for high-level systems design to meet
the challenges of ever-increasing system complexity. However, most of the approaches
concentrate on a specific flow aspect, but rarely cover the whole flow from an abstract
model to physical implementation.

UML 2.0 is converging on a general design language that can be understood by
system designers as well as software and hardware engineers [8]. Many UML profiles
have been proposed to adapt UML to this purpose. For instance, the UML Platform
profile [2] introduces a way to model architecture resources and services, and the UML
Profile for Schedulability, Performance, and Time [9] defines notations for building
models of real-time systems with Quality of Service (QoS) parameters.

This paper presents a novel UML 2.0 based design flow that uses a custom UML
profile, called TUT-Profile [7]. The flow comprises the UML application, architecture
and mapping models, and includes automatic code generation, real-time execution mon-
itoring, model profiling and performance back-annotation to the UML models. The
main contribution of the approach are the methods to govern the whole flow using UML
2.0.

This paper shows the use of UML 2.0 in the implementation of a time-critical em-
bedded system including both hardware and software. The target is the implementation
of a proprietary TUTWLAN terminal on Altera Excalibur FPGA with an embedded
processor core and eCos Real-time Operating System (RTOS). Rapid model modifica-
tion is performed by changing the functionality of the terminal to illustrate the use of
the design flow in practice.

The paper is organized as follows. First, TUTWLAN is introduced in Section 2. The
design flow to implement the TUTWLAN terminal is presented in Section 3. Thereafter,

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 404–413, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Design and Implementation of a WLAN Terminal Using UML 2.0 Based Design Flow 405

the implemented terminal, real-time execution monitoring, and rapid model modifica-
tion are presented in Section 4. Finally, Section 5 concludes the paper.

2 TUTWLAN and the TUTMAC Protocol

TUTWLAN [6] is a proprietary WLAN developed at Tampere University of Technol-
ogy (TUT). TUTWLAN solved the problems of scalability, QoS and security present
in standard WLANs. The wireless network has a centrally controlled topology, where
one base station controls and manages multiple portable terminals. Several configura-
tions have been developed for different purposes and platforms. In this we present one
configuration of the TUTMAC protocol.

TUTMAC is a dynamic reservation Time Division Multiple Access (TDMA) based
Medium Access Control (MAC) protocol for TUTWLAN. The protocol supports nego-
tiated QoS parameters for the data transfer, and is capable for managing the dynamically
changing network topology.

The protocol contains functions for Cyclic Redundancy Check (CRC) and encryp-
tion. CRC is performed for headers with CRC-8 algorithm, and for payload data with
CRC-32 algorithm. Encryption is performed for payload data using an Improved Wired
Equivalent Privacy (IWEP) algorithm [5]. The algorithm encrypts payload data in 64-bit
blocks, and uses an encryption key of same size.

The functions are performed for every packet sent and received by a terminal. Thus,
their performance become significant, especially, when the data throughput increases
and several packets are simultaneously processed by the protocol. Depending on the
implementation, the algorithms may need hardware acceleration to achieve adequate
delays for data. Further, the radio channel access has to maintain accurate frame syn-
chronization in the TDMA scheduling, which sets tight real-time constraints and need
for prioritizing the protocol processing.

3 UML 2.0 Design Flow for the TUTWLAN Terminal

The flow to design and implement the TUTWLAN terminal is presented in Fig. 1.
The flow starts with three UML models for an application, architecture and mapping,
which describe the TUTWLAN terminal as a whole. At least an application must be
provided by a designer, but the architecture and mapping can also be produced using an
architecture exploration tool, such as Koski [10].

The application model implements the functionality of the terminal. Software for
TUTMAC is automatically generated based on the application model. External C func-
tions can be included in the model if needed. Software is executed using an RTOS, and
the thread configuration is retrieved from the mapping model. In this case, the thread
configuration is fixed and manually retrieved, but the task can also be automated. The
architecture model is composed of existing hardware components available in a library.
In this case, the implementation is fixed, but the component selection can also be dy-
namic and automated.

406 P. Kukkala, M. Hännikäinen and T.D. Hämäläinen

Target processor
compiler

Target processor
compiler

WorkstationWorkstation

UML 2.0 models
designed with

TUT-Profile

UML 2.0 models
designed with

TUT-Profile

Automatic
code generation

Automatic
code generation

Ta
u

G
2

TUTWLAN terminal
on Altera Excalibur
TUTWLAN terminal
on Altera Excalibur Execution statisticsExecution statistics

External C functionsExternal C functions

Interface functionsInterface functions

eCos RTOSeCos RTOS

Executable
TUTMAC protocol

Executable
TUTMAC protocol

UML model
profiler

UML model
profiler

TUTMAC
Execution monitor

TUTMAC
Execution monitor

Performance
back-annotate

Models in
XML format

TUTMAC
application model

TUTMAC
application model

TUTWLAN terminal
architecture model

TUTWLAN terminal
architecture model

TUTWLAN terminal
mapping model

TUTWLAN terminal
mapping model

Component
selection

from library

Component
selection

from library

Thread configurationThread configuration

Generated codeGenerated code

TUTMAC
execution
TUTMAC
execution

Execution traceExecution trace

* *

* Fixed by
user in

this case

Fig. 1. UML 2.0 based design flow for the implementation of the TUTWLAN terminal

During execution, a trace and statistics are collected using custom functions. The
model profiling uses the trace to back-annotate performance information to the UML
models. Statistics are used for the real-time execution monitoring.

The terminal is implemented on Altera Excalibur FPGA on EPXA1 development
board [1]. The FPGA contains an ARM9 processor and a Programmable Logic Device
(PLD) connected by AMBA Bus (AHB) and dual-port memory. A 2.4 GHz MACless
Intersil HW1151-EVAL radio transceiver is connected to the development board with
an expansion header. On PLD, custom hardware accelerators and interfaces to access
external devices are implemented using VHDL.

Telelogic Tau G2 [11] is used as an UML design tool. The tool also enables auto-
matic C code generation for an application. The generated code supports POSIX stan-
dard for threaded execution of software. eCos RTOS [3] is utilized to the software exe-
cution. eCos provides a POSIX compatibility layer supporting the standard Application
Programming Interface (API) to interface the kernel.

3.1 UML 2.0 Models

The UML models are constrained by our custom TUT-Profile [7], which is targeted
to the design of real-time embedded systems using a model based approach. The pro-
file defines a set of stereotypes for extending the standard UML metaclasses, and de-
sign practises to describe an application and architecture as well as their mapping. The
stereotypes have tagged values for the real-time constraints.

TUTMAC Application Model. The class hierarchy of TUTMAC is designed using
class diagrams. Thereafter, composite structure diagrams are used to describe the struc-
ture of the protocol in a more detailed way. The parts (class instances) communicate
sending signals via ports and connectors.

The composite structure diagram of the top-level class Tutmac_Protocol is pre-
sented in Fig. 2(a). The mng and rmng parts are instances of the functional components,
and they represent the processes of the application model. The ui, rca, and dp parts are
instances of the structural components, which are further hierarchically modeled using
class diagrams and composite structure diagrams.

Design and Implementation of a WLAN Terminal Using UML 2.0 Based Design Flow 407

ui : UserInterface

UserPort

DPPort

MngPort <<ApplicationProcess>>

mng : Management [1] / 1
UIPort

RChPort

MngUserPort

RMngPort

rca : RadioChannelAccess

DataPort

MngPort

PhyPort RMngPort

dp : DataProcessing

UserInterfacePort

ChannelAccessPort

<<ApplicationProcess>>

rmng : RadioManagement [1] / 1
RChPort PhyPort

MngPort

pUser

pMngUser

pPhy

(a) Top-level composite structure diagram

Diagram type Amount

Class diagrams 18
Composite structure diagrams 5
Statechart diagrams 41

Property Amount

State machines (processes) 20
Ports 52
Signal types 40

(b) Amount of diagrams and properties

Fig. 2. TUTMAC UML 2.0 application model with TUT-Profile

In TUTMAC, the behavior of functional components is expressed using statechart
diagrams combined with the UML 2.0 textual notation. Statecharts are asynchronous
communicating Extended Finite State Machines (EFSM) [4].

Figure 2(b) presents the amount of UML diagrams and main properties of the TUT-
MAC UML model to illustrate the size and complexity of the model.

TUTWLAN Terminal Architecture Model In this case, the architecture of the
TUTWLAN terminal is fixed. An existing library contains UML models for the fixed
components of Excalibur FPGA, including the processor, AHB and dual-port memory,
as well as custom hardware accelerators and interfaces. The components are stereo-
typed using TUT-Profile to parameterize each component. The architecture model for
the TUTWLAN terminal is presented in Fig. 3.

TUTWLAN Terminal Mapping Model The mapping model connects an application
with an architecture. Mapping is performed in two stages. First, application processes
are grouped, and thereafter, the groups are mapped to an architecture. Grouping can be
performed according to different criteria, such as workload distribution, communication
between groups, and the size of groups.

A process group maps a number of application processes to a platform component
instance. In software, a process group is implemented as a single thread, and in hard-
ware, as a single hardware accelerator, depending on the case.

Figure 4 shows the process grouping, which is based on the features of the processes.
Most of the processes are divided into LowPrio and HighPrio groups that correspond to
low and high priority threads in the software implementation. In addition, the processes
related to the CRC-32 calculation and encryption are grouped into separate CRC32 and

408 P. Kukkala, M. Hännikäinen and T.D. Hämäläinen

<<PlatformComponentInstance>>

Processor : ARM922T
AHBMasterPort

<<CommunicationSegment>>

AHB1 : AHB
AHBSlavesPort AHBMastersPort

<<CommunicationSegment>>

AHB2 : AHB
AHBSlavesPort AHBMastersPort

<<PlatformComponentInstance>>

DPRAM : DPRAM

AHBSlavePort

MemBusPort

<<PlatformComponentInstance>>

Accelerator1 : CRC32

AHBSlavePort MemBusPort
<<PlatformComponentInstance>>

Interface1 : RadioInterface

AHBSlavePort MemBusPort
<<PlatformComponentInstance>>

Interface2 : SerialInterface

AHBSlavePort MemBusPort

<<CommunicationSegment>>

MemAccess : SharedMemAccess

MemBusPort

MUXMemBusPort

<<PlatformComponentInstance>>

AHB1_2 : AHBBridge

AHBSlavePort

AHBMasterPort

<<CommunicationSegment>>

AHB_PLD : AHB
AHBSlavesPortAHBMastersPort

<<PlatformComponentInstance>>

AHB2_PLD : AHBBridge

AHBSlavePort

AHBMasterPort

<<PlatformComponentInstance>>

Accelerator2 : Encryption

MemBusPortAHBSlavePort

Fig. 3. TUTWLAN terminal architecture

<<ProcessGroup>>

Group3 : CRC32

<<ProcessGroup>>

Group1 : LowPrio

<<ApplicationProcess>>

...::Tutmac_Protocol::mng

<<ApplicationProcess>>

...::Tutmac_Protocol::rmng

<<ApplicationProcess>>

...::UserInterface::msduRec

<<ApplicationProcess>>

...::UserInterface::msduDel

<<ApplicationProcess>>

...::UserInterface::pc

<<ApplicationProcess>>

...::RadioChannelAccess::scheduler

<<ApplicationProcess>>

...::RadioChannelAccess::crc8

<<ApplicationProcess>>

...::RadioChannelAccess::ack

<<ApplicationProcess>>

...::RadioChannelAccess::ri

<<ApplicationProcess>>

...::DataProcessing::frag

<<ApplicationProcess>>

...::DataProcessing::service

<<ApplicationProcess>>

...::DataProcessing::duphand

<<ApplicationProcess>>

...::DataProcessing::defrag

<<ApplicationProcess>>

...::DataProcessing::uu2mu

<<ApplicationProcess>>

...::DataProcessing::mu2uu

<<ApplicationProcess>>

...::DataProcessing::dup

<<ApplicationProcess>>

...::DataProcessing::addcrc

<<ApplicationProcess>>

...::DataProcessing::checkcrc

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGroup>>

Group2 : HighPrio

<<ProcessGroup>>

Group4 : Encryption

<<ApplicationProcess>>

...::DataProcessing::encrypt

<<ApplicationProcess>>

...::DataProcessing::decrypt

<<ProcessGrouping>>

<<ProcessGrouping>>

Fig. 4. TUTMAC process grouping

Encryption groups. It should be noted that the flow does not restrict the number of
groups.

Figure 5 presents the platform mapping of TUTMAC. The process groups defined
above are mapped on the architecture model. In this case, the mapping model is created
manually, but the task can be automated using an architecture exploration tool, such as
Koski [10]. If the designer has created a preliminary mapping when using architecture
exploration, the tool optimizes the mapping, but retains fixed mappings.

Design and Implementation of a WLAN Terminal Using UML 2.0 Based Design Flow 409

<<PlatformComponentInstance>>

...::TUTWLAN_Platform::Processor

<<PlatformComponentInstance>>

...::TUTWLAN_Platform::Accelerator1

<<ProcessGroup>>

Group3 : CRC32
<<PlatformMapping>><<ProcessGroup>>

Group1 : LowPrio <<PlatformMapping>>

<<ProcessGroup>>

Group2 : HighPrio

<<PlatformMapping>>
<<PlatformComponentInstance>>

...::TUTWLAN_Platform::Accelerator2
<<ProcessGroup>>

Group4 : Encryption
<<PlatformMapping>>

Fig. 5. TUTMAC platform mapping

3.2 Implementation Phase

C code for TUTMAC is automatically generated based on the application model. The
generated code implements the functionality of state machines, but not the communi-
cation between the state machines. The generated code is complemented with run-time
libraries implementing the state machine communication.

The generated code is compiled for ARM9 using Gnu C compiler. The compilation
includes the codes for eCos, interface functions, external C functions, and the thread
configuration. eCos enables the execution and scheduling of multiple threads with mul-
tiple priority levels, preemption and timeslicing.

The interface functions are platform dependent, and they connect the generated code
with other software components and hardware. The functions take necessary actions for
the signals coming out from the application model.

The external C functions are accessed inside the application model to use existing
C implementations for algorithms, and to access hardware accelerators. In this case,
CRC-8 is implemented as an external C function, and CRC-32 and encryption hardware
accelerators are accessed using external C calling functions.

In the hardware implementation, a top-level VHDL code is written to instantiate the
hardware components, which have existing VHDL implementations in the library of
components. Next, the hardware is synthesized.

A configuration file for Excalibur FPGA is generated by combining the synthesized
hardware and executable protocol. Finally, the configuration file is programmed to the
flash memory on the development board, and the terminal is ready for use. If the exe-
cutable protocol is modified, only the configuration file is necessary to regenerate, while
the synthesized hardware is retained untouched.

3.3 Execution Monitoring and Model Profiling

The execution statistics include the data throughputs and delays of TUTMAC. The
statistics are used for the real-time monitoring of performance, but they can also be
stored into a file for the analysis of a larger set of data.

The execution trace contains information about the state transitions, signal transfers,
timer events, and thread switching on the protocol. Time stamps for each event are
stored. The UML model profiler analyses the trace, and combines it with the UML
model. The profiler back-annotates the performance information to the UML model. In
this way the designer gets feedback to the modeling level.

410 P. Kukkala, M. Hännikäinen and T.D. Hämäläinen

4 TUTWLAN Terminal Implementation

The final implementation of the TUTWLAN terminal on FPGA is presented in Fig. 6.
The processes of TUTMAC are implemented in eCos threads. The processes are divided
into two categories, high priority and low priority, each having an own thread with
own priority. The high priority thread include processes having real-time constraints,
including TDMA scheduling and data processing.

Programmable logic deviceProgrammable logic device

ARM9ARM9

CRC-32 Serial port interface Radio module interface

TUTMAC UML 2.0 model

Processor – PLD interface
Dual-port memory AHB

Serial portSerial port Radio moduleRadio module

Execution monitoring
Measurement thread

Encryption

Memory controller AHB interface

TUTMAC high priority thread TUTMAC low priority thread

eCos

Kernel

API

Device drivers
Hardware accelerator drivers Serial port interface driver Radio module interface driver

Fig. 6. TUTWLAN terminal implementation on the Excalibur FPGA

The execution statistics for real-time execution monitoring are collected in a mea-
surement thread. The statistics, including data throughputs and delays, are measured
continuously, and transferred to a workstation at a second interval.

Custom device drivers and API are included to eCos for accessing the hardware. The
device drivers take care of the hardware component control, including transferring data
and handling the interrupts. Respectively, API provides common functions and data
structures for applications to utilize the hardware components. The hardware accelera-
tors, serial port and radio module interfaces each have a device driver and corresponding
API implementations.

Table 1 tabulates the size of the software implementation divided into code and
data. In addition to the listed components, 5.6 kB of dynamically reserved memory is
required for the general execution, and about 150 kB for data buffering in TUTMAC.
The total size of the hardware is 3859 logic cells, which is 92.8 percents of the total
PLD capacity of the used FPGA (4160 logic cells).

Design and Implementation of a WLAN Terminal Using UML 2.0 Based Design Flow 411

Table 1. Size of the software implementation

Component name Code size Data size

TUTMAC (generated code) 18.5 kB 2.0 kB
Run-time libraries 14.7 kB 0.8 kB
Interface functions & external C 15.8 kB 1.8 kB
eCos 64.1 kB 7.9 kB
Total 113.1 kB 12.5 kB

Fig. 7. Prototype containing a TUTWLAN terminal and PocketPC device

4.1 Prototype

A prototype containing the TUTWLAN terminal and a PocketPC device with an image
transfer application is presented in Fig. 7. In all, the prototype contains two TUTWLAN
terminals, two PocketPC devices, and a workstation with the execution monitor. The
prototype is used to illustrate the real-time execution monitoring and rapid model mod-
ifications.

The PocketPC application uses data transfer services of TUTWLAN, and has server
and client sides. On the server side, a user selects the images to be transferred. On the
client side, the images are received and shown on the screen.

4.2 Execution Monitoring

The execution monitor on a workstation contains three diagrams presenting TUTMAC
user data throughput, radio data throughput and reception delay that are measured from
the pUser and pPhy ports showed in Fig. 2(a).

The user data throughput gives the amount of data to the image transfer application.
Correspondingly, the radio data throughput gives the gross data transferred between
the radio transceiver and TUTMAC. The reception delay is the total execution time
for processing a received packet between the radio transceiver and application. The

412 P. Kukkala, M. Hännikäinen and T.D. Hämäläinen

Fig. 8. User interface of the TUTMAC execution monitor

Table 2. Time for each phase of the rapid model modification

Task Time

(UML model modification 30 s)
C code generation 15 s
Compilation 25 s
Flash programming 17 s
Total (30 s) + 57 s

variation in delay is caused by the varying processing load on TUTMAC as well as the
behavior of the application transferring data.

A screenshot of the execution monitor is presented in Fig. 8. The main window
contains three diagrams presenting the execution statistics of TUTMAC, and a text
window used to output debug messages.

4.3 Rapid Model Modification

The flow enables rapid modification of the functionality and structure of TUTMAC as
well as mapping. This gives great possibilities to evaluate different implementations,
and compare their performance. The real-time execution monitoring retrieves instant
feedback about the modifications. The model profiling back-annotates the performance
information to the UML models.

Design and Implementation of a WLAN Terminal Using UML 2.0 Based Design Flow 413

As an example of the rapid model modification, a forward error correction function
is added to the UML model. Time for each phase is presented in Table 2. This kind
of efficiency can be achieved as the UML models for the application processes already
exists, and different combinations are evaluated.

5 Conclusions

This paper presented a new UML 2.0 based design flow that enables the implementa-
tion of a real-time embedded system from high-level models. Platform dependent func-
tions are implemented only once, after which new functionality in UML can be created
rapidly, and performance constraints verified. The flow was evaluated by implementing
the TUTWLAN terminal on a single-processor platform with RTOS and hardware ac-
celerators. A novel feature for performance verification is the back-annotation from the
platform.

The ongoing work include multiprocessor implementation with the Koski design
flow, and automatic allocation and scheduling of the application model processes on
different processors.

References

1. Altera homepage, February 2005. http://www.altera.com.
2. Rong Chen, Marco Sgroi, Luciano Lavagno, Grant Martin, Alberto Sangiovanni-Vincentelli,

and Jan Rabaey. UML for Real: Design of embedded Real-time Systems, chapter UML and
platform-based design, pages 107–126. Kluwer Academic Publishers, May 2003.

3. eCos homepage, February 2005. http://ecos.sourceware.org.
4. Stefania Gnesi, Diego Latella, and Mieke Massink. Modular semantics for a UML state-

chart diagrams kernel and its extension to multicharts and branching time model-checking.
Journal of Logic and Algebraic Programming, 51(1):43–75, 2002.

5. Panu Hämäläinen, Marko Hännikäinen, Timo D. Hämäläinen, and Jukka Saarinen. Hardware
implementation of the improved WEP and RC4 encryption algorithms for wireless terminals.
In Proceedings of the European Signal Processing Conference, volume 4, pages 2289–2292,
September 2000.

6. Marko Hännikäinen, Tommi Lavikko, Petri Kukkala, and Timo D. Hämäläinen. TUTWLAN
- QoS supporting wireless network. Telecommunication Systems - Modelling, Analysis, De-
sign and Management, 23(3,4):297–333, 2003.

7. Petri Kukkala, Jouni Riihimäki, Marko Hännikäinen, Timo D. Hämäläinen, and Klaus Kron-
löf. UML 2.0 profile for embedded system design. In Proceedings of the Design, Automation
and Test in Europe, volume 2, pages 710–715, March 2005.

8. Luciano Lavagno, Grant Martin, and Bran Selic, editors. UML for Real: Design of Embedded
Real-time Systems. Kluwer Academic Publishers, May 2003.

9. Object Management Group (OMG). UML Profile for Schedulability, Performance, and Time
Specification (Version 1.1), January 2005.

10. Erno Salminen, Vesa Lahtinen, Tero Kangas, Jouni Riihimäki, Kimmo Kuusilinna, and
Timo D. Hämäläinen. HIBI v.2 communication network for system-on-chip. In Proceedings
of the International Workshop on Systems, Architectures, Modeling and Simulation, pages
413–422, July 2004.

11. Telelogic homepage, February 2005. http://www.telelogic.com.

Rapid Implementation and Optimisation of DSP
Systems on SoPC Heterogeneous Platforms

J. McAllister, R. Woods, D. Reilly, S. Fischaber, and R. Hasson

ECIT, Queens University Belfast, Northern Ireland Science Park,
Queen’s Road, Queen’s Island, Belfast, BT3 9DT, UK

{j.mcallister, r.woods, d.reilly, s.fischaber, r.hasson}@ecit.qub.ac.uk

Abstract. The emergence of programmable logic devices as processing plat-
forms for digital signal processing applications poses challenges concerning rapid
implementation and high level optimization of algorithms on these platforms.
This paper describes Abhainn, a rapid implementation methodology and toolsuite
for translating an algorithmic expression of the system to a working implementa-
tion on a heterogeneous multiprocessor/field programmable gate array platform,
or a standalone system on programmable chip solution. Two particular focuses for
Abhainn are the automated but configurable realisation of inter-processor com-
munuication fabrics, and the establishment of novel dedicated hardware compo-
nent design methodologies allowing algorithm level transformation for system
optimization. This paper outlines the approaches employed in both these particu-
lar instances.

1 Introduction

The use of digital signal processing (DSP) techniques for reliable data transportation
across a given communications channel is becoming increasingly prolific in applica-
tions such as mobile communications, radar/sonar systems and image and video com-
pression/decompression. For some of these systems, implementation on embedded mul-
tiprocessor systems composed of multiple RISC and DSP software microprocessors has
been prevalent and attempts to establish rapid implementation techniques which trans-
form an algorithm level description of the system directly to a working implementation
have emerged and matured [1, 2]. Increasingly commonly however, these platforms are
complemented, or in some cases replaced by programmable logic devices, in particular
field programmable gate array (FPGA), which have evolved to the extent where they
can act as system on programmable chip (SoPC) solutions, housing dedicated fast se-
rial communication links, microprocessors, memory and computation units. Exploiting
all these resources efficiently using current multiprocessor design techniques is difficult
since these have not evolved to a sufficient degree to allow generation of such architec-
tures from a high level algorithm expression.

This paper introduces Abhainn, a rapid implementation and exploration methodol-
ogy and toolsuite under development at ECIT which addresses these problems. Previous
works [3, 4] addressing some portions of the methodology are set in a wider context in
this paper.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 414–423, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Rapid Implementation and Optimisation of DSP Systems 415

This paper is organised as follows. Section 2 reviews related work in the area of
heterogeneous DSP system implementation and motivates the need for Abhainn. Sec-
tion 3 introduces the general methodology and system modeling techniques employed
in Abhainn. Section 4 briefly outlines the implementation technology, whilst sections 5
and 6 describe dedicated hardware and communication interface synthesis respectively
in more detail.

2 Related Work

The relatively recent emergence and rapid evolution of FPGA-based SoPC solutions
such as Virtex-II Pro [5] from Xilinx means establishing an effective rapid implementa-
tion flow for such a platform is difficult. There are a number of established approaches
to rapid implementation on multiprocessor systems and emerging approaches for het-
erogeneous systems including FPGA, each of which exhibits different characteristics,
but a number of important similarities are evident.

The use of dataflow graph (DFG) modelling techniques [6] to model DSP systems
and facilitate rapid implementation on multiprocessor systems is a well established in
both commercial and academic arenas. Techniques for scheduling and microprocessor
software synthesis [2, 7] are mature, and are prompting the diversification of research
in this area for increased functional capability. These research efforts have proven fruit-
ful in the emergence of tools for exploitation of the technology, such as GRAPE-II [8],
Ptolemy [9], PEACE [10], GEDAE [1] and Compaan [11]. Each of these approaches has
a slightly different focus in terms of modeling, implementing and optimizing systems
(e.g. GEDAE uses its own dataflow modeling languages and targets multiprocessor sys-
tems, whilst Compaan models systems using Kahn Process Networks (KPN) [12] and
at present is concentrated on dedicated hardware synthesis for FPGA.) However, there
are a number of characteristics common across some or all of these approaches:

1. Implementation independent model of computation (MoC) based specification.
2. Rapid system implementation from algorithm specification.
3. Automated inter-processor communication realisation.
4. Algorithm level transformation for implementation optimization.

These aspects are the key features of any SoPC design methodology. However, cur-
rent approaches to this problem supply only some of the aspects above. No current so-
lution has comprehensive capabilities for target platform characterization, configurable
automated inter-processor communication realization and efficient, configurable dedi-
cated hardware core network synthesis controlled from the algorithm level to trade-off
the physical characteristics of the implementation without core re-design, increase core
utilization, and balance synthesis between dedicated and programmable resource on
FPGA. It is these factors which motivate the need for a methodology such as Abhainn.
The general Abhainn system design flow is outlined in section 3.

416 J. McAllister et al.

3 Abhainn Overview

3.1 Overview

The proposed Abhainn system design methodology under development at ECIT is out-
lined in Fig. 1. There are four major processes: specification (steps 1 and 2), partitioning
(step 3), implementation (step 4) and transformation (step 5).

Specification is concerned with defining system behaviour using ideal numerical
representations (step 1) and refining this specification to identify the appropriate types
of arithmetic and wordsizes required for specific operations (step 2). Dataflow mod-
els of computation are a good choice in DSP problem domains due to their semantic
similarities with DSP systems, and capabilities for rapid system synthesis. In section
3.2, a new dataflow modeling domain, multidimensional arrayed synchronous dataflow
(MASDF) is described which has been developed for Abhainn for DSP system mod-
eling. After specification the algorithm is partitioned amongst the processing resources
on the target platform. Portions of an algorithm grouped for mapping to a particular
processor (i.e. a microprocessor or FPGA chip) define a partition. This partitioning is
external to the Abhainn toolsuite, and the partitioned algorithm is passed to the auto-
mated portion for implementation in stage 3.

The Abhainn implementation toolsuite offers an automated transformation route
from algorithm level expression to working embedded solution. The partitioned algo-
rithm input is converted to an embedded implementation on a heterogeneous multipro-
cessor/FPGA or SoPC platform. The designer controls the partitioning of the algorithm,
and defines the particular means of communication used at each inter-processor com-
munication point. The operations in this automated portion are outlined in section 4.
There are a number of key features:

1. The input partitioned algorithm must be independent of the target platform and
the processing and communication technology employed in the implementation.
It is the implementation toolsuites job to refine this description to an embedded
implementation, as outlined in section 4.

2. The target platform is characterized using a board support package (BSP), which
provides platform portability. It simplifies implementation by supplying firmware

Fig. 1. SoPC Design Methodology Overview

Rapid Implementation and Optimisation of DSP Systems 417

for each platform partition when transforming the partitioned algorithm into an
implementation.

3. The toolsuite must be independent of the host algorithm modeling tool.

Of these issues, only the first is addressed in this paper. Post-implementation the
application is launched on the embedded platform and analysed for correctness and that
real-time constraints are met with algorithm transformation should embedded optimi-
sation be required. The MASDF modeling domain developed to aid this exploration is
outlined next.

3.2 Dataflow System Specification

A DFG G={V,E} describes a set of vertices or actors V and a set of edges connecting
the actors E describing the dependencies between actors. Actor communication is token
based, where a token can be a scalar, vector or matrix to any arbitrary dimension. Actors
fire by consuming tokens through their input ports from the adjoining arcs, performing
their specified functionality on the tokens and producing the resulting tokens through
their output ports onto the adjoining arcs. Every port has an associated threshold (T),
which indicates the number of tokens that are consumed/produced at that port in a single
firing of the actor. The number of actor firings in an iteration of the schedule is known
as its granularity (G).

In DSP applications, and image processing in particular the exploitation of multi-
dimensional parallelism to exploit intra-token parallelism is of particular interest [13].
However, the discussion in [4] outlines how relying only on the behavioural seman-
tics of the dataflow domains can hinder existing rapid implementation and exploration
methodologies, especially those concerned with architectural synthesis of dedicated
pipelined hardware. For this reason, the enhanced structural semantics of multidimen-
sional arrayed synchronous dataflow (MASDF) [4] have been developed, and offer a
solution to this issue. This approach is adopted for algorithm modeling in Abhainn.

An MASDF graph G={Vf ,E f } describes a set of actor and arc families [14]. The
MASDF graph of a matrix multiplication actor is shown in Fig. 2. Actor and arc families
are indicated by the presence of shadows. Arcs transport streams of tokens. These are
high bandwidth communication channels where data flows throughout the execution
of the resulting embedded system. In addition, parameter data is supported, where a
parameter is a run-time constant which requires no communication bandwidth after
initialization of the embedded manifestation.

The size of the family is denoted above the actors in triangular braces (fsize in Fig. 2).
Here, alteration of the parameter y by the designer alters the size of the actor family,

Fig. 2. MASDF Matrix Multiplication

418 J. McAllister et al.

and the size of the matrices (denoted in circular braces in Fig. 2) consumed at port
b and produced at port o on each actor instance. In an architectural hardware synthe-
sis methodology for each MASDF actor, if every actor corresponds one-to-one with a
parameterised hardware core in the implementation then the designer controls the num-
ber of processing components (i.e. resource requirements, throughput) and the size of
tokens processed by each (i.e. resource, throughput, latency and memory). This is a
powerful graph level optimization capability enabled by the MASDF domain and asso-
ciated modular hardware synthesis approach.

An MASDF actor is configurable in four aspects: X the token dimensions at each of
the actor ports, G, granularity of the actor in the schedule, T, threshold at each of the
actor ports and S, the number of streams impinging on each actor port. It is essential that
the cores are flexible for different configurations since this configurability is exploited
for system transformation and optimization. Developing rapid, efficient core synthesis
approaches which ensure this configurability are ongoing as part of the Abhainn devel-
opment.

After specifying the system using MASDF, and partitioning the algorithm amongst
the platform processing resources, the automated portion of Abhainn, for rapid imple-
mentation, is applied. This is described next.

4 Abahinn Implementation Toolsuite Overview

On dividing the algorithm amongst the partitions, inter-processor communication points
are inserted where algorithm dependencies cross the boundary between partitions. To
implement the partitioned algorithm, three main factors require resolution: software
synthesis for software partitions, hardware synthesis for hardware partitions, and gen-
eration of a coherent inter-processor communication network from the defined commu-
nications points. This process is automated in Abhainn using the tool structure outlined
in Fig. 3. There are three major constituent parts to the implementation process: Linn,
for refinement of software partitions, Muir for refinement of hardware partitions, and
Inbhear for derivation of the inter-processor communication network between them.
Each of the three refinement processes occur in parallel in two major stages: Tech-
nology Specific Mapping (TESM) and Target Specific Mapping (TASM), as outlined in
Fig. 3.

The TESM converts the purely algorithmic description of the system behaviour to a
description where specific processing and communication cores are inserted in the place
of DFG actors to provide a structure to the implementation. Additionally at this stage
the inter-processor communication network is inserted and configured as appropriate.
The result of the TESM is an implementation architecture to be translated to a working
implementation specific to the target devices in the platform. The TASM performs this
translation. Note that Inbhear only exists at the TESM level - after technology specific
mapping the communications network exists as hardware and software cores which may
be integrated and targeted to the specific device with the remainder of the partition in
TASM

A great deal of research effort has been expended in academia investigating tech-
niques for software synthesis from dataflow graphs, as employed in Linn [2, 7, 15]. For

Rapid Implementation and Optimisation of DSP Systems 419

Fig. 3. Abhainn Implementation Toolsuite Architecture

this reason the discussion in the remainder of this section focuses on the other aspects
of the Abhainn toolsuite - Muir for dedicated hardware synthesis and Inbhear for com-
munication interface synthesis.

5 Muir Hardware Partition Implementation

Muir performs the rapid implementation tasks for hardware partitions, and its opera-
tion is outlined in Fig. 4. In Abhainn, hardware cores are known as signal flow objects
(SFOs). The structure of an SFO is shown in Fig. 5. An SFO is divided into three por-
tions: the control wrapper, the white box component (WBC), and the parameter bank.
The WBC is a core resident in the core library which implements a range of MASDF
actor configurations. The technique for generating WBCs is outlined in [3].

In the TESM stage of Muir, this is extracted from the core library and configured via
the technique in [4]. Since the SFOs implement cyclic dataflow actors [16], Muir gener-
ates the control wrapper for the SFO thats implement the cyclic schedule and switches
data into and out of the WBC. After generation of the control wrapper the parameter
bank is constructed. As part of this a RAM component is inserted with enough storage
for all the parameters, and the address maps for the SFOs generated. These are passed
to the host for use during system initialization. During TASM in Muir, the generic SFO
structure, described in terms of abstract mathematical components and operations, (e.g.
RAMs, delays, etc.) is converted to a target specific description which exploits device
specific dedicated computation blocks, storage, and programmable fabric configured
for logic, shift registers, distributed RAMs etc.

This synthesis flow can be directed by the designer from the MASDF level as out-
lined in [4]. Should the core WBC not exist in the library a custom configurable WBC
is constructed and inserted in the library for use in further designs.

-

420 J. McAllister et al.

Fig. 4. Muir Methodology

Fig. 5. SFO Structure

6 Inbhear - Communication Interface Synthesis

Inbhear refines the inter-processor communications network to a working implemen-
tation. To enable this, the computing platform is considered a distributed computing
platform with each node interfacing via complex communication techniques e.g. across
a packet-switched network. To support this flexibility, a partition external communica-
tions link is visualized as in Fig. 6.

As outlined in section 3, Abhainn must support two types of data traffic: streams and
parameters. Streams are relatively high bandwidth, representing token streams travers-
ing along the vertices of the DFG (e.g. input data samples in a FIR filter). Parameters
are written once only, directly into a core on system initialization (e.g. FIR filter tap
weights). These represent the two main different types of data traffic used in DSP sys-
tems.

A streaming link is described by the designer using the tuple {physical, VCI} where
VCI is a virtual channel interface. As Fig. 6 shows, this defines a three level commu-
nications hierarchy. The physical layer connects directly to the pads on the device and

Rapid Implementation and Optimisation of DSP Systems 421

Fig. 6. Abhainn Communications Configuration

retrieves raw binary data from the external network. The VCI acts to multiplex multiple
conceptual links onto a single physical link, for instance to implement a packet switch
node. Associated with the VCI is a set of channel controllers which supply data to, and
receive data from the internal functionality of the partition. The Inbhear TESM step
proceeds as in Fig. 7.

During network level Inbhear processing, the entire communication network which
is described in a netlist file known as the topnet is analysed, and the communications
configurations for each partition extracted and passed on for partition level processing.
All the necessary information for configuration of the inter-processor communication
network is also generated at the network level. For instance, at this level the address
maps for all the cores in the FPGA partition are collected, channel numbers assigned
for all the data channels (both streaming and parameters), and an initialization function
generated for execution on the host during system initialization to write the relevant
parameters to the core.

Fig. 7. Inbhear TESM

At the partition level, the technology independent description of the generic stream
or parameter link is replaced by a technology specific communication configuration. For
instance, in the case where a system where a Myrinet packet switched network operates
over a PCI interface, then the configuration {PCI, Myrinet} is inserted in place of the
generic interface for the partition. In this case the PCI physical and Myrinet VCI are

422 J. McAllister et al.

implemented by extracting cores from the comms. core library in Fig. 7 At the partition
level, the technology independent description of the generic stream or parameter link is
replaced by a technology specific communication configuration.

7 Summary

This paper has introduced Abhainn, a design methodology and automated toolsuite
for translating DSP algorithms to a working implementation on multiprocessor/FPGA
and SoPC technology. This paper has highlighted the techniques employed to achieve
FPGA partition functionality and platform communication infrastructures in a manner
which is configurable for designer definition, but also automated in realization. Using a
beta-version of the automated toolsuite, for an example adaptive beamforming problem,
modelled in GEDAE [1] and targeted to a platform composed of a Pentium-III proces-
sor and a Xilinx VirtexII 8000 FPGA communicating via Myrinet over a PCI bus, an
unoptimised computation performance of 251 MFLOPs has been achieved.

The described techniques are only two portions of the overall system methodology,
which realizes portable multiprocessor/FPGA platform and SoPC system implementa-
tion. The Abhainn methodology and toolsuite are evolving and are applied to system
domains such as image and video processing (e.g. video conferencing), high end signal
processing systems (e.g. radar and sonar), wireless communications systems, particu-
larly multiple-input-multiple-output (MIMO) systems, and physical synthesis systems,
for instance electronic synthesis of musical instruments.

Acknowledgments

The contribution of Jasmine Lam and Richard Walke at QinetiQ RTES is acknowl-
edged. This work is supported by the UK MoD Corporate Research Programme, a BAE
Systems/EPSRC CASE award, EPSRC grant number C000676/1 and the Department
of Eduction and Learning (DEL) NI.

References

1. Madahar, B.K., et. al: How rapid is rapid prototyping? analysis of espadon programme
results. EURASIP JASP 2003 (2003) 580–593

2. Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors. Marcel Dekker (2001)
3. McAllister, J., Woods, R., Walke, R.: Embedded context aware hardware component gener-

ation for dataflow system exploration. In: Samos, Samos, Greece (2004) 254 – 263
4. McAllister, J., Woods, R., Walke, R., Reilly, D.: Synthesis and high level optimisation of

multidimensional dataflow actor networks on fpga. In: IEEE Workshop on Signal Processing
Systems, Texas, USA (2004) 164 –169

5. Xilinx: Virtex-2 pro platform fpga handbook (2001)
6. Lee, E.A., Parks, T.M.: Dataflow process networks. Proc. IEEE 83 (1995) 773–799
7. Bhattacharyya, S.S.: Software Synthesis from Dataflow Graphs. Kluwer Academic Publish-

ers (1996)

Rapid Implementation and Optimisation of DSP Systems 423

8. Lauwereins, R., Engels, M., Ade, M., Peperstraete, J.: Grape-2: A rapid prototyping envi-
ronment for dsp applications. Computer 28 (1995) 35–43

9. Hylands, C., et al.: Overview of the ptolemy project. Technical Memorandum UCB/ERL
M03/25, University of California at Berkeley (2003)

10. Laboratory, C.A.P.: PEACE Users Manual v.1.0b. Seoul National University. (2004)
11. Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B., Deprettere, E.: System design using

kahn process networks: The compaan/laura approach. In: Design Automation and Test in
Europe. Volume 1., Paris, France (2004) 340 – 345

12. Kahn, G.: The semantics of a simple language for parallel programming. In: Proc. IFIP
Congress, North Holland Publishing Company. (1974)

13. Murthy, P.K., Lee, E.A.: Multidimensional synchronous dataflow. IEEE Trans. Signal Pro-
cessing 50 (2002) 2064–2079

14. Kaplan, D.J., Stevens, R.S.: Processing graph method 2.1 semantics. (2002)
15. Park, C., Jung, J., Ha, S.: Extended synchronous dataflow for efficient dsp system prototyp-

ing. Design Automation for Embedded Systems 6 (2001) 295–322
16. Bilsen, G., Engels, M., Lauwereins, R., Peperstaete, J.: Cyclo-static dataflow. IEEE Trans.

Signal Processing 44 (1996) 397–408

DVB-DSNG Modem High Level Synthesis in an
Optimized Latency Insensitive System Context

P. Bomel1, N. Abdelli2, E. Martin1, A.-M. Fouilliart2, E. Boutillon1, and P. Kajfasz2

1 LESTER Laboratory, CNRS FRE2734, UBS University,
56321 Lorient Cedex, France
surname.name@univ-ubs.fr

2 THALES Communications, 160, boulevard de Valmy BP 82,
F92704 Colombes Cedex, France

surname.name@fr.thalesgroup.com

Abstract. This paper presents our contribution in terms of synchronization pro-
cessor to a SoC design methodology based on the theory of the latency insensitive
systems (LIS) of Carloni et al.. This methodology 1) promotes pre-developed IPs
intensive reuse, 2) segments inter-IPs interconnects with relay stations to break
critical paths and 3) brings robustness to data stream irregularities to IPs by en-
capsulation into a synchronization wrapper. Our contribution consists in IP en-
capsulation into a new wrapper model containing a synchronization processor
which speed and area are optimized and synthetizability guarantied. The main
benefit of our approach is to preserve the local IP performances when encapsu-
lating them. This approach is part of the RNRT ALIPTA project which targets
design automation of intensive digital signal processing systems with GAUT [1],
a high-level synthesis tool.

1 Introduction

Modern integrated circuits (ICs), named ”systems on a chip” (SoCs), are the composi-
tion of several sub-systems exchanging data. SoC size increase is such that an efficient
and reliable interconnection strategy is now necessary to combine sub-systems and pre-
serve, at an acceptable design cost, the speed performances provided by a very deep
sub-micron technologies [2]. This communication constraint can be satisfied by a rapid
enough communication media between IPs. Because they are easy to deploy and area
efficient, bus topologies are frequently used.. Nevertheless they introduce a bottleneck
as 1) only an IP can send a data at a time and 2) wires length and capacitive load of
the numerous connected IPs increase the propagation time and reduce the maximum
frequency. Hierarchical and scalable bus topologies [3] contribute to push back these
limits by segmentation of the bus into several buses linked through bridges. Thus better
communication parallelism and wire length reduction are obtained. High performances
SoCs now need micro-networks architectures, named ”networks on chip” (NoC [4]), in-
side which the parallelism degree and the data throughput are adapted to the application
needs. NoCs integrate supplementary services like packet routing, data flow control and
eventually error detection. These services have a non negligible area cost. To overcome

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 424–433, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

DVB-DSNG Modem High Level Synthesis in an Optimized LIS Context 425

the propagation delay increase along interconnects in single-clock synchronous ICs,
the ”globally asynchronous locally synchronous” (GALS [5]) system approach divides
the whole system into synchronous and clock-independent sub-systems communicating
through point to point asynchronous channels. The interface between sub-systems and
network is a decisive design issue for the applicability of the methodology because it
must be reliable and must not impact the local sub-systems frequencies. A very promis-
ing evolution of GALS methodology is the theory of the ”latency insensitive systems”
(LIS [7]) which communication network is synchronous. It shares with NoCs the high
degree of potential parallelism and with the buses the deployment ease.

This paper is organized as follows. First, section 2 provides background info on the
synchronization of IPs within the communication network in the ”latency insensitive
systems” methodology context. Section 3 experimentally justifies our approach, speci-
fies our synchronization processor model, and provides comparative results of synthesis
for FPGA against classical finite state machines (FSM). Section 4 presents a design ex-
perience of a DVB-DSNG signal processing chain in the context of the high-level syn-
thesis tool GAUT. A frequency/phase/frame synchronization and a 64 states Viterbi de-
coder IPs are compared to their hand-coded RTL equivalent implementations in Section
5. Section 6 concludes this paper and gives an overview of future research extensions.

2 Related Works

GALS systems, introduced by [5], combine synchronous sub-systems communicating
through an asynchronous network and require the design of specific interfaces [6].
They also rely on the possibility to stop at will any synchronous block and make use
of gated clocks to synchronize sub-systems computing with data flow irregularities
and save energy while in a waiting state. A way to avoid the design of a mixed syn-
chronous/asynchronous IC is to apply the theory of the ”latency insensitive systems”
[7] which communication network is not asynchronous but pseudo-asynchronous. This
network is build from pipelined point to point channels where pipelining is implemented
by insertion of intermediate storage cells named relay stations. The objective is to store
and forward data flowing from one IP to another and support the communication pro-
tocol between IPs and relay stations. Transit latencies between IPs are no more unpre-
dictable but become multiples of the communication network clock period. LIS theory
allows then to reuse commercial RTL synthesis tools as well as for the IPs than for the
pseudo-asynchronous network. Asynchronous components insertion is not necessary
any more. This theory also formally proves [8] the ”latency-equivalence” between the
pure synchronous system model and the pseudo-asynchronous one. Patient processes
[9] are a key element in the LIS theory. These suspendable synchronous IPs (named
pearls) are encapsulated into a wrapper (named shell) which function is to make them
insensible to the IO latency and to drive the IP’s clock. The decision to drive or not the
IP’s clock is implemented in a very efficient way using combinatorial only. The LIS
methodology is then divided in two steps. The first step consists in the encapsulation of
all suspendable IPs into synchronization wrappers before an initial physical synthesis
(place&route).

426 P. Bomel et al.

Combinatorial logic based synchronization wrapper

Combinatorial
logic

IP
Input
port

Output
port

stopout
voidout voidin
stopin

data_in data_out

enable clock

data
ctrl

data
ctrl

a) FSM based synchronization wrapper

Sequential
logic

IP
Input
port

Output
port

stall
stall valid

ready

data_in data_out

enable clock

data
ctrl

data
ctrl

b)

Fig. 1. (a) Carloni et al.’s patient process model and (b) Singh and Theobald’s model

Second step consists in the identification of critical paths on the communication net-
work and insertion of relay stations. The network becomes pseudo-asynchronous and
can be placed and routed again. The relay stations insertion, which aims at breaking
the critical paths, can induce a severe system level performances degradation if there
are feedback paths. [10] formally specifies this phenomenon so as to quantify the relay
stations insertion impact and then to drive it. Nevertheless, the LIS approach relies on
a simplifying, but restricting, assumption: an IP is activated only if all its inputs are
valid and all its outputs are able to store a result produced at next clock cycle. Now,
it is frequent that only a subset of the inputs and outputs are necessary to execute one
step of computation in a synchronous IP. To limit the patient process sensitivity to the
only relevant inputs and outputs, Singh and Theobald [11] suggest to replace the com-
binatorial logic that drives the clock by a Mealy type FSM. This FSM tests the state of
only the relevant inputs and outputs at each cycle when data are expected. We call these
cycles ”wait points” from here. This approach is an extension of the LIS one and has the
advantage to correspond to a more realistic communication behavior. It can be imple-
mented if one disposes of input and output schedules that prove the IP communication
behavior is cyclic and not data-dependent : i.e. it is statically predictible.

Finally, in order to reduce hardware cost, Casu and Macchiarulo [12] prove that, if
it is possible to determine a static scheduling of all the IPs activation, then the relay sta-

Shift register based synchronization wrapper

Shift reg .

IP
Input
port

Output
port data_in data_out

enable clock

data data

1 1 0 1 0

a) Processor based synchronization wrapper

Sync Proc .

IP
Input
port

Output
port data_in data_out

enable clock

data data

Operations
Memory

address word
pop

not empty

ctrl

push

not full

ctrl

b)

Fig. 2. (a) Cassu and Macchiarulo’s model and (b) New approach patient process model with a
synchronization processor

DVB-DSNG Modem High Level Synthesis in an Optimized LIS Context 427

tions can be replaced by simple flip-flops and the synchronization upstream and down-
stream protocol signals can be definitely removed. The IP activation static schedule is
implemented with a shift register which content drives the IP’s clock. This approach
relies on the hypothesis that there are no irregularities in the data streams: it is never
necessary to randomly freeze the IPs. This approach is applicable only to systems which
environment produces data and consumes results faster than the systems can compute.

3 New Approach – A Smaller Wrapper

As 1) LIS methodology lacks the ability to dynamically sense IO subsets, 2) FSMs can
become very large as communication bandwidth does and 3) shift register based syn-
chronization targets only extremely rapid environments, we propose to encapsulate IPs
into a new synchronization wrapper model which area is much less than the FSM-based
wrappers area, speed is enhanced (mostly thanks to area reduction) and synthesizability
is guaranteed whatever the communication schedule is.

3.1 Motivation

Singh’s approach relies on a FSM model to limit the patient process sensitivity only
to relevant inputs and outputs. This FSM complexity depends on the total number of
cycles an IP needs for a given communication schedule and on the number of inputs
and outputs surrounding the IP. Our experiences in digital signal processing systems
prototyping on FPGAs demonstrated us that FSM synthesizability is a delicate issue.
Available synthesis tools have a rather high sensitivity to FSM length (number of states)
and width (number of input and output signals) and might not synthesize all FSMs. To
justify this, we have made synthesizability tests with various representative FSMs. By
representative, we mean ”as complex as” the communication schedule for some digital
signal processing well known algorithms.

We have chosen the Decimated In Time (DIT) radix-2 Discrete Fourier Transform
(DFT) and the Discrete Cosine Transformation (DCT) as valuable references to de-
fine a communication schedule complexity reference. With the help of the GAUT [13]
high-level synthesis tool we have produced several RTL implementations for a common
target: a Xilinx VirtexE-1000 clocked at 100 MHz. An extract of the test campaign is
presented in Table 1. Columns contents are (from left to right): algorithm size order in
points, samples arrival cadency, sum of input and output ports, number of wait points
(data synchronization), and average number of computing cycles (no data synchroniza-
tion) between two wait points. These measures show, in a particular but real context,
that a communication schedule contains numerous wait points and that the number of
ports raises as the cadency is reduced. A few tenth of ports and a few hundredth of wait
points are conceivable.

Our FSMs depends on three parameters: number of ports, number of wait points and
number of average cycles between wait points. Its pseudo-VHDL model is described by
Figure 3. This FSM model 1) pilots the IP’s clock with the enable signal, 2) activates
only the relevant intermediate storage units of the pseudo-asynchronous network (work-
ing like a set of FIFOs) with the generic signals pop push fifos, and 3) check data and
check room are generic expressions that respectively check if data are valid on relevant

428 P. Bomel et al.

Table 1. FFT & DCT high-level synthesis results

Points Cadency (μs) I/O Ports Wait points Run cycles

DIT 128 8,4 16 197 43
5,1 25 156 33

256 38,4 6 515 85
19,2 9 381 50

512 87,1 6 1027 85
43,8 9 765 57

DCT 4 1,0 4 39 26
0,5 8 19 26

8 3,4 9 91 37
2,0 16 69 29

process (rst, clk)
begin

if rst = ’1’ then
enable <= ’0’ ;
<pop push fifos> <= ’0’ ;
s := S0 ;

elsif clk = ’1’ and clk’event then
case s is
when <a synchronization state> =>

if <check data> and <check room> then
state := <nextstate> ;
enable <= ’1’ ;
<pop push fifos> <= ’1’ ;

else
enable <= ’0’ ;
<pop push fifos> <= ’0’ ;

end if ;
when <a computing state> =>

state := <nextstate> ;
<pop push fifos> <= ’0’ ;

end case ;
end if ;

end process ;

Fig. 3. SP pseudo-VHDL specification

input ports and if room is available on relevant output ports. A brief extract of the FSM
synthesis is given in Table 2. Column contents are (from left to right): number of ports,
number of wait points, average number of computing cycles between two synchroniza-
tion points, area occupied in slices and maximum obtainable frequency. Then, we have
generated and synthesized these representative VHDL FSMs with Xilinx’s tool XST.

These synthesis results illustrate that the area increase is not linear, raises with the
schedule complexity and unfortunately reaches a ”red brick wall” in the representative

DVB-DSNG Modem High Level Synthesis in an Optimized LIS Context 429

Table 2. FSM physical synthesis results

Ports Wait points Run cycles Size (slices) Max freq (MHz)

4 4 2 15 162
8 8 4 36 148
16 16 8 110 123
32 32 16 429 105
64 64 32 Impossible. Impossible.

FSMs space. Our goal is absolutely not to criticize any synthesis tools but rather to sim-
ply state they have limits we must live with. However, this extremely restrictive fact for
our experiences motivated us to search for a new synchronization wrapper architecture
which would be synthesizable with (almost) all RTL and physical synthesis tools. To
end this section, we also had to verify this situation was not due exclusively to ISE. So
we replayed it with Quartus and DC (semiconductor technologies ranging from .35 μm
to .15 μm), got the same results and came to the same conclusion.

3.2 Implementation and Results

Our solution is equivalent to Singh’s FSMs. This is a controller that reads and executes
cyclically operations stored in a memory. We name it a synchronization processor (SP).
Figure 2b specifies the new synchronization wrapper structure with our SP. The SP
communicates with the ports through FIFO-like signals. These signals are equivalent to
the voidin/out and stopin/out of [7] and valid, ready and stall of [11]. Number of input
and output ports can be any. The clock is driven by the enable signal. The SP model is
specified by a three state FSM depicted by Figure 4a. Its data path is composed of: a
program counter pc and a run cycles counter cpt. Generic expressions I(pc), O(pc) and
N(pc) represent the decoding of the operation word and allows us to test various coding
formats with little changes in the SP. They respectively represent the relevant input
ports, output ports masks and the number of run cycles. The SP is in the reset state
at power up and switches between the two wait and run states depending on whether
if it is blocked on a waiting point or if it is freely computing without synchronization
with data. To avoid unnecessary signals and save area, the operation memory is an
asynchronous ROM (or 4Kbits SelectRAM DPRAMs for FPGAs)

and its interface with the SP is reduced to two buses : the operation address and
operation word. In all tested cases, no more than 2 SelectRAM DPRAMs have been
necessary to store the operation memory. Therefore we neglected this memory area in
the SP area reports. The VHDL specification of a three states FSM is obvious and we
give now (Figure 4b) a curve which situates the synthesis results for a VirtexE-1000.
FSM*X*X* notation means FSMportsXwaitstatesXruncycles. The selected SP has 16
input and 16 output ports, its area is 16 slices large and it maximum frequency is 124
MHz. Compared to an equivalent FSM16x16x16, it has the same frequency but saves
up to 95 % of slice area (and consumes only one SelectRam bloc for the operation
memory). Finally, its frequency does not depend on the total number of cycles it needs
to accomplish a full computation. It is then more rapid than any longer (in cycles) FSM.

430 P. Bomel et al.

wait

run

reset

rst = 0 /

rst = 1
/

pc = 0,
enable <= 0

rst = 0 / empty (I(pc))
or

full(O(pc))
/

enable <= 0

not empty (I(pc))
and

not full(O(pc))
/

cpt := N(pc)
enable <= 1

cpt > 0
/

cpt := cpt -1

cpt = 0
/

pc = pc + 1
(modulo memory

length)

a)

0

20

40

60

80

100

120

140

160

180

-100 0 100 200 300 400 500

FSM 4x4x4

FSM 8x8x8
FSM 16x16x16 FSM 32x32x32

Synchronization processor

b)

Fig. 4. (a) SP specification and (b) SP vs FSM area and speed

Conclusion. Our SP has an essential characteristic: its complexity does not
depend on the number of cycles the IP needs for a whole computation but only
on the number of ports and maximum number of run-cycles.

4 DVB-DSNG Experience

This paragraph depicts an experimentation of the synchronization wrapper model for
LIS patient processes with the synchronization IP cores and Viterbi IP cores imple-
mented in a complete receiver compliant with the DVB-DSNG standard [14]. Digi-
tal Satellite News Gathering (DSNG) and Digital Video Broadcasting applications by
Satellite (DVB S) consist in point-to-point or point-to-multipoint transmissions, con-
necting fixed or transportable up-link terminal and receiving stations, not intended to
be received by the general public. This standard [14] allows transmissions from 1.5
Mbps to 72 Mbps. The Figure 5 presents the main elements of a receiver compliant
with DVB-DSNG standard. It’s composed of:

– A demodulation module of the signal associated to the DVB.
– An IP Viterbi (7,1/2) block.
– An IP Reed Solomon (204,188) block.

In current digital communication systems based on iterative detection/decoding, it
is necessary to determine the likelihood that a particular symbol has been transmitted.

Signal MPEG2DeinterleavingCoding rate
detection

decoder
Salomon

ReedFrame
Synchronisation

Viterbi
decoder

Filters
and

Phase/
frequency

Synchronisation

Fig. 5. Receiver scheme compliant with DVBDSNG standard

DVB-DSNG Modem High Level Synthesis in an Optimized LIS Context 431

Synchronization
frequency

Synchronization
phase

Rk.e- j
2

pkdF/Fe

D(Dk)

Dk=Rk.Rk-L*

Rk

NCO

Symbol sizing &
correction

Phase gap
estimationAverage

Imediate
Phase

estimation

Estimation
frequency

NCO Average

Ck

Imediate
Phase

estimation

Imediate
Phase

estimation

Fig. 6. Synchronization IP architecture

The Viterbi algorithm is based on a symbol-wise maximum a posteriori probability cri-
terion and proved its performance for estimating the states or output of a Markov chain
observed in white noise. A Viterbi decoder can be divided into three synchronous cir-
cuit blocks: branch metric (BM) unit, add compare and select (ACS) unit and survivor
memory evaluation (SME) unit. Each time slot, the BM unit determines the distance
between the received symbol and a noiseless symbol. The performance of a Viterbi de-
coder is actually limited by the ACS unit: for each of the states, the current state metric
has to be known before the next state metric can be calculated. For such high data rates,
the REA technique is used [15]. This method requires a shift register, which contains
the survivor path leading to this state. The registers are trellis-like interconnected and
their update is performed with an exchange of their contents based on the new decisions
provided by the ACS unit. The DVB-DSNG decoder synchronizes the video frame that
it receives in phase and frequency with the synchronization IP. The synchronization IP
can be divided into two synchronous circuit blocks:

– An algorithm of phase synchronization to collect the phase gap as well as the weak
variations of phase.

– An algorithm of frequency synchronization to get the frequency gap to 6 % of the
symbol output.

All Synchronization IP are composed by an estimation function of the ratio sig-
nal/noise and a function that estimate the residual phase. These functions were added
to use the knowledge of the decoded symbols.

5 Comparative Results

The LIS methodology has been tested in the DVB-DSNG IP cores. To check its validity,
we have synthesized the synchronization and the Viterbi IPs with GAUT and measured
the obtained frequencies under various cadency constraints. We have also compared the
generated codes with their hand-coded RTL equivalent. We have tested the synchro-
nization IP with a Virtex-E device. Figure 7a compares two curves. The square points
one represents the various frequencies obtained with a hand-coded synchronization IP.
The diamond-shaped points one represents the frequencies obtained when synthesizing
the algorithmic IP with GAUT. It shows that 1) generated RTL codes behave closely to

432 P. Bomel et al.

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000
Cadences (ns)

Fr
eq

ue
nc

y
(M

hz
)

GAUT IP Hand-Coded RTL IPa)

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000
Cadences (ns)

Th
ro

ug
hp

ut
 (M

bp
s)

GAUT IP Hand-Coded RTL IPb)

Fig. 7. (a) Synchronization IP and (b) Viterbi IP

hand-written RTL codes in term of frequencies and 2) a better maximum frequency can
be automatically reached: i.e. a faster 75 MHz architecture has been obtained by syn-
thesis and must be compared with the maximum 65 MHz frequency of a hand-coded
RTL IP.

We have tested the Viterbi IP with a Virtex-400 to validate the results with more than
a single family target. We can see in Figure 7b the results of the Viterbi decoder IP syn-
thesis. We can see in particular that the synchronization processor of the Viterbi decoder
IP still preserves the maximum throughput rate. We can also note that the throughput
obtained with RTL level architecture of GAUT synthesis tool (72 Mbps) is again greater
than the RTL level architecture value (60 Mbps).

6 Conclusion and Future Work

This paper presents our synchronization wrapper for LIS patient processes that better
preserves maximum frequency at IP level. Comparative results of physical synthesis for
the SP against FSMs prove our SP can provide important gains in area and speed. An
industrial synthesis experiment of a synchronization and Viterbi IPs for a DVB-DSNG
modem illustrates that 1) obtained frequencies are in line with the ones of hand-coded
RTL code and 2) better frequencies are reachable when relaxing the time constraint.
Several research axis to this work are under consideration: area optimization and con-
cept validation with an ASIC technology (0.15 μm technology from STMicroelectron-
ics) and an extension of the SP to data-dependant scenarios. Data-dependant scenarios
need a new type of operations: i.e. test and branching ones. Then our SP will get closer
to a regular processor with an instruction set rather than to a simple controller.

References

1. GAUT. web site, http://web.univ-ubs.fr/gaut
2. International Technology Roadmap for Semiconductors. (2003)

DVB-DSNG Modem High Level Synthesis in an Optimized LIS Context 433

3. Dawson, W.K., Dobinson, R.W.: Buses and bus standards. Computer Standards & Interfaces
20 (1999) 210–224

4. Benini, L., De Micheli, G.: Networks on Chips: A New SoC Paradigm. IEEE Computer
(2002) 70–78

5. Chapiro, D.M.: Globally-Asynchronous Locally-Synchronous Systems. PhD Thesis, Stan-
ford University (1984)

6. Chakraborty, A., Greenstreet, M.R.: Efficient self-timed interfaces for crossing clock do-
mains. In: Proceedings of the International Symposium on Asynchronous Circuits ans Sys-
tems (ASYNC’03), Vancouver (2003)

7. Carloni, L.P., McMillan, K.L., Sangiovanni-Vincentelli, A.L.: Theory of Latency-Insensitive
Design. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems
20 (2001)

8. Carloni, L.P., Sangiovanni-Vincentelli, A.L.: A Formal Modeling Framework for Deploying
Synchronous Designs on Distributed Architectures. In: First International Workshop on For-
mal Methods for Globally Asynchronous Locally Synchronous (FMGALS’03), Pisa (2003).

9. Carloni, L.P, Sangiovanni-Vincentelli, A.L.: Coping with Latency in SoC Design. IEEE
Micro, Special Issue on Systems on Chip 22 (2002) 24–35

10. Carloni, L.P, Sangiovanni-Vincentelli, A.L.: Performance Analysis and Optimization of
Latency Insensitive Systems. In: Proceedings of the 37th Design Automation Conference
(DAC’00), (2000)

11. Singh, M., Theobald, M.: Generalized Latency-Insensitive Systems for Single-Clock and
Multi-Clock Architectures. In: Proceedings of the Design Automation and Test in Europe
Conference (DATE’04), Paris (2004)

12. Casu, M.R., Macchiarulo, L.: A New Approach to Latency Insensitive Design. In: Proceed-
ings. of the Design and Automation Conference (DAC’04), San Diego (2004)

13. Corre, G., Senn, E., Bomel, P., Julien, N., Martin, E.: Memory Accesses Management During
High Level Synthesis. In: Proceedings of the Intl. Conf. on Hardware/Software Codesign and
System Synthesis (CODES’04), Stockholm (2004)

14. Standard ETSI EN 301 210, Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for Digital Satellite News Gathering (DSNG) and other contribution
applications by satellite. (1999)

15. Biver, M., Kaeslin, H., Tommasini, C.: Architectural design and realization of a single-chip
Viterbi decoder. Integration, the VLSI Journal 8 (1989) 3–16

SystemQ: A Queuing-Based Approach to Architecture
Performance Evaluation with SystemC

Sören Sonntag1, Matthias Gries2, and Christian Sauer2

1 Infineon Technologies, Wireline Communications, Munich, Germany
2 Infineon Technologies, Corporate Research, Munich, Germany

{Soeren.Sonntag, Matthias.Gries, Christian.Sauer}@infineon.com

Abstract. Platform architectures for modern embedded systems are increasingly
heterogeneous and parallel. Early design decisions, such as the allocation of hard-
ware resources and the partitioning of functionality onto architecture building
blocks, become even more complex and important for the resulting design qual-
ity. To effectively support designers during the concept phase we base our de-
sign flow SystemQ on queuing systems. We show how by starting with a perfor-
mance model the system’s behavior and structure can be refined systematically.
SystemQ is implemented in SystemC and seamlessly supports the refinement of
SystemQ models down to established transaction and RT levels. Compared with
existing approaches, SystemQ’s formalism exposes transaction scheduling as one
key aspect of the system’s performance and allows the modeling of time and re-
source workload-dependent behavior. A case study underpins the usefulness of
SystemQ’s approach by evaluating a network access platform at three refinement
levels.

1 Introduction

Embedded systems are facing new design challenges due to recent trends in applications
and technology. In our experience the computational complexity of algorithms needed
for, e. g., multi-standard wireless terminals and network access concentrators grows
faster than the hardware integration complexity dictated by Moore’s law. In addition,
due to stringent constraints on platform costs and power dissipation, novel parallel and
programmable application-specific architectures are increasingly being deployed. The
designer is now faced with coordinating the execution of the application on several pro-
cessing elements and accelerators. This means that early design decisions on mapping
functionality onto computing resources, scheduling of processing elements and among
building blocks, and data placement can significantly affect the quality of the final de-
sign.

Last but not least, newly arising application domains reveal properties that have
not been considered in the past. A prominent example is network processing. Superfi-
cially, traffic flows resemble streams similar to media processing applications. However,
network protocols and processing tasks reveal time and workload-dependent behavior
unknown from other data flow dominant domains. Data streams (network traffic) must
be distinguishable with respect to origin, destination, and data type to meet Quality-of-

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 434–444, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

SystemQ: A Queuing-Based Approach to Architecture Performance Evaluation 435

Service (QoS) requirements by, for instance, modifying the processing order on hard-
ware resources. If a packet is queued for a long period because of backlog at a congested
resource, a protocol may decide to drop the packet, e. g., see voice traffic with tight
latency constraints. A final example is dynamic load balancing of non-deterministic
traffic.

From these trends we can derive the following requirements on a design flow for
modern platform architectures:

– Performance evaluation must already be supported during the concept phase to
guide design decisions at the system-level, where these decisions have the high-
est impact on the resulting design quality.

– Many alternatives of allocating resources and mapping functionality onto building
blocks of the platform must be reviewed during the concept phase. The framework
must be considerably faster than established RTL and transaction level evaluation.

– During concept phase, RTL or transaction level representations of the architecture
are either not available or too complex for evaluating many alternatives. Represen-
tations are needed that allow us to express and explore the features we are inter-
ested in (time dependent behavior, scheduling, resource mapping) while providing
us with precise quantitative performance results.

– Aspects of the platform architecture should be separated from the description of
the system functionality to enable an unbiased assessment of design alternatives
and to encourage reuse of models. This concept is also known as the separation of
concerns principle in literature [1].

– The refinement of application and architecture models down to the actual imple-
mentation of the system must be supported to establish a systematic and reliable
approach, where immediate results from verification and evaluation can be used to
constrain further refinement levels.

Based on these assumptions we present a fresh approach, called SystemQ, to platform
architecture evaluation and refinement targeted at early design phases of system devel-
opment. Our contributions can be summarized as follows:

– Our modeling approach is based on queuing theory where scheduling and workload
dependencies are made explicit by the semantics of the formalism.

– Timing dependencies between functional and architectural aspects (due to the pro-
cessing capabilities and workload of a hardware resource) can be represented since
timing information is fed back into the model, possibly affecting the functionality
of the system at run-time.

– In order to stimulate wide acceptance among platform designers our framework is
based on SystemC. Existing code bases for algorithms in C and C++ can be reused
in our models.

– We provide a systematic path of refinement steps starting from plain performance
models down to transaction-level and RTL exploiting SystemC’s refinement method-
ology.

The rest of the paper is structured as follows. In the next section we briefly introduce
the theory of queuing systems. Section 3 continues with a description of how queu-
ing systems can be implemented using SystemC. In Section 4 we introduce our design

436 S. Sonntag, M. Gries, and C. Sauer

methodology and levels of abstraction. A case study of evaluating a network access plat-
form using our approach is shown in Section 5. Related work is discussed in Section 6.
We conclude our paper in Section 7.

2 Queuing Systems

Many formalisms exist for modeling control and data flow. Petri nets, for example,
provide powerful abstractions that are analyzable in many ways. Kahn process net-
works on the other hand are often used in practice for data flow applications and sig-
nal processing systems [2]. Control flow is often modeled using finite state machines
and variants thereof. Besides control and data flow modeling we are specifically in-
terested in certain performance relevant aspects of control flow, namely scheduling and
workload-dependent behavior. Thus, we choose queuing systems since they provide ex-
plicit scheduling inherently. A brief introduction to queuing theory is provided next. A
detailed description can be found, e. g., in [3].

Queuing systems consist of queues and servers, see Figure 1. A queue is a waiting
room where transactions (also called requests or customers) are stored until a server
becomes available to process the transaction. The processing takes a specific amount
of service time after which the transaction leaves the queuing system. Using queuing
systems we can determine, e. g., the residence time of transactions in the system, the
average queue length, and the server utilization.

ServerQueue

Fig. 1. A queuing system consisting of queue and server

Queues store transactions according to their queuing discipline. Common disci-
plines are, e. g. first-in-first-out (FIFO), last-in-first-out (LIFO), or generalized proces-
sor sharing. Thus, queues are used for explicit scheduling of transactions, but they nei-
ther modify them nor consume time. Often, queues are unbounded, i. e. their storing
capacity is infinite.

Servers consume an amount of time while processing transactions sequentially,
called service time. The service time may be constant for all transactions, may be a
time distribution, or may depend on the transaction class. In systems that use distinct
transaction classes [4] servers can also alter the class of transactions while processing
them. Furthermore, servers may create or delete transactions but do not store them.

For more realistic models several queuing systems are connected with each other
[3, 4]. Such networks of queuing systems can be solved analytically. This, however, is
a cumbersome task, especially for larger systems, non-exponential arrival time distri-
butions, and transaction-dependent service times as required in our case. Thus, we use
simulation for evaluation.

SystemQ: A Queuing-Based Approach to Architecture Performance Evaluation 437

3 SystemC Based Simulation

For our SystemQ simulation environment we rely on SystemC (www.systemc.org) since
it has become a wide-spread open-source modeling language for embedded systems
spawning design and verification on different abstraction levels from concept to im-
plementation in hardware and software [5]. We exploit SystemC’s 2.0 communication
support and its discrete event simulation capabilities for our timed queuing models by
providing component and communication libraries as explained in this section. This
way performance information, such as latency or throughput of the overall system or
individual building blocks, can be derived and potential bottlenecks can be identified.
We base subsequent architectural exploration, refinement, and implementation steps,
described in the next section, on SystemC’s methodology.

3.1 Queuing Models in SystemC

Figure 2 shows a queuing system in SystemC. Both types, queues and servers are
sc modules that can be executed concurrently by using processes. Networks are com-
posed from these elements by connecting ports with directed point-to-point sc channels.
Queues, modeled as hierarchical channels, are directly connected to servers. This way
queuing network semantics are enforced automatically at design time (Fig. 2b). Our

Queue ServerServer

Module

Port

Channel

Port−Channel Binding

Interface

Queue

a) b)
Hierarchical Channel

Fig. 2. Queuing system construction in SystemC: a) Based on sc channels and sc modules, and
b) using hierarchical channels to enforce queuing model semantics

SystemQ library follows a structured implementation style, as shown in Figure 3. El-
ements are derived from abstract parents that provide default functionality. Particular
functions, e. g. queuing disciplines in case of queues, are implemented in separate li-
brary elements to increase re-use. Elements may be implemented in different abstrac-
tions to enable refinement steps, e. g. the untimed, delayed, and rated channels.

sq_dma

sq_queue

sq_fifo sq_round_robin sq_fixed_prio

sq_server

sq_performance_server

sq_processor

sq_simple_channel

sq_delay_channel

sq_bitrate_channel

sc_module sc_channel

sq_utopia_if

Fig. 3. SystemQ library structure with elements for our case study in Section 5

438 S. Sonntag, M. Gries, and C. Sauer

3.2 Supporting Framework

Apart the rich class library our SystemQ environment provides support for (re-)config-
uration, stimulation, and verification of queuing models.

All classes provide, for instance, an interface for their file based configuration at
run-time. This enables faster turn around cycles in case of parameter explorations with-
out recompilation. The framework furthermore includes modular and extensible means
for generating realistic traffic loads on different abstraction levels. A number of ele-
ments can be composed to form layered sources, e. g. packet generators. Following the
OSI/ISO approach such sources first generate a chunk of data based on a particular dis-
tribution (time, length) which then is encapsulated/transformed repeatedly depending
on the desired protocol stack. Similarly, layered sinks can be employed.

4 Performance Modeling and Refinement

The main focus of queuing systems is on statistics, e. g. to determine queue lengths,
server utilization, and residence times of transactions in the system. These properties
are inter-dependent and are effected by transaction arrival processes, transaction classes,
and queuing disciplines. With SystemQ’s simulation approach we gain additional infor-
mation since we can trace time dependencies, profile individual resources, and follow
the processing of particular transactions through the model.

The quality of results depends on the abstraction level. Initially, a rough estima-
tion of the overall system performance is required. Refinement enables better results by
adding details either in function, structure, or communication. SystemQ applies Sys-
temC’s refinement strategies to queuing networks.

4.1 Functional Refinement

Functional refinement may add (and refine) the function of servers and/or introduce
distinguishable transaction classes.

On the performance level a server has only three tasks, namely to fetch a transaction
from the queue, to wait for a service time amount of simulation time, and to output the
transaction. Transactions have no particular class and flow through a queuing system
unmodified (ref. Fig 4a).

The performance model is refined by implementing processing functionality in servers,
i. e. adding transaction modification, creation, and deletion capabilities. In addition, dif-
ferent classes of transactions can be introduced that are distinguishable by the server.

All Transactions

FIFO
Queue

Performance
Server

Priority
Queue

Refined
Server

All Transactions Class 1 TransactionsAll Transactions

Class 0 Transactions

Class n Transactions

a) b)

Service Time

f(x)100 μs

Fig. 4. Queuing system a) At performance level of abstraction (only data flow), b) At a lower
level of abstraction (control and data flow)

SystemQ: A Queuing-Based Approach to Architecture Performance Evaluation 439

b)

100 μs 50 μs 15 μs

30 μs

35 μs

a)

Fig. 5. Structural refinement by decomposition: a) Abstract system, b) Refined system

Figure 4b provides a refined example. In the figure, the refined server switches trans-
actions to different output ports depending on their class. Functional refinement may
even lead to systems that contain queuing systems which are represented by RTL mod-
els. In this case communication and/or structural refinements are likely to take place in
conjunction with functional refinements.

4.2 Structural Refinement

Structural refinement decomposes queuing systems into queuing networks as illustrated
in Figure 5. This form of refinement is often motivated by incorporating details of the
architecture in the model.

Applying structural refinement we can address the granularity of existing building
blocks using different abstraction levels in one model. This enables the simulation of
mixed abstraction levels. In case of networking, for instance, an existing hardware CRC
block can be instantiated within the performance model.

4.3 Communication Refinement
Communication refinement adds precision to communication between queuing systems
or changes communication semantically.

On the performance level communication is non-blocking, instantaneous, and lim-
ited to reads and writes of classless transactions. This can be refined to blocking seman-
tics. Timed or rated communication channels are another refinement option. Commu-
nication refinement is achieved using SystemC wrappers, comprehensively described
in [5].

5 Case Study

To demonstrate our SystemQ approach we model a packet processing system for the
network access. The system is able to aggregate traffic of up to 512 digital subscriber
lines (DSL) and to forward this traffic to the upstream core network. In downstream
direction the system distinguishes packets per DSL customer and forwards them to the
appropriate output port. Figure 6 depicts the flow of packets through the processing
system at block diagram level.

5.1 Setup

To compare levels of abstraction we define three different simulation models: 1) A pure
performance model without any functionality and with only one class of transactions, 2)

440 S. Sonntag, M. Gries, and C. Sauer

DSL Customers
(Upstream)

DMA
Gbit

Ethernet

Utopia

RAMCAM Processor
Core

Core Net
(Downstream)

Upstream
Sink

Downstream
Sink

Gbit
Ethernet

DMA

DMA

DMA DMA

DMA

Utopia
Gbit

Ethernet

Gbit
Ethernet

Fig. 6. Block diagram of a packet processing system

On-Chip RAM
 used in 2nd model

Upstream
Source

Downstream
Source

Upstream
Sink

Downstream
Sink4 128 x 4

4

Gigabit Ethernet

Gigabit Ethernet DMA

DMA

Utopia DMA

Processor

Processor

DMA

DMA Gigabit Ethernet

Utopia

Gigabit Ethernet

4

4

512

DMA

Fig. 7. SystemQ model of a packet processing system with structural refinement

a structurally refined performance model reflecting the influence of the on-chip RAM,
3) a functionally refined model that distinguishes four classes of transactions, i. e. ATM
cells as well as short, medium, and long Ethernet frames. These transactions are pro-
cessed differently.

Figure 7 shows the first two models. Every functional block in Fig. 6 is represented
by a queuing system. Both models abstract from some parts of the processor, i. e. the
CAM. As already shown in Figure 4a we do not distinguish classes of transactions for
these two models. The models are completed by a testbench modeling traffic of up to
512 DSL customers for up- and downstream direction.

5.2 Results

Using the setup we evaluate our approach in terms of simulation performance, modeling
effort, and quality of results. We use a standard 2.4 GHz Linux-based Intel system for
the SystemQ simulation. As a reference a Mentor Graphics VStationPRO hardware em-
ulation system is used running a register-transfer level model of the packet processing
system.

Simulation Performance. Figure 8 shows the simulation performance of our different
test cases. The performance difference between the performance model and the struc-
turally refined model is not significant (about 6 %). However, performance model and

SystemQ: A Queuing-Based Approach to Architecture Performance Evaluation 441

Traffic Sources

Performance Abstraction
Structural Refinement
Additional Functional Refinement
Emulation on Special HW (VStationPRO)

10
0

50
5

0.
5

0.
05

0 100 200 300 400 500

R
el

at
iv

e
S

im
ul

at
io

n
T

im
e

(%
)

Fig. 8. Simulation performance of SystemQ models compared to emulation hardware

functionally refined model differ by a factor of about six. All performance results in the
figure are scaled to the RTL hardware emulator. On average, our SystemQ performance
model running on the standard PC is about 63 times faster than the hardware emulation.
For the refined example the speedup is still 11 x.

Modeling Effort. An RT level model for the packet processing system can be built in
a time frame of roughly 100 man-weeks using pre-built IP modules where applicable.
Contrary to that the performance model was built in just one man-week from scratch
using the SystemQ framework. The refinement of this model took about half a week for
the structurally refined model and about two weeks for the functionally refined model,
as shown in Figure 9.

Quality of Results. So far, we have compared results of the different SystemQ mod-
els (see Fig. 10). The figure exemplarily shows the utilization of a direct memory ac-
cess (DMA) engine over the number of traffic sources for different abstraction levels.
The initial performance model (solid line) exhibits a linear dependency for the con-
sidered interval since memory is unlimited. The structural model introduces memory
limits. Utilization saturates at about 75 % because packets are dropped when the limit is
reached instead of being fully processed by the DMA. The functionally refined model
uses the same memory limits but requires a higher utilization of about 90 % due to the
now explicit handling of packet descriptors. In this case, the functional refinement led to
more accurate performance results, that in turn could be put back into the performance
model.

5.3 Discussion

By defined refinement paths SystemQ provides a systematic approach to fast high-level
modeling that seamlessly integrates with existing SystemC based methodologies, e. g.,
mixed level modeling. Already our preliminary results indicate reasonable support for
system architects during early phases of the design flow:

Modeling effort. Introducing new abstractions layers, we have shown that turn-
around times for early system evaluation can significantly be reduced by using Sys-

442 S. Sonntag, M. Gries, and C. Sauer

1 5 50 100

Additional Functional Refinement

Performance Abstraction

Structural Refinement

Man−Weeks (%)
10

Register Transfer Model

Fig. 9. Modeling effort of SystemQ models
compared to a bit-true model (RTL)

D
M

A
 U

til
iz

at
io

n
(%

)

Additional Functional Refinement

Performance Abstraction

10
0

80
60

40
20

0

0 100 200 300 400 500

Traffic Sources

Structural Refinement

Fig. 10. Downstream DMA utilization moni-
tored at different abstraction levels

temQ. In combination with a rich design library, this feature enables timely modeling
of system-level design alternatives.

Simulation performance. By further reducing the degree of details SystemQ can
achieve faster simulation performance than established transaction- and RT level mod-
els. The observed speedup factor of 63 x for our performance model compared to RTL
HW emulation translates into several orders of magnitude for pure RTL simulation. In
combination with low modeling effort, this aspect enables fast turn-around times for
evaluation of system architecture instances.

Quality of results. Comparing the different abstractions for our models, we were
already able to reveal the impact of structural and functional refinements on the quality
of performance estimation. A more quantitative picture can be drawn after completing
the refinement process down to RT level.

We currently determine the influence of different scheduling algorithms on our
packet processing system. We expect SystemQ’s formalism that exposes transaction
scheduling and time- and workload-dependent behavior to be beneficial for the ongo-
ing analysis.

6 Related Work

We find related work of system-level platform design in three areas of research.
Metropolis [6] is a very general framework where arbitrary models of computation

can be expressed by using the meta modeling language. Architecture, function, and
mapping aspects are represented by separated entities. Its generality however makes the
modeling effort more complex and less intuitive than by restricting the designer to one
consistent representation for particular application domains.

Artemis [7] and YAPI [2] are targeted at media processing (streamed) applications
and are based on Kahn process network (KPN) representations. Functional and archi-
tecture models are handled separately and associated with each other using an explicit
mapping step. For evaluation, execution events are communicated from the functional
layer to the architecture layer. There is however no feedback path from architecture
timing to the functional layer. Scheduling cannot be specified by a KPN, which is why
extensions like virtual resources are required to enable scheduling analysis.

SystemQ: A Queuing-Based Approach to Architecture Performance Evaluation 443

In the network domain, we recognize Click [8] as a modeling formalism for packet
processing applications. Packet and resource scheduling are not part of the formalism
and only one abstraction level exists. StepNP [9] is written in SystemC and uses Click
as input for applications, whereas architecture building blocks are SystemC modules
at RTL or transaction-level. Apart from StepNP, the work in [10] and the references
therein describe the state-of-the-art of platform modeling in SystemC. Components can
be represented at transaction and RT levels, and programmable components can be
abstracted up to instruction set simulators. The simulation of several heterogeneous
architecture building blocks at these levels is too complex to be used during concept
phase.

7 Conclusion

We have presented a fresh approach to architecture performance modeling aimed at
the concept phase of platform development. Our framework SystemQ is inspired by
modern application domains not addressed by existing frameworks, such as network
processing. SystemQ is based on the following principles:

– The specification of transaction scheduling disciplines is part of the chosen queuing
systems modeling formalism.

– Timing information from the architecture model can be fed back into the functional
model to consider time-dependent behavior of the application, as imposed by, e. g.,
network protocols and dynamic load balancing.

– SystemQ provides a path to implementation through refinement down to SystemC’s
established abstraction levels (transaction/RTL). SystemQ is realized by SystemC
modules. It allows modeling on different abstraction levels by employing defined
component interfaces.

Our ongoing case study of a network system has already shown that SystemQ is effi-
cient enough to support designers during concept phase while providing a systematic
refinement path by gradually adding functionality and structure.

Acknowledgments

The authors wish to thank R. Thudt and A. Schumacher for many helpful discussions.
We also thank Prof. K. Franke (TU Chemnitz) for his invaluable support.

References

1. Keutzer, K., Malik, S., Newton, A.R., et al.: System level design: Orthogonalization of
concerns and platform-based design. IEEE Transactions on CAD 19 (2000)

2. de Kock, E.A., Smits, W.J.M., van der Wolf, P., et al.: YAPI: Application modeling for signal
processing systems. In: DAC. (2000)

3. Kleinrock, L.: Queueing Systems, Volume I: Theory. John Wiley & Sons (1975)
4. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks

of queues with different classes of customers. Journal of the ACM 22 (1975)

444 S. Sonntag, M. Gries, and C. Sauer

5. Grötker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer (2002)
6. Balarin, F., Watanabe, Y., Hsieh, H., et al.: Metropolis: An integrated electronic system

design environment. IEEE Computer 36 (2003)
7. Pimentel, A., Hertzberger, L., Lieverse, P., et al.: Exploring embedded-systems architectures

with Artemis. IEEE Computer 34 (2001)
8. Kohler, E., Morris, R., Chen, B., et al.: The Click modular router. ACM Transactions on

Computer Systems 18 (2000)
9. Paulin, P., Pilkington, C., Bensoudane, E.: StepNP: A system-level exploration platform for

network processors. IEEE Design & Test of Computers 19 (2002)
10. Wieferink, A., Kogel, T., Leupers, R., et al.: A system level processor/communication co-

exploration methodology for multi-processor SoC platforms. In: DATE. (2004)

Moving Up to the Modeling Level for the
Transformation of Data Structures in Embedded

Multimedia Applications

Marijn Temmerman1,2, Edgar G. Daylight2, Francky Catthoor2, Serge Demeyer3,
and Tom Dhaene3

1 Karel de Grote-Hogeschool, Salesianenlaan 30, B-2660 Antwerp, Belgium
2 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

3 Universiteit Antwerpen, Middelheimlaan 1, B-2020 Antwerpen, Belgium

Abstract. Traditional design- and optimization techniques for embedded devices
apply local transformations of source-code to maximize the performance and
minimize the power consumption. Unfortunately, such transformations cannot
adequately deal with the highly dynamic nature of today’s multimedia applica-
tions as they do not exploit application specific knowledge. We decided to go one
step back in the design process. Starting from the original UML (Unified Mod-
eling Language) model of the source code, we transform the UML model first
before refining it into executable code. In this paper we present (i) the transfor-
mation of various UML models, (ii) a fast technique for the estimation of the
high-level cost parameters that steer our transformations, and (iii) experiments
based on three case-studies (a Snake game, a Tetris game and a 3D rendering
engine) that show that our transformations can result in factors improvement in
memory footprint and/or execution time with respect to the original model.

1 Introduction

In the past decade, we observe a shift from image-based to object-based design in the
multimedia application domain. Hence, the efficient implementation of object-based –
and thus dynamic and non-manifest – applications on embedded platforms is investi-
gated by many researchers from the embedded-systems-engineering community.

Traditionally, embedded systems engineers start the mapping of an application from
executable code by exploiting platform-related information extensively [1]. Unfortu-
nately, the original high-level design at the conceptual modeling level was usually not
developed taking into account hardware-related criteria. This approach results in sub-
optimal implementations on the embedded platform, because at the source-code level
not all the inefficiencies at the modeling level can be removed any more. In order to
achieve larger reductions in system costs, we apply novel conceptual model level trans-
formations that are steered by platform-related cost parameters. As far as we know,
this is the first work addressing this issue.

Several abstract modeling languages exist, but we selected the UML to illustrate our
transformations at the conceptual modeling level, because UML is widely accepted as
an industrial standard.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 445–454, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

446 M. Temmerman et al.

The performance1 and energy2 consumption of multimedia applications are domi-
nated by the number of data transfers over the memory hierarchy of the platform [1, 2].
Moreover, these cost factors depend on the size of the memory units. Therefore, the
purpose of our UML transformations is to construct new conceptual models for the
data-dominant part of the application. These UML models can then be refined into con-
crete data structures (CDS), expressed in executable C code, which are economically
accessed and consume a minimum amount of memory space.

We realise our goal by exploiting application-specific knowledge, which is easier,
and thus faster performed at the modeling level. Figure 1 shows three equivalent mod-
els for the well-known game Snake, which is available on many handheld devices. In
the original model (a), the snake is modeled as a sequence of cells on the board. By
exploiting the spatial and temporal locality of the snake cells when the snake moves
on the board, we can compress adjacent cells into a snake segment without loss of in-
formation. This results in the second model (b), in which the snake contains fewer, but
larger – in number of attributes – parts. By combining the segments into one object,
namely a broken line defined by just its corner points (c), we systematically derive yet
another model for the game Snake. We will apply similar UML transformations to our
other two case studies.

Fig. 1. Three models of the Snake game: (a) a snake modeled with cells, (b) a snake composed of
segments, and (c) a snake modeled as a broken line

The multiple refinement possibilities, for each UML model, that exist at the CDS-
level, create a large design space [3]. Therefore, we propose an estimation technique
for assessing the costs of a given UML design by counting the number of data accesses
and calculating the memory footprint for a representative scenario and two particular
concrete data structures. Also that is a clear contribution of this paper.

In all our three case studies, we prove that our high-level estimates serve as reliable
predictions for the actual implementations with respect to the memory footprint of the
objects of the application, the number of data accesses (profiled with Atomium [4]),
and the runtime (measured on the Trimedia) of the game engine for a complete, realistic
game.

1 Each data transfer over the memory hierarchy introduces a delay due to the memory latency.
2 The memory-related energy consumption of a data structure can be estimated as A x J, where A

is the overall data access count and J the energy of one data access. J depends on the memory
size and technology.

Moving Up to the Modeling Level for the Transformation of Data Structures 447

Our approach has currently two drawbacks. First, the UML model, obtained after
having applied UML-level transformations, and its implementation in executable code
require an extensive effort from the designer. We will, in future work, focus on the
formalization of the UML-transformations, allowing us to show how the transforma-
tions can be automated. Second, the techniques used in our UML-transformations are
not generally applicable. Therefore, we focus on a specific application domain, namely
2D- en 3D object manipulation and rendering.

The rest of this paper is structured as follows: in Section 2 we start with related work.
In Section 3 we discuss our UML-model transformations and explain our estimation
technique on the basis of the Snake game. Section 4 presents two additional case studies
that confirm the applicability of our UML-transformations for our application domain.
We conclude in Section 5.

2 Context and Related Work

Traditionally, the data of multimedia applications is processed in a sequential pipeline
consisting of three stages: the application engine, the frame buffer and the display.
On a typical PDA platform the display subsystem (i.e. the frame buffer and the color
LCD screen) consumes more than 50% of the total system power [5]. Hence, many
researchers focus on the optimization of the display subsystem.

The power consumption of LCD displays has been tackled extensively at the hard-
ware level [6]. Also, complementary to our UML-transformations, are the software-only
optimization techniques for the LCD display power consumption of [7], in which the
total system power is reduced by 50% on average.

Due to the fact that organic display systems illuminate themselves [8], both the
authors of [5] and ourselves expect the power requirements of the frame buffer and
associated busses to become more dominant. In addition to the hardware optimization
techniques of [5], we can even omit the redundant frame buffer. We adhere to a nontra-
ditional but increasingly popular, object-based rendering pipeline in which we model
the whole application in terms of objects. These objects contain the information of both
their functionality and rendering. In contrast to [5], the compression of the pixels is not
performed at runtime, but at design time by our UML transformations.

In the embedded-systems community, research related to UML focus often on the
interfacing of communicating objects [9] and do not consider data-related issues.

Our work is complementary and closely related to [3], which also aims at optimizing
and exploring the data structures in multimedia applications. Nevertheless, there are
two main differences. First, we concentrate on the optimization of data structures from
a higher level of abstraction in the design flow. We go back to the UML modeling level
for our transformations. The implementation into various concrete data structures is the
subject of [3]. Second, our UML-model transformations focus on the exploration of
the data-fields (i.e. the attributes) of the models of the objects and we do not perform
optimizations at the CDS-level. The automation, and thus also the combination of our
UML-model transformations with these at the concrete data structure level is subject to
future work.

448 M. Temmerman et al.

3 Exploration of the Design Space at the Modeling Level

Exploration of the design space – in memory footprint and number of data accesses – at
the modeling level, consists in the systematic search for equivalent designs in which the
models of the concepts differ (i) in the set of their primitive attributes and/or (ii) in the
quantity of their composing parts. We reach our goals by exploiting geometrical and/or
topological characteristics of the objects in the multimedia application.

In this Section we present our UML model transformations and propose a method-
ology for a fast comparison of the various models in terms of memory footprint and
data accesses.

3.1 Transformations at the UML-Level

We selected the game Snake to demonstrate our UML model transformations. In this
game a snake moves, under control of the player, on a board with a predefined speed.
On the screen, the playing field is shown as a 2D grid of 30 by 30 positions. The snake
is made up of equally colored cells and grows (i.e. cells are added) by eating food. The
game ends when the snake’s head collides with its body or with the border of the board.

We present three different UML-models of the game: (i) a cell-based model, (ii) a
segment-based model, and (iii) a model based on the corner points of the shape of the
snake. These UML models are conform to the three pictures of the Snake board from
Figure 1.

Model 1: The Cell Model of the Snake Game Engine: The original UML model of the
game engine (Fig. 2a) reflects the concepts as introduced in the description of the rules
of the game and was extracted from existing source code. This game has one dynamic
object: the moving and growing snake. All the information is stored in the SnakeBoard
concept and the snake that is modeled as a collection3 of Cells. It is not necessary to
add the free cells explicitly in the model when the dimensions of the board are known.

Fig. 2. (a) the UML-class diagram for the snake composed of snake cells, (b) the segment-based
UML-class diagram, and (c) the UML-class diagram for the line-based model of the snake

The concept Cell has two attributes: (i) position stands for the location of the
cell with its x- and y-coordinates on the board, and (ii) next is needed to store the

3 A collection of objects is represented with a diamond shaped symbol in a UML class dia-
gram [10].

Moving Up to the Modeling Level for the Transformation of Data Structures 449

dynamic structure of the snake and refers to the next cell in the snake. The attributes
head and tail of the concept SnakeBoard indicate the first and the last cell of the
snake. Exploitation of the fact that only the head and the tail cell need to be moved –
because all the snake cells have the same color – results in an efficient algorithm for
moveSnake() and the rendering process.

Model 2: The Segment Model of the Snake Game Engine: Careful observation of an av-
erage game shows that most of the time, the snake moves in the same direction. Hence,
the shape of the snake contains only a few turns. We exploit this knowledge – i.e. the
spatial and temporal locality of adjacent cells with the same moving direction – in the
transformation of Model 1 to reduce the number of objects on the board without losing
information. In this second model, we compress adjacent Cells into one Segment ob-
ject (Fig. 2b). The position of a Segment, indicated with an x on the board, refers to
the position of the first cell of the segment. The value of the attribute length equals the
length of a Segment expressed in Cell units. Notice that the number of segments in the
snake depends on its actual shape.

Model 3: The Line Model of the Snake Game Engine: In order to obtain Model 3 we
combine the segments of Model 2 into one broken line (Fig. 2c). The snake is modeled
with the sequence of the corner points of the line. A Corner object needs only its
position on the board and a reference to the next corner point in the snake. The snake
has one corner object more compared to the segment-based model, but we reduced the
number of attributes by eliminating length.

3.2 Evaluation of the UML-Models

The Proposed Estimation Technique. In order to compare the different designs at
the modeling level in terms of the memory footprint and the number of data accesses4,
we need information from the lower abstraction level (i.e. after the refinement of the
collections of objects).

1. We consider two CDS-refinements, each situated at the extreme limits of the design
space of the concrete data structures:

(a) a List, which is very compact but requires sequential access
(b) a large Array with direct access

2. We make abstraction from the dynamic and non-deterministic behaviour of the ap-
plication by investigating a representative and dominant scenario.

3. By simulating this scenario for the two CDS-refinements of each UML model, we

(a) calculate the memory footprint of the two concrete data structures
(b) count the number of data accesses

These numbers give us high-level estimates for the distribution of the implementa-
tions of the various models in the design space.

4 To make abstraction of the memory hierarchy of the platform, we count the number of data
accesses. A data access is an access of data whose size is between 1–8 Bytes [3].

450 M. Temmerman et al.

(I) The scenario (II) High-level estimates for the Snake object

Fig. 3. (I) The scenario used for the evaluation of the UML-models of the Snake game: the snake
consists of 10 cells and moves one position up on a board of 30 by 30 positions. (II) Comparison
of the Snake models in terms of size and data accesses for this scenario with a List (L) and with
an Array (A) for the concrete data structures

Evaluation of the Snake Models. We apply our methodology on the snake game.

1. For each collection of objects at the UML-level we consider two concrete data
structures: (a) a List and (b) an Array. We use the attribute position as the key to
identify an element (i.e. Cell, Segment or Corner) in the collection.

2. We investigate the scenario depicted in Fig. 3 I. The snake moves to its next position
on the board and changes its moving direction.

3. The high-level estimates for this scenario are gathered in Fig. 3 II for both the List
(L) and Array (A) refinements. This table also distinguishes between the three mod-
els: Cell, Segment, and Line model. For each model, we present the total actual size
of the snake object (after the movement of Fig. 3 I). The calculation of the total size
of the snake is based on the size of tail and head, and also the number of elements
and their size (in bytes). The number of data accesses is obtained by counting all
the read and write operations to the snake object conform to this scenario.

Extrapolating the high-level estimates for a complete game, we expect that the original
Cell model design gives us a Pareto-optimal solution for the array implementation. We
predict also two new Pareto points for the List versions of the Segment and the Line
model.

3.3 Validation of the High-Level Estimates for Snake

We implemented six versions of the Snake game in the C language: CellL, CellA, SegL,
SegA, LineL, and LineA. Figure 4 shows the profiling results of one complete, realistic
game. We measured the execution time for the game engine on the Trimedia platform
and obtained the data accesses from the analysis with the ATOMIUM tool [4].

With respect to the number of data accesses, the implementations CellA, SegL,
and LineL are indeed Pareto-optimal solutions. The memory footprint of the Snake for
LineL is a factor 53 smaller than for CellA. For this gain, LineL requires only 50% more
data accesses than CellA. Trade-offs arise also between the memory size of the snake
and the computing complexity of the algorithms. Our experiment shows that SegL and
LineL, obtained by compressing the data, require an extra cost in execution time for
the extraction of the detailed information. In this paper we focus on the data modeling
aspects of the transformations leaving the computing complexity to future work.

Figure 5 shows that our high-level estimates serve as reliable predictions for the
arrangement of the profiled implementations in the design space with respect to the

Moving Up to the Modeling Level for the Transformation of Data Structures 451

Fig. 4. Profiling results of a complete, realistic Snake game: runtime values of the game engine
on the Trimedia and data accesses to the snake object from the Atomium analysis

memory footprint and the number of data accesses. The values in this table are calcu-
lated from the values from Figure 3 II and Figure 4. It is clear that the List (L) im-
plementations of the segment-based and line-based models result indeed in two new
Pareto-points (indicated in bold) in addition to the Array (A) refinement of the original
cell-based model.

4 Additional Experiments

In this section, we present two case studies. We start with the 2D computer game Tetris.
The second experiment concerns the model transformation for a 3D mesh.

4.1 Tetris Game

In Tetris, the player controls falling pieces, composed of four adjacent squared cells
which appear in seven different shapes and colors. During game play, the landed pieces
are piled up at the bottom of the board and form rows of cells in the pile (Fig. 6 I).
Full rows are removed and the rows above move down. The game ends when the pile
reaches the top of the board.

UML Model Transformations: From the initial Model 1 of the game engine, we con-
struct two new models. Model 1 (Fig. 6 II) is the Cell-based model: both the Piece

Fig. 5. Comparison of the estimates at the UML-level and the profiled values of the memory
footprint of the snake object and the data accesses to the snake object for a realistic Snake game.
Implementation Cell (L) is used as the reference

452 M. Temmerman et al.

(I) (II) (III)

Fig. 6. (I) A frame of the Tetris game , (II) the UML-class diagram of the Cell-based Model, and
a J-shaped piece modeled with (III a) 4 Cells, (III b) 3 Segments, and (IIIc) 2 Blocks

and the Pile object on the TetrisBoard are modeled as a collection of Cells. The
attribute shape characterizes the Piece object. All the cells below toprow belong to
the pile.

In the same way as for the snake game, we transform Model 1 to the segment-based
Model 2 by compressing – in the falling pieces and thus also in the pile – the Cells on
the same row into a Segment and to Model 3 by compressing the Cells into rectangular
Blocks (Fig. 6 III).

High-Level Estimates: Figure 7 shows the high-level estimates for the scenario de-
picted in Figure 6 I when the O-shaped piece moves one position down on the board.
The board has 16 columns and 20 rows. We present for the pile object – the piece
object is very small – the memory footprint and the number of data accesses, for the
List and the Array refinements of the three UML models. The values in the table predict
two Pareto-points: Cell (A) and Block (L).

Validation: The results from Figure 8 confirm our high-level estimates: the implemen-
tations CellA and BlockL give two Pareto-points, both in runtime (on Trimedia) and
data accesses (Atomium analysis).

4.2 3D Mesh Rendering

A 3D mesh is traditionally constructed with triangular faces. Scenes with objects such
as buildings or furniture, often contain many rectangular surfaces. We transform the
model of the mesh by exploiting the co-planarity of the vertices at the modeling level.

UML Model Transformations: For this experiment we started from an existing software
3-D rendering API, designed for triangular meshes. By adding the class Quad to the

Fig. 7. High-level estimates for the pile object with the scenario of Fig. 6 (I)

Moving Up to the Modeling Level for the Transformation of Data Structures 453

Fig. 8. Validation of the high-level estimates for a realistic game: runtime for the Tetris game
engine on Trimedia and data access to the pile from Atomium

API, we are able to render meshes which also contain quadrangular faces. Figure 9
shows the UML-class diagram of (a) the triangle-based model and (b) the quadrangle-
based model. A hybrid model could contain both types of faces. In this API, a mesh is
implemented with two related Lists: (i) a List of the vertices with their 3-D coordinates,
and (II) a List of the faces. A face object is implemented with the references (i.e. index)
to its composing vertices from the first List.

Fig. 9. (a) A mesh modeled with triangular faces and (b) a mesh modeled with quadrilateral faces,
and (c) two triangles composing one quad

High Level Estimates: Both meshes have the same number of vertices, but the Quad
Model needs half the number of faces compared to the original Triangle Model. The
memory size of one face equals 16 bytes for a quadrangle and amounts to 24 bytes
for the two composing triangles in the triangular-based mesh. This results in a gain of
34% for the memory footprint of the list of faces from the Quad Model. The rendering
of the mesh requires a traverse of the list of faces and a lookup of the coordinates of
each vertex of the face. To display one quad on the screen we need 5 data accesses to
the mesh object, compared to 8 data accesses for the two composing triangles (i.e. a
reduction of 38 % for the Quad Model).

Validation: For profiling we created first the data for a mesh composed of 3480 quad-
rangular faces and generated an equivalent mesh built up with triangles by splitting up
each quad from the first mesh into two triangles. The application is implemented in
C++ and executed on a Pentium IV platform under Windows XP. Again, the experi-
ment confirms our high-level estimates. Compared to the mesh from the triangle-based
model, the Quad mesh requires 78% for the memory footprint for the whole mesh ob-
ject (i.e. vertices and faces). The profiled runtime for the rendering equals 481 msec

454 M. Temmerman et al.

for the triangle-based mesh and 349 msec for the quadrangle-based one (i.e. a gain of
28%).

5 Conclusions

We have presented UML model transformations for 2D and 3D multimedia applica-
tions steered by platform-related parameters. In this way we obtain new, non-trivial
points in a Pareto space in which data accesses are traded off with memory footprint.
The proposed high-level estimation technique allows a fast comparison of the various
models without having to generate executable code. The UML transformations have
been applied on three real-live case studies. Experiments on the Trimedia and with the
Atomium tool validate our estimates at the UML-level.

References

1. Catthoor, F., et al.: Custom Memory Management Methodology: Exploration of Memory Or-
ganisation for Embedded Multimedia System Design. Kluwer Academic Publishers, Boston
(1998)

2. Vijaykrishnan, N., et al.: Evaluating integrated hardware-software optimizations using a
unified energy estimation framework. IEEE Trans. Computers 52 (2003) 59–76

3. Daylight, E.G., et al.: Memory-access-aware data structure transformations for embedded
software with dynamic data accesses. IEEE Trans. VLSI Syst. 12 (2004) 269–280

4. ATOMIUM: http://www.imec.be/design/atomium/ (2004)
5. Shim, H., et al.: A compressed frame buffer to reduce display power consumption in mobile

systems. In: ASP-DAC. (2004) 818–823
6. Sarma, K.R., Akinwande, T.: Flat panel displays for portable systems. J. VLSI Signal

Process. Syst. 13 (1996) 165–190
7. Gatti, F., et al.: Low power control techniques for tft-lcd displays. In: CASES. (2002) 218–

224
8. Kamijoh, N., et al.: Energy trade-offs in the ibm wristwatch computer. In: ISWC ’01:

Proceedings of the 5th IEEE International Symposium on Wearable Computers. (2001) 133
9. Zhu, Q., et al.: System-on-chip validation using uml and cwl. In: CODES+ISSS. (2004)

92–97
10. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual.

Addison-Wesley (1998)

A Case for Visualization-Integrated System-Level
Design Space Exploration

Andy D. Pimentel

Computer Systems Architecture Group,
Informatics Institute, University of Amsterdam,

Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands
andy@science.uva.nl

Abstract. Design space exploration plays an essential role in the system-level
design of embedded systems. It is imperative therefore to have efficient and ef-
fective exploration tools in the early stages of design, where the design space is
largest. System-level simulation frameworks that aim for early design space ex-
ploration create large volumes of simulation data in exploring alternative archi-
tectural solutions. Interpreting and drawing conclusions from these copious sim-
ulation results can be extremely cumbersome. In other domains that also struggle
with interpreting large volumes of data, such as scientific computing, data visu-
alization is an invaluable tool. Such visualization is often domain specific and
has not become widely used in evaluating the results of computer architecture
simulations. Surprisingly little research has been undertaken in the dynamic use
of visualization to guide architectural design space exploration. In this paper, we
plead for the study and development of generic methods and techniques for run-
time visualization of system-level computer architecture simulations. We further
explain that these techniques must be scalable and interactive, allowing designers
to better explore complex (embedded system) architectures.

1 Introduction

Chip technology continues to advance along the path predicted by Moore without any
saturation in the exponential growth of transistor density foreseen within the next five
years [1]. This growth is required to satisfy the demands of many diverse computer ap-
plications and has resulted in a steady increase in the complexity of today’s computer
architectures. A noticeable trend illustrating this increase in complexity is the move
towards architectures that exploit parallelism at multiple levels of granularity (e.g. bit-
level, instruction-level, and task-level) by partitioning the system into a multitude of
specialized resources supporting a given level of parallelism. In the embedded systems
domain, this trend is also clearly noticeable with the emergence of Systems on a Chip
(SoCs) – or rather Multi-Processor SoCs (MPSoCs) – that can integrate an entire par-
allel system onto a single chip and start to play a vital role in the embedded systems
market. The complexity of these MPSoCs is aggravated by the fact that – besides of-
fering parallel computing resources – they often have a heterogeneous architecture,
consisting of components that range from fully programmable processor cores to fully
dedicated hardware blocks. Programmable processor technology is used for realizing

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 455–464, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

456 A.D. Pimentel

flexibility, for example to support multiple applications and future extensions, while
dedicated hardware is used to optimize designs in time-critical areas and for power
and cost minimization. Because of the complexity of these MPSoC architectures, it is
crucial to have good tools for exploring design decisions during the early stages of de-
sign. In recent years, much work has been undertaken in design space exploration and
this paper explores an area that promises to increase the productivity of designers still
further.

System-level simulation frameworks that aim for early design space exploration can
create large volumes of simulation data in exploring alternative architectural solutions.
Interpreting and drawing conclusions from these copious simulation results can be ex-
tremely cumbersome. In other domains that also struggle with interpreting large vol-
umes of data, such as scientific computing, data visualization is an invaluable tool.
Such visualization is often domain specific and has, surprisingly enough, not become
widely used in evaluating the results of computer architecture simulations. Here, results
are usually still presented graphically as a post-mortem but very little research has been
undertaken in the dynamic use of visualization to guide design-space explorations. In
this paper, we advocate the study and development of generic methods and techniques
for run-time visualization of system-level computer architecture simulations. Specifi-
cally, we focus on those simulations that target architectural design space exploration.
We explain that the visualization techniques must be scalable and interactive, allowing
designers to better explore complex architectures that may be heterogeneous in nature
and may exploit various levels of concurrency. To summarize, rather than presenting
concrete research results, this paper tries to identify a challenging new research area.

The remainder of the paper is organized as follows. The next section provides an
introductionary overview of the field of system-level design space exploration. In Sec-
tion 3, we observe that hardly any research is performed on run-time visualization for
architecture simulations, and that this is especially true from the perspective of design
space exploration. In Section 4, we therefore plead for visualization-integrated design
space exploration, in which generality, scalability, and interactiveness are key ingredi-
ents. Finally, Section 5 concludes the paper.

2 System-Level Design Space Exploration

The sheer complexity of modern (embedded) computer architectures forces designers
to start with modeling and simulating system components and their interactions in the
very early design stages. This is an important ingredient of system-level design [2, 3].
System-level models typically represent workload behavior, architecture characteristics,
and the relation (e.g., mapping, hardware-software partitioning) between workload(s)
and architecture. These models are deployed at a high level of abstraction, thereby min-
imizing the modeling effort and optimizing the simulation speed required to explore
large parts of the design space. This high-level modeling allows for the early verifica-
tion of a design and can provide estimates of the performance, power consumption and
cost of a design.

Design space exploration (DSE) plays a crucial role in system-level architecture de-
sign. It is imperative therefore, to have good evaluation tools for efficiently exploring

A Case for Visualization-Integrated System-Level Design Space Exploration 457

different design choices during the early design stages, where the design space is largest.
Consequently, considerable research effort has been spent in the last decade on devel-
oping frameworks for system-level modeling and simulation that aim for early architec-
tural exploration. Examples are Metropolis [4], MESH [5], Milan [6], Artemis [7, 8] and
various SystemC-based [9] environments such as the work of [10]. This research has
produced significant results in various disciplines of system-level modeling and sim-
ulation. With respect to application modeling, or workload modeling, much work has
been performed in the area of models of computation (e.g.,[11, 12, 13, 14]). System-
level modeling and simulation of architectures and their performance constraints has
been addressed by a large number of research groups (e.g., [4, 8, 15, 6, 16]). In many of
these efforts, transaction-level models [17] are applied in which transactions between
architecture components are modeled by atomic transfers of high-level data and/or con-
trol. Various research groups also recognize an explicit mapping step between applica-
tion (workload) models and architecture models and subsequently proposed different
mapping mechanisms (e.g., [8, 18, 4]).

Research on the refinement of (abstract) system-level architecture performance mod-
els to gradually disclose more implementation details is gaining interest but is still in
its infancy. There are several attempts being made to address this issue, such as in the
Metropolis [19], Artemis [8], and Milan frameworks [6], the work of [20], and in the
context of SystemC (e.g., [10]). In [20], for example, a methodology is proposed in
which architecture-independent specification models are transformed (i.e., refined) into
architecture models to facilitate architectural exploration. The majority of the work in
this field, however, focuses on communication refinement only (e.g., [21, 22, 23]).

Finally, different methods have been proposed for helping designers to quickly find
good candidate architectures that can subsequently be further evaluated and explored by
means of simulation. These methods usually apply multi-objective optimization tech-
niques (e.g., [24, 25, 26, 27]), or in the case of [6], symbolic analysis.

3 Visualization, or the Lack of It

System-level simulations may exhibit vast amounts of simulation data on various char-
acteristics (validity, performance, power consumption, reliability, etc.) for the archi-
tecture(s) under investigation. As mentioned before, interpreting and drawing the right
conclusions from such copious simulation results may be extremely cumbersome. Be-
cause of exactly this reason, other domains that also struggle with interpreting massive
amounts of data (or code), such as scientific computing, have embraced data (code)
visualization (both at run-time and post-mortem) as a real aid for analysis and interpre-
tation. As a result, visualization has become a research field in its own right in these
domains. The same is not yet generally true for the computer architecture domain. Run-
time visualization can, however, be extremely helpful to a system designer in identifying
or analyzing dynamic effects that may occur during simulation and which may affect
static performance but which cannot be analyzed at post-mortem. Here, one can think
of, for example, synchronizations, cache behavior and coherency traffic in MPSoCs, or
network contention and congestion in Network-on-Chip [28] based MPSoCs. To briefly
illustrate the usefulness of run-time visualizations in the context of computer architec-

458 A.D. Pimentel

ture simulation, Figure 1 shows a case study from some early visualization work by our
group [29]. The pictures show visualizations of network simulations for eight different
network configurations, i.e., for two types of networks (7×7 torus and mesh networks),
two types of routing mechanisms (XY routing based on dimension ordering and Graph-
ical routing based on Bresenham’s line-drawing algorithm), and two network loads (a
uniform network load (= 0% hotspot) and a network load in which 20% of the traffic is
directed towards a hotspot in the middle of the network). The darker cells in Figure 1
indicate a higher network contention. The visualizations show at a glance the differ-
ent behaviors of, for example, the two routing mechanisms. While Graphical routing
performs well in a torus, it clearly suffers from problems in a mesh network.

0 %

20 %

Graphical-torus XY-torus Graphical-mesh XY-mesh

Fig. 1. XY and Graphical routing in torus and mesh networks

Despite the clear benefits, very little research is being conducted into generic meth-
ods and techniques for run-time visualization of (system-level) computer architecture
simulations. Even more so, research on run-time visualization support to aid the DSE
process is basically non-existing. Existing visualization work in the context of computer
architecture simulation mainly focuses on visualization technology for educational pur-
poses (e.g., [30, 31]), tightly couples visualization to one particular, often lower than
system-level, architecture simulation environment (e.g., [32, 33, 34]), or only provides
support for post-mortem visualization of simulation results (e.g., [35, 36]). To the best
of our knowledge, only the recent research efforts of [37, 38] and especially [39] target
generic visualization support in the domain of computer systems’ analysis. Although
the work of [37, 38] provides generic visualization support, it does so for a wide range
of computer system related information which may not necessarily be applicable to
computer architecture simulation, with its own domain specific requirements. Here, the
data is generated dynamically and the goals are normally to refine a design space with
minimum computer resources and elapsed time.

A Case for Visualization-Integrated System-Level Design Space Exploration 459

The Vista work from [39] aims at generic support for visualization of computer
architecture simulations, but it does not target system-level simulation of systems that
may comprise a large number of architectural components. As will be pointed out in the
next section, this will have impact on the scalability requirements of the visualization. In
addition, none of the above research efforts addresses the needs for visualization from
the perspective of DSE, in which different trade-offs regarding, for example, perfor-
mance, power, area, etc., need to be studied. Finally, the aforementioned visualization
efforts do not provide the level of interactivity that is desired for effective DSE. In this
respect, we envision a visualization-integrated DSE process in which the designer is
allowed to provide (interactive) feedback to the simulation environment in order to ac-
tively explore and investigate the simulation results, or even to steer the simulation (as
will be discussed later on). We believe that such visualization-integrated DSE is critical
for improving the effectiveness of (future) system-level DSE approaches, which will
eventually lead to reductions of design times.

4 Visualization-Integrated DSE

We plead for the development of generic methods and techniques to provide scalable
and interactive run-time visualization of system-level computer architecture simula-
tions for DSE. This section will shed some light on what we exactly mean with each
of these requirements – generality, scalability, and interactiveness – for the run-time
visualization methods. More specifically, we propose to evaluate visualization methods
for DSE according to three quantifiable criteria, illustrated as three separate dimensions
in Figure 2. Two of these dimensions relate to scalability, while the third refers to in-
teractiveness. The aforementioned requirement of generality can be seen as a fourth
criterion, but this one is less easy to quantify.

4.1 Generic Visualization Support

To optimize re-use of visualization building blocks, it must be identified what types of
generic visualization building blocks are required to compose run-time visualizations
for a wide range of computer architecture simulations. Because characteristics other

(number of system components)
Horizontal scalabilityV

er
tic

al
 s

ca
la

bi
lit

y
(r

ef
in

em
en

t l
ev

el
s)

In
te

ra
cti

ve
ne

ss

(d
at

a
ex

plo
ra

tio
n,

ste
er

ing
, e

tc.
)

Fig. 2. Evaluation criteria for visualization methods for DSE

460 A.D. Pimentel

than just performance, like power consumption and even cost, also are major design
goals in the embedded computing domain, it should be taken into account that a visual-
ization can be applied to different dimensions of the data produced. That is, visualiza-
tion building blocks must allow for effective employment in the context of performance
analysis, the analysis of power consumption, etc. The choice of visualization building
blocks is also influenced by the type of data values to be visualized. In this respect,
a simple classification of two types of values can be made [29]: snapshot values that
relate to a particular moment in simulation time (e.g., the signaling of a cache hit/miss)
and integrated values that relate to the simulation over some time interval (e.g., the
cache hitrate). In many occasions, a designer will be interested in, for example, per-
formance behavior over some period of time. This may therefore require that snapshot
values from the simulator are first transformed into integrated values before visualizing
them. This can be established by defining a number a basic transformations on (raw)
data values. Examples of such transformation are smooth (smooth a value by calculating
the weighted average of the old smoothed value and the current value), history (keep
a history of value samples), and average (calculate the average of a history of value
samples). Flexible support for composing a wide range of such transformations on data
before they are visualized, is therefore needed.

Furthermore, an efficient and effective mechanism, including a generic API defini-
tion, is needed that allows the placing of probes in an architecture simulator to capture
the events or variables that need to be visualized. The probing mechanism should min-
imize intrusion and pollution of the target architecture simulation code. This could be
achieved by devising a descriptive language with which a designer can describe how
the events/variables captured from a simulator need to be transformed (applying the
aforementioned transformations) and visualized (the type of visual used). We believe
that an XML-based language may be a good candidate for such visualization descrip-
tions since XML is already used extensively to describe the structure of (system-level)
models [40, 41]. By applying visualization descriptions, we establish a strict decoupling
of the visualization and the simulator code, which minimizes intrusion and pollution of
simulator code and maximizes the potentials for re-use of the composed visualizations.
The latter includes both re-use within a single simulation environment as well as shar-
ing visualization components between different simulation environments. This should
considerably improve the current situation in which designers typically need to develop
their own proprietary visualization support.

4.2 Scalable Visualization

In the envisioned run-time visualization technology, the visualizations should be highly
scalable, both horizontally and vertically (see also Figure 2). By horizontal scalability
we mean that the visualization methods and techniques should be capable of visual-
izing simulations of architectures with possibly very large numbers of computational
elements, memory and communication components (assuming that sufficient computa-
tional resources are provided to perform the visualization). This is an important criterion
since future MPSoCs may scale up to systems that integrate hundreds to thousands of
processing elements.

A Case for Visualization-Integrated System-Level Design Space Exploration 461

With vertical scalability, we refer to the capability of visualizing computer archi-
tecture simulations at multiple levels of abstraction. This is analogous to the gradual
refinement of system-level architecture simulation models to exhibit more implemen-
tation details. It should, for example, be possible for visualizations to follow a similar
refinement trajectory, i.e., gradually showing more detailed information. Therefore, it
needs to be investigated whether or not such refinements can be formalized in transfor-
mations that move the visualization perspective through different levels of abstraction.

4.3 Interactive Visualization

Since the objective is support for DSE, the envisioned visualization technology should
not be restricted to a one-way flow of information, namely from simulation to visual-
ization. Rather, the designer should be able to provide interactive feedback to the visu-
alization environment, thereby allowing the designer to actively explore and investigate
the simulation results and maybe even steer the simulation. In our view, three different
types of interactive feedback can be provided by a designer. First, a designer can change
the view of a visualization. This might be done by changing the way data is visualized
but retaining the same abstraction level, or by changing the level of abstraction in a
visualization (as discussed in the above).

The two remaining types of feedback both deal with steering the simulations. This
steering is based on the idea of computational steering [42, 43] that is commonly ap-
plied in the field of scientific computing. In the second type of feedback, simulations
can be steered – or orchestrated – by interactively starting up (and stopping) parallel
instances of a simulation with different parameters, according to the findings of the de-
signer. With the proper support for visualization, these parallel instances of a simulation
and, in particular, the differences between them, aid the architect in the DSE process.
This steering mechanism is illustrated in Figure 3(a).

The third type of feedback, which is illustrated in Figure 3(b), comprises the steer-
ing of a simulation by changing its parameters at run-time. For (relatively) long-running
simulations, it may be too time-consuming to start up a new simulation with differ-

interpretation

(a)

Visualization

User
steering

D
at

a
fr

om
 in

st
an

ce
s

parameters

steering

User

D
at

a
fr

om
 s

im
ul

at
or

(b)

start(parameters)
/ stop instances manipulate

interpretation

Visualization

Instance of
architecture simulation
simulation

Architecture

Fig. 3. Two types of steering in interactive visualization for DSE: (a) starting (and stopping)
instances of an architectural simulation with different parameters, and (b) run-time manipulation
of simulation parameters

462 A.D. Pimentel

potentials for manipulating a running architectural simulation (changing its parameters)
also need to be investigated.

Finally, we would like to mention that both forms of interactive steering are orthog-
onal. So, they can complement each other in order to improve the process of DSE even
further.

5 Conclusions

In this paper, we advocated the development of generic methods and techniques for
run-time visualization of system-level computer architecture simulations. More specif-
ically, we argued that especially visualization support to aid the process of architectural
design space exploration deserves more attention. It was also explained that general-
ity, scalability, and interactiveness are key ingredients in our envisioned visualization
technology. Eventually, the proposed visualization-integrated design space exploration
should lead to reductions in design times, and hopefully result in better designs. Of
course, a logical next step is to give the ideas presented in this paper a more concrete
form.

References

1. International Technology Roadmap for Semiconductors: Executive summary. http://public.
itrs.net/Files/2003ITRS/Home2003.htm (2003)

2. Keutzer, K., Malik, S., Newton, A., Rabaey, J., Sangiovanni-Vincentelli, A.: System level de-
sign: Orthogonalization of concerns and platform-based design. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems 19 (2000)

3. Gajski, D.D.: System Level Design Flow: What is needed and What is not. Technical report,
CECS, University of California at Irvine (2002) CECS-TR-02-33.

4. F. Balarin et al.: Metropolis: An integrated electronic system design environment. IEEE
Computer 36 (2003)

5. Cassidy, A., Paul, J., Thomas, D.: Layered, multi-threaded, high-level performance design.
In: Proc. of the Design, Automation and Test in Europe (DATE). (2003)

6. Mohanty, S., Prasanna, V.K.: Rapid system-level performance evaluation and optimiza-
tion for application mapping onto SoC architectures. In: Proc. of the IEEE International
ASIC/SOC Conference. (2002)

7. Pimentel, A.D., Lieverse, P., van der Wolf, P., Hertzberger, L.O., Deprettere, E.F.: Exploring
embedded-systems architectures with Artemis. IEEE Computer 34 (2001) 57–63

8. Pimentel, A.D.: The Artemis workbench for system-level performance evaluation of embed-
ded systems. Int. Journal of Embedded Systems (2005)

9. Grötker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer Academic
Publishers, Dordrecht, The Netherlands (2002)

10. T. Kogel et al.: Virtual architecture mapping: A SystemC based methodology for archi-
tectural exploration of system-on-chip designs. In: Proc. of the Int. workshop on Systems,
Architectures, Modeling and Simulation (SAMOS). (2003)

11. Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A framework for simulating and
prototyping heterogeneous systems. Int. Journal of Computer Simulation 4 (1994) 155–182

ent parameters to reach a certain interesting point in execution again. Therefore, the

A Case for Visualization-Integrated System-Level Design Space Exploration 463

13. Stefanov, T., Kienhuis, B., Deprettere, E.F.: Algorithmic transformation techniques for effi-
cient exploration of alternative application instances. In: Proc. of the 10th Int. Symposium
on Hardware/Software Codesign (CODES’02). (2002) 7–12

14. Turjan, A., Kienhuis, B., Deprettere, E.F.: Translating affine nested loop programs to pro-
cess networks. In: Proc. of the Int. Conf. on Compilers, Architectures and Synthesis for
Embedded Systems (CASES). (2004)

15. Mihal, A., Kulkarni, C., Sauer, C., Vissers, K., Moskewicz, M., Tsai, M., Shah, N., Weber, S.,
Jin, Y., Keutzer, K., Malik, S.: Developing architectural platforms: A disciplined approach.
IEEE Design and Test of Computers 19 (2002) 6–16

16. Lahiri, K., Raghunathan, A., Dey, S.: System-level performance analysis for designing on-
chip communication architectures. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems 20 (2001) 768–783

17. Cai, L., Gajski, D.: Transaction level modeling: An overview. In: Proc. of CODES-ISSS.
(2003) 19–24

18. Živković, V., van der Wolf, P., Deprettere, E.F., de Kock, E.A.: Design space exploration of
streaming multiprocessor architectures. In: Proc. of the IEEE Workshop on Signal Process-
ing Systems (SiPS). (2002)

19. Densmore, D., Rekhi, S., Sangiovanni-Vincentelli, A.: Microarchitecture development via
Metropolis successive platform refinement. In: Proc. of the Design, Automation and Test in
Europe (DATE). (2004)

20. Peng, J., Abdi, S., Gajski, D.: Automatic model refinement for fast architecture exploration.
In: Proc. of the Int. Conf. on VLSI Design. (2002) 332–337

21. Abdi, S., Shin, D., Gajski, D.: Automatic communication refinement for system level design.
In: Proc. of the Design Automation Conference (DAC). (2003) 300–305

22. Lieverse, P., van der Wolf, P., Deprettere, E.F.: A trace transformation technique for commu-
nication refinement. In: Proc. of the 9th Int. Symposium on Hardware/Software Codesign
(CODES). (2001) 134–139

23. Nicolescu, G., Yoo, S., Jerraya, A.A.: Mixed-level cosimulation for fine gradual refinement
of communication in SoC design. In: Proc. of the Int. Conference on Design, Automation
and Test in Europe (DATE). (2001)

24. Haubelt, C., Mostaghim, S., Slomka, F., Teich, J., Tyagi, A.: Hierarchical synthesis of em-
bedded systems using evolutionary algorithms. In: Evolutionary Algorithms for Embedded
System Design. Kluwer Academic Publishers (2002)

25. Palesi, M., Givargis, T.: Multi-objective design space exploration using genetic algorithms.
In: Proc. of the 10th Int. Symposium on Hardware/Software Codesign (CODES). (2002)

26. Thiele, L., Chakraborty, S., Gries, M., Künzli, S.: A framework for evaluating design trade-
offs in packet processing architectures. In: Proc. of the ACM/IEEE Design Automation
Conference (DAC). (2002)

27. Erbas, C., Erbas, S.C., Pimentel, A.D.: A multiobjective optimization model for exploring
multiprocessor mappings of process networks. In: Proc. of the IEEE/ACM CODES+ISSS
Conference. (2003)

28. Benini, L., Micheli, G.D.: Networks on chips: A new SoC paradigm. IEEE Computer 35
(2002) 70–80

29. Kok, H.C., Pimentel, A.D., Hertzberger, L.O.: Runtime visualization of computer architec-
ture simulations. In: Proc. of the Workshop on Performance Analysis and its Impact on
Design (in conjunction with ISCA ’97). (1997) 15–24

12. de Kock, E.A., Essink, G., Smits, W.J.M., van der Wolf, P., Brunel, J.Y., Kruijtzer, W.M.,
Lieverse, P., Vissers, K.A.: Yapi: Application modeling for signal processing systems. In:
Proc. of the Design Automation Conference (DAC). (2000) 402–405

464 A.D. Pimentel

31. Yehezkel, C., Yurcik, W., Pearson, M., Armstrong, D.: Three simulator tools for teaching
computer architecture: Easycpu, little man computer, and rtlsim. Journal on Educational
Resources in Computing (JERIC) 1 (2001)

32. P. S. Coe et al.: A hierarchical computer architecture design and simulation environment.
ACM TOMACS 8 (1998) 431–446

33. Berkbigler, K., Bush, B., Davis, K., Moss, N., Smith, S.: À la carte: A simulation framework
for extreme-scale hardware architectures. In: Proc. of the IASTED International Conference
on Modelling and Simulation. (2003)

34. Stolte, C., Bosch, R., Hanrahan, P., Rosenblum, M.: Visualizing application behavior on
superscalar processors. In: Proc. of the Fifth IEEE Symposium on Information Visualization.
(1999)

35. Fang, W., Wang, C.L., Zhu, W., Lau, F.: Pat: A postmortem object access pattern analysis and
visualization tool. In: Proc of the Int. Workshop on Distributed Shared Memory on Clusters
(at CCGrid 2004). (2004)

36. Hlavacs, H., Kvasnicka, D., Ueberhuber, C.W.: Clue — a tool for cluster evaluation. In:
Distributed and Parallel Systems (DAPSYS). (2000) 61–64

37. Bosch, R., Stolte, C., Tang, D., Gerth, J., Rosenblum, M., Hanrahan, P.: Rivet: A flexible
environment for computer systems visualization. Computer Graphics 34 (2000)

38. Bosch, R.P.: Using Visualization to Understand the Behavior of Computer Systems. PhD
thesis, Stanford University (2001)

39. Mihalik, A.: Vista: A visualization tool for computer architects. Master’s thesis, Mas-
sachusetts Institute of Technology (2004)

40. Lee, E.A., Neuendorffer, S.: MoML - a Modeling Markup Language in XML, version
0.4. Technical Report UCB/ERL M00/8, Electronics Research Lab, University of California,
Berkeley (2000)

41. Coffland, J.E., Pimentel, A.D.: A software framework for efficient system-level performance
evaluation of embedded systems. In: Proc. of the ACM Symposium on Applied Computing
(SAC ’03). (2003) 666–671

42. Mulder, J., van Wijk, J., van Liere, R.: A survey for computational steering environments.
Future Generation Computer Systems 15 (1999)

43. van Liere, R., Mulder, J., van Wijk, J.: Computational steering. Future Generation Computer
Systems 12 (1997)

30. Marwedel, P., Sirocic, B.: Multimedia components for the visualization of dynamic behavior
in computer architectures. In: Proc. of the Workshop of Computer Architecture Education
(WCAE’03). (2003)

Mixed Virtual/Real Prototypes for Incremental System
Design – A Proof of Concept

Stefan Eilers and C. Müller-Schloer

Institute of Systems Engineering, System and Computer Architecture (SRA),
University Hannover, Germany

{eilers, cms}@sra.uni-hannover.de

Abstract. Design automation has continually moved towards higher system lev-
els. In recent years it has become possible to model and simulate whole hetero-
geneous systems, containing hardware as well as complex software components,
described on different abstraction levels, with a correct prediction of function and
timing. The remaining problem, however, is to transform such a virtual prototype
into the final real prototype. This transformation is usually not feasible in a sin-
gle step. Intermediate versions consist of real as well as virtual subsystems. This
paper explores the possibility of a step-wise transformation process (incremental
system design) leading to the requirement to combine real subsystems with sim-
ulated ones (mixed virtual/real prototypes). The paper discusses the necessary
real-time prerequisites in terms of simulation method, programming language,
RTOS and the interface between real and virtual subsystems to realize this goal
with today’s computing platforms.

1 Motivation

Modern system designs use a distributed network of microcontrollers, each solving
different complex tasks. These computing-nodes usually interact and solve tasks in a
cooperative way. In practice, it is a difficult task to design distributed systems, even
with just a view computing-nodes. It is almost impossible to debug many controllers si-
multaneously to track down problems, caused by intercommunication and timing prob-
lems. The Institute of Systems Engineering, System and Computer Architecture (SRA)
has addressed this problem and developed a system simulation environment, called
ClearSim-MultiDomain (ClearSim-MD), providing the advantage to develop such com-
plex systems completely virtually. Target systems may contain microcontrollers includ-
ing RTOS and application software, digital and analog components and interconnects
like busses. ClearSim-MD simulates their functional and timing behavior. This system
model is called ”virtual prototype”.

The goal of every development is a real system. Therefore it is not sufficient just
to have a working virtual prototype. Due to unavoidable modeling inaccuracies, it may
happen that a real prototype will not work as expected from the simulation. Due to the
fact that testing in the real environment exhibits all disadvantages that we try to avoid
with our simulation approach, solving this problem is a very time consuming task. Due
to the fact, that current design methodologies do not address this problem, we propose

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 465–474, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

466 S. Eilers and C. Müller-Schloer

the incremental design approach. The idea is to transform the virtual prototype to the
real prototype in small steps [1, 2]. The system is cut into suitable subsystems, such that
the communication costs are minimized. This transforms the originally purely virtual
prototype into a mixed virtual/real prototype. This means that the simulation system
has to simulate the remaining virtual components in real-time. If the mixed prototype
shows any problems, it is now possible to isolate the faulty subsystem. By this so called
incremental design approach it is possible to mix almost any combination of virtual
and real components within a real-time simulation containing virtual as well as real
components. This type of simulation is called Mixed Virtual/Real Simulation or Mixed
Reality Simulation. Therefore, our goal is beyond the usual hardware- and software-in-
the-loop techniques (see definition in [3]).

Mixed reality simulation is a challenging goal. To realize this concept for typical
use cases of the automotive and automization industry, we expect simulation loop times
between 500 us and 1 ms (for instance, a typical ABS system by WABCO expects
a minimum time of 3 ms between measurement of the tire speeds and changing the
pressure on the hydraulic break system [4] and dSpace characterizes typical loop-times
for hardware-in-the-loop (HIL) of 1ms [5]).

The research work presented in this paper aims to show the feasibility of the idea
and introduces an example implementation, based on standard PC hardware.

In this paper we will discuss, after a short review of the existing non-real-time sys-
tem simulator ClearSim-MD (section 2) in section 3 a solution to make the C++ code
real-time-safe. Next, we discuss in section 4 the RTOS solution used in this project
(RTAI/LXRT), which allows for the coexistence of real-time and non-real-time pro-
cesses.

Section 5 addresses the problems associated with the virtual-to-real interface. The
remaining part of the paper presents results of the present implementation (section 6)
and a conclusion and outlook (section 7).

2 ClearSim-MD: Completely Virtual

ClearSim-MD allows to simulate virtual prototypes with their functional and timing
behavior. These virtual prototypes contain several components on different levels of
abstraction, written with different modeling languages. The philosophy behind this is
to use the best modeling language for each subsystem. For instance, an extended fi-
nite state machine (EFSM) may be best to describe a digital component, but Mod-
elica [6] is more appropriate for analog components. ClearSim-MD is open for any
modeling language. So far we have integrated C/C++, Java, EFSM, Modelica, VHDL,
MATLAB/Simulink and SPS. Even high-level description languages are available, like
UML-Statecharts or SDL [7].

The main goal of ClearSim-MD is to assist developers to write software for embed-
ded systems. Thus, it provides models of microcontrollers (like Infineon C-167, C-505,
ARM), which execute the real software as binaries with accurate functional and timing
behavior. With these models, the developer is able to predict whether his software has
the correct functional and timing behavior in the current context of environment [8].

Mixed Virtual/Real Prototypes for Incremental System Design – A Proof of Concept 467

To create a virtual prototype, one has to connect all these subsystems or simulation
modules. This is realized by a universal portable simulation interface, called UPSI [9],
and a simulation kernel, which handles communication and timing, as discussed in the
next section.

2.1 Simulation Kernel

The simulation kernel has to manage two things:

1. Synchronization of the timing between the simulation modules.
2. Transmission of events between simulation modules.

Event based simulation algorithms, whether optimistic or conservative, are widely used
in many simulation systems. They provide very accurate results at maximum speed. Es-
pecially for feed-back systems and optimistic simulation algorithms, simulation-modules
have to own the ability to rollback its internal state to a previous one. If this isn’t possi-
ble, incorrectness is unavoidable due to the fact that simulation modules are simulated
sequentially and therefore their local clocks are not incremented at the same time [10].

This kind of optimistic event-based timing synchronization is possible only in com-
pletely virtual simulation environments and used by ClearSim-MD. Real-time simula-
tion has to increase the time monotonically. Therefore, rollback and other mechanisms
of event-based simulation systems cannot be used. This problem will be discussed in
the next section.

3 ClearSim-MD: Mixed Reality

A simulation, containing real and virtual components, has to satisfy the following re-
quirements:

1. The simulation speed itself has to be increased to support complex virtual proto-
types within given time limits.

2. The virtual simulation time has to increase monotonically and synchronously with
real-time. Jumping into the ”future” or ”past” is not possible, as event-based sys-
tems do.

3. An interface between real and virtual components has to be realized, afflicted with
very low latencies.

4. All virtual components have to be simulated within fixed time limits, according to
the definition of hard real-time (see DIN 44300).

Most of the expected speed improvement (1) was realized by using current computer
systems with their extremely boosted performance and by optimizing the simulation
modules and their communication overhead. Due to the fact that we have to consider
communication overhead, the goal is to simulate the virtual part of the system with a
real-time factor1 below 1. The monotonically increase of the simulation time is handled

1 R = tsim
treal

;treal : Simulated virtual time; tsim: Time needed to simulate the time treal .

468 S. Eilers and C. Müller-Schloer

by a timer based simulation algorithm, which is out of the papers focus. The interface
between virtual and real subsystems (3) is discussed in section 5.

The last requirement (4) lead to a hard real-time implementation of ClearSim-MD
which will be discussed in the next section.

3.1 Hard Real-Time Environment

ClearSim-MD had to be modified to satisfy the requirements, defined above.
The software is written in C++ and portable to various operating systems, using an

abstraction layer. This abstraction layer was adapted to support the new C++ middle-
ware for real-time operating systems, introduced in section 4. The goal was to migrate
the existing C++ code to the new real-time constraints, with as few modifications as pos-
sible. The original simulation kernel and its simulation modules were written without
real-time requirements, therefore we had to take care to detect non real-time compli-
ant code and modify it to meet our requirements. These modifications were realized by
redefining and replacing commonly used C++ classes and C functions with real-time
compliant releases which are implemented by the C/C++ Middleware, as introduced in
the next chapter.

4 C/C++ Middleware for Real-Time Operating Systems

A general purpose operating system with real-time extension is used for ClearSim-MD
with real-time simulation. Linux with RTAI/LXRT (http://www.aero.polimi.it/˜rtai/) pro-
vides the advantage of coexisting real-time and non real-time processes in user space.

All C real-time functions and C++ classes, as introduced in the previous sections,
use an API, which is provided by this middleware. For mapping commonly used C
functions easily to the real-time system, it was essential to implement this API close to
commonly used C functions. Simple real-time extensions do not have features like file
and socket access, therefore they had to be implemented by this middleware concept.

The solution was to run the simulation threads under real-time constraints, and let
them communicate with a non real-time communication handler without blocking. This
concept is based on threads which handle the data-communication between the real-
time task and the non real-time system via non-blocking interprocess-communication,
as for instance, pipelines or mailboxes.

In this implementation, a thread will receive data from the real-time interprocess
communication and exports it into the corresponding output channel, like a file or socket
handle. This thread runs in the non real-time environment, and may be blocked, either
by missing data from the interprocess-communication or by the non real-time envi-
ronment (see Fig. 1a). It is recommended that the communication thread runs with a
slightly higher priority than the real-time task to prevent priority inversions. Thus, the
communication is handled as fast as possible. Due to the fact that blocking of this
communication thread does not block the real-time task2, we can assure real-time con-
straints (see Fig. 1b) but have to accept loss of data if the internal buffers are full.

2 If the communication thread is blocked by the non real-time system, the real-time task is
reactivated by the real-time scheduler.

Mixed Virtual/Real Prototypes for Incremental System Design – A Proof of Concept 469

Linux Kernel

Interprocess

(non−blocking)

Non−Real−Time
Communication
Thread

Real−Time Kernel
(RTAI, RT−Linux,...)

Real−Time Environment Non Real−Time Environment

Real−Time Task

Function Call

RT−Library (within RT−Library)

Interprocess
Communication
(blocking)

Function Call
(blocking)

Communication

(a) Structure of the rt-middleware, imple-
mented as a rt-library

I/O−ThreadsThreads
for Task 2

Prio I/O
Threads
for Task 1

Priority

Prio Task 2

Prio Task 1

Real−Time Task 2

Real−Time Task 1

I/O−Threads

Prio I/O

(b) Priorities of real-
time tasks and I/O
threads

Fig. 1. Structure and priority diagram of the real-time middleware architecture

Data input from non real-time into the real-time task needs a similar mechanism.
Practical tests have shown that it is very useful to use a non real-time thread for every
input channel which needs a slightly higher priority than the reading real-time task.
This thread reads the data - for instance from a file - and transmits it, via non-blocking
interprocess communication, to the real-time task.

Beside using the real-time functions for communication, we also need dynamic
memory handling. To provide dynamic memory access, we need a special memory han-
dler which never blocks and which provides a deterministic time behavior. It is quite
clear that the memory management algorithms of general purpose operating systems
are not feasible under real-time constraints [11].

For granting real-time constraints, there exist several optimistic and conservative
algorithms for concurrent real-time memory management [12].

ClearSim-MD expects dynamic memory management. The introduced real-time
middleware concept implements a simple conservative algorithm and optionally pro-
vides access to the implementation which may be integrated in the used host real-time
environment. Thus, it is granted that dynamic memory handling is possible, even if the
underlying real-time environment may not support it.

Using a real-time operating system is the base for providing real-time simulation. On
top of this operating system, an adequate simulation is required, which will be shown
in the next section.

5 Virtual/Real Interface

Providing a mixed virtual/real simulation environment, real components have to be con-
nected to the simulation system.

Timing-correct simulation means that timing is part of the functional model of the
simulation models. Therefore, it is essential, that timing is as correct as possible, avoid-

470 S. Eilers and C. Müller-Schloer

ing incorrect functional behavior. As increasing abstraction always means to loose in-
formation, we have to take care that we will not loose the kind of information which is
essential for the correct behavior of our target system.

Cutting a virtual prototype into subsystems, which are candidates for real or virtual
components, may lead to different abstraction levels between the virtual and the real
components. If the real and the virtual representation or abstraction level is the same,
the connection is trivial. A usual interface on a low abstraction level has to convert
physical values, like voltages, to their digital representation and vice versa. This means,
virtual events are converted to their real representation as the event time is equal to the
real-world time. And, for instance, changing voltages are converted to events with the
current real-world time as event time. For this simple kind of connections, we provide
a generic interface with very low latency, see section 6.2.

For instance, if a CAN-Bus is cut into a virtual and a real part for connecting real
and virtual CAN-controllers to it, the bus will be cut on two abstraction levels: The vir-
tual bus, which consists of a logical simulation of the bus communication with a timing
model, and the real bus, which is just a wire, transporting voltage where timing exists
just inherently. For timing-correct behavior, the virtual simulation environment needs
information about the timing of the complete CAN bus, which now consists of a high
level or virtual and a low level or real part. For extracting the timing information the
complete bus has to be observable. Unfortunately, the timing information of the real
part is ,,out of view” for the virtual system as this information is lost by converting the
low-level bus communication to the higher level. There exist two solutions to handle
this problem. The first one would be to lower the abstraction level of the virtual sys-
tem, which will reduce the simulation speed and endanger a real-time simulation. The
other solution is to create the information which was lost, accepting a higher degree of
inaccuracy.

In this implementation, the interface for connecting a real CAN bus to the simulation
system consists of a simple CAN controller. Due to the fact that the used abstraction
level of the virtual model expects a complete message, the developer has to face the time
needed to transport a complete message over the bus into the used CAN controller. This
latency may change the order of messages on the bus, compared to the complete virtual
simulation and is not preventable. In fact, as real controllers are not running in sync
and are not always deterministic in its timing behavior, this may even happen on a real
system. A wrong behavior caused by this ,,jitter” may indicate a wrong implementation
and will happen on the complete real prototype, too. This problem needs to be discussed
further, but exceeds the scope of this paper.

In the next section it will be shown that it is possible to use a virtual/real inter-
face containing a timing model, which provides the lost information with an acceptable
degree of accuracy for a correct simulation of the mixed prototype.

6 Validation of Concept and Implementation

To validate the implementation Code audits were essential but not sufficient. Using a
synthetic simulation project, the correct implementation had to be validated practically

Mixed Virtual/Real Prototypes for Incremental System Design – A Proof of Concept 471

as shown in the next section, followed by a section discussing the validation of the
virtual/real interface.

6.1 Validation of the Real-Time Simulation Environment

To show the usability and correctness of the implementation, the ported simulation sys-
tem ClearSim-MD was used to simulate a synthetic project with two communicating
extended finite state machines (EFSM). This simulation was not designed to be compa-
rable to any real world prototypes, but to find implementation errors. Two models which
have to work symmetrically if they are running in a correct manner, would show im-
plementation errors by asymmetrical anomalies in the timing analysis of the simulation
environment. Each EFSM runs as single simulation subsystem within the simulation
environment ClearSim-MD, controlled by the timer based simulation kernel with a cy-
cle time of 1ms. Every EFSM receives data, does some calculation to generate CPU
load (1000 divisions) and sends information to the other EFSM afterwards.

The simulation run was executed twice, the first time with the Linux system idle.
During the second simulation run, the Linux system was under heavy load while hun-
dreds of concurrent GCC-compilers were running on the system. Thus, the system was
nearly unusable due to heavy processor and I/O load3. The Figures 2a and 2b show
the plot of both executions. The y-axis is scaled to the needed cycle time of each sim-
ulation loop, the x-axis to the runtime of the simulation (5 seconds). The maximum
allowed time of a simulation loop was set to 1 ms (cycle-time preset). Thus, no sim-
ulation cycle was allowed to violate this maximum delay, otherwise no hard real-time
simulation was assured!

Figure 2a shows the timing behavior of the simulation while the system is idle.
The little spikes of the I/O-time are caused by the communication between the simu-
lation subsystems. Figure 2b shows the same situation under heavy load. The jitter of
about 100 μs shows that there does exist an influence by the Linux system, caused by
cache flushes and monolithic bus activity, but the maximum allowed cycle time is never
reached or exceeded.

It could be shown that the real-time memory system stayed reliable in this extreme
situation, while hundreds of running compilers were forced to swap a lot of memory to
the harddisk.

With this simple example, the real-time capability of the ported simulation system
could be evaluated successfully but does not show anything about the maximum sim-
ulation load possible. Although, this example is just showing a synthetic simulation
model, it shows practically how the developer has to evaluate the timing behavior of his
virtual prototype. In this example, he could safely reduce the loop time to about 300-
250 μs without violating the assumed real-time behavior.

6.2 Virtual/Real Interface for Mixed Simulation

Minimizing delays by converting signals from virtual to real and vice versa, is essen-
tial for compareable results between the complete virtual and the mixed simulation.

3 The response for user input by the non real-time system was nearly inexistent!

472 S. Eilers and C. Müller-Schloer
T

im
e

of
 s

im
ul

at
io

n
lo

op
s

[n
s]

Run time [s]

 0

 150000

 200000

 250000

 300000

 0 1 2 3 4 5

real cycle time

 50000

 100000

(a) Demonstration of a real-time
simulation on an idle system. The
cycle time preset is set to 1 ms

T
im

e
of

 s
im

ul
at

io
n

lo
op

s
[n

s]

Run time [s]

real cycle time

 50000

 100000

 150000

 200000

 250000

 300000

 0 1 2 3 4 5
 0

(b) Demonstration of a real-time
simulation on a heavily loaded sys-
tem. The cycle time is preset to 1
ms

Fig. 2. The time required for the time slice never comes close to the available cycle time of 1 ms,
even when considering the spikes

Fig. 3. Simulation of a mixed virtual/real prototype

Professional industry PCs with hardware input/output interfaces provide very low la-
tencies and high computing power. Measuring the time needed to react to an external
digital input and to create an external output, resulted in typical latencies of about 10
μs, which is much lower than expected. Additional delays are expected by conversion
of the signals into simulation events, which will not be the dominant part as the speed
of the processors is increasing continuously.

Simulation cycles of about 500 μs to 1 ms are the desired range of the systems
under consideration. This will be feasible according to our results, even when using
signals on high abstraction levels. Beside a high level interface as introduced above
for the CAN-Bus, a generic interface for low level signals is provided for connecting
electronic components, like motors, sensors and so forth. For using this interface, the
developer has to connect the signal channels within the system description file and to
configure it according his needs for instance to set the voltage range.

To show that it is possible to create a virtual/real interface on higher abstraction lev-
els with correct timing behavior, a realistic simulation of a mixed prototype consisting

Mixed Virtual/Real Prototypes for Incremental System Design – A Proof of Concept 473

Run time [s]

W
in

d
sp

ee
d

 0

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60

 50

Prop * 10 (sim)

Prop * 10 (real)

 100

Fig. 4. Comparison of the simulated air speed as a function of time between completely virtual
and mixed simulation. Both simulation agree within the expected error margins. In separate ex-
periments, the overall agreement of the simulation results with the real wind tunnel experiment
was also shown

of 3 microcontrollers (C505, a 8 Bit microcontroller by Infineon; one virtual, the other
real) connected to a CAN bus, was used to control a wind tunnel, as shown in Fig. 3.
This example was introduced in a previous paper [1] but just executed there without any
real-time capabilities. Now, we are able to show that a functional and timing-correct
simulation was possible within a real-time simulation of a mixed prototype (see Fig. 4).
The virtual/real interface for the CAN bus contained a model to provide the essential
timing information which was lost by converting messages from the real CAN bus to
the virtual one, as discussed in section 5. While this example works well with one vir-
tual C-505 microcontroller within real-time, the incremental design approach expects
to export the wind tunnel first, then the microcontrollers for motor-control and RPM
measurement.

Unfortunately, we currently have not enough power to to simulate 3 microcontrollers
simultaneous within real-time constraints as we had to face peek times of 1,5 ms on our
2 GHz Pentium system while we expected a loop time of 1 ms. Therefore, further speed
improvements need to be found to show the incremental approach on this platform
successfully. For instance, timer based simulation allows for efficient parallelization of
subsystem simulations which will provide further speedups. Another important next
step is to find further real world examples to elaborate a relation between maximum
model complexity and hard real-time capability.

7 Conclusion and Outlook

ClearSim-MD is a system simulator that allows to simulate complex systems, contain-
ing digital and analog components as well as microcontrollers and busses, using the
optimal description language and abstraction level needed for a successful model of the
system and its environment.

474 S. Eilers and C. Müller-Schloer

By transforming ClearSim-MD into a hard real-time simulation system, it was pos-
sible to close the gap between the completely virtual and the completely real prototype,
simulating a mixed environment consisting of virtual and real components. We call this
approach incremental design.

Although the developer has to take into consideration additional issues, like con-
version latencies and lost timing information by cutting different abstraction levels, this
approach enables developers to analyze and fix possible modeling and timing problems,
which tend to be visible just on the real prototype and therefore may be hard to find in
a virtual prototype. Especially on distributed and redundant computing architectures,
an innovative, incremental simulation approach will be essential to handle the future
complexity we will face.

With our example implementation, we were able to realize the idea of the incre-
mental design approach. The computing power of the simulation host currently dictates
the possible complexity of the virtual prototype to gain a simulation which stays within
hard real-time constraints and stays synchronous with the real world clock. Influences,
like cache latencies and concurrent bus accesses, which increase the jitter regarding to
the system load, are not avoidable, but could be taken into consideration by analyzing
the timing protocols of the simulation system. The next step is to test this concept on
different real word examples, to analyze where the limits of model complexity currently
are and how we could extend them. The future increase of processor power will help to
speed up simulation. This proof of concept implementation will be the bases of further
investigation, how a applicable incremental design methodology has to look like.

References

1. Eilers, S., Müller-Schloer, C.: Inkrementeller Entwurfsansatz mit Clearsim-RealTime. In:
ASIM, Paderborn, SCS-Europe (2001) 205–210

2. Krisp, H., Bruns, J., Eilers, S., Müller-Schloer, C.: Multi-domain simulation for the incre-
mental design of heterogeneous systems. In: ESM, Prag (2001)

3. Sailer, U., Essers, U.: Nutzfahrzeug-Echtzeitsimulation auf Parallelrechnern mit Hardware-
in-the-Loop. Expert Verlag (1997)

4. Kruse, A.: Kopplung des physikalischen Simulators dSpace mit dem Systemsimulator Clear-
Sim. Institute of Systems Engineering, System and Computer Architecture (SRA) (1997)

5. dSPACE http://www.dspace.com: Webside of dSPACE. (2005)
6. Tiller, M.: Introduction to Physical Modeling with Modelica. Springer (2001)
7. van Beek, D., Rooda, J.: Multi-domain modelling, simulation, and control (2000)
8. Eilers, S., Krisp, H., Müller-Schloer, C., Welge, R.: Inkrementeller entwurf verteilter, einge-

betteter systeme mit vista. In: APC 2001. (2001)
9. Scherber, S., Müller-Schloer, C.: Entwicklungsumgebung zur modellierung und simulation

heterogener mechatronischer systeme. In: Proc. Workshop Multi Nature Systems 99, Univ.
Jena (1999)

10. Scherber, S.: Modellierung und Simulation software-intensiver eingebetteter Systeme. PhD
thesis (2001)

11. Nilsen, K.D., Gao, H.: The real-time behavior of dynamic memory management in c++. In:
IEEE Real-Time Technology and Applications Symposium, IEEE Computer Society (1995)
142–153

12. Ford, R.: Concurrent algorithms for real-time memory management. Software, IEEE 5
(1988) 10–23

Author Index

Abdelli, Nabil 424

Becker, D. 374
Beemster, Marcel 232
Bertels, Koen 2
Blume, H. 374
Bomel, P. 424
Bos, Herbert 82
Bossuet, Lilian 72
Boutillon, E. 424
Burleson, Wayne 72

Calderon, Humberto 22
Cardoso, João M.P. 41
Casarotto, Daniel C. 262
Catthoor, Francky 445
Chang, Hoseok 314
Cho, Yookun 242
Chung, Sung Woo 103
Cilio, Andrea 212
Cristea, Mihai Lucian 82

Daylight, Edgar G. 445
De Bosschere, Koen 202
Demeyer, Serge 445
Deprettere, Ed 82
Dhaene, Tom 445
Dorward, Sean 269
dos Santos, Luiz C.V. 262
Dutta, Hritam 51

Eeckhout, Lieven 202
Eilers, Stefan 465
Evripidou, Paraskevas 364

Farfeleder, Stefan 222
Ferreira, Ricardo 41
Fettweis, G. 62
Filho, Jose O. Carlomagno 262
Fischaber, S. 414
Fitzpatrick, Liam 232
Fong, Anthony S. 112
Fouilliart, A.-M. 424
Furtado, Olinto J.V. 262

Gao, Fei 172
Gaydadjiev, Georgi N. 93
Glesner, M. 12
Glossner, John 152, 269
Gogniat, Guy 72
Goksu, Huseyin 308
Goudarzi, Maziar 394
Gries, Matthias 434
Guevorkian, David 324

Hämäläinen, Timo D. 354, 384, 404
Han, Sangchul 242
Hannig, Frank 51
Hännikäinen, Marko 384, 404
Hasson, R. 414
He, Lei 192
Hessabi, Shaahin 394
Hinkelman, H. 12
Hoane, A. Joseph 152
Hokened, Erdem 269
Hollstein, T. 12
Hong, Xianlong 344
Horspool, Nigel 222
Hu, Xiaodong 344
Hu, Yu 344

Iancu, Andrei 152
Iancu, Daniel 152
Iannucci, Bob 1
Indrusiak, L.S. 12
Isoaho, Jouni 132

Jhang, Sung Tae 162
Jhon, Chu Shik 103, 162
Jing, Tong 344
Jinturkar, Sanjay 269
Jyrkkä, Kari 142

Kajfasz, P. 424
Kangas, Tero 354
Kim, Cheol Hong 103, 162
Kim, JunSeong 299
Kim, Sunil 289
Kohvakka, Mikko 384
Krall, Andreas 222

476 Author Index

Kukkala, Petri 404
Kuorilehto, Mauri 384
Kurdahi, Fadi 334
Kuusilinna, Kimmo 354
Kwak, Jong Wook 103, 162

Lahtinen, Vesa 354
Langerwerf, Javier Martı́n 32
Lappalainen, Ville 324
Launiainen, Aki 324
Lee, SungHwan 299
Lehmann, A. 62
Li, Zeng-Zhi 251
Lim, Hyunjin 314
Liu, Long 251
Liuha, Petri 324
Lo, Kaiman 112
Long, Yun 334

Manzak, Ali 308
Marchand, Philippe 279
Martin, E. 424
McAllister, J. 414
Mok, Paklun 112
Moscu Panainte, Elena 2
Moudgill, Mayan 269
Müller-Schloer, C. 465
Murgan, T. 12

Najjar, Walid A. 182
Neto, Horácio C. 41
Noll, T.G. 374

Obeid, A.M. 12

Paakkulainen, Jani 132
Park, Moonju 242
Park, Sangduck 314
Petrov, M. 12
Pimentel, Andy D. 455
Pionteck, T. 12
Pirsch, Peter 32
Pitkänen, Teemu 212
Plosila, Juha 122
Punkka, Konsta 324

Rantanen, Tommi 212
Reilly, D. 414

Riihimäki, Jouni 354
Robelly, J.P. 62
Ruckdeschel, Holder 51

Sair, Suleyman 172
Salminen, Erno 354
Sauer, Christian 434
Schulte, Michael 269
Shim, Sunghoon 103, 162
Silvén, Olli 142
Sima, Mihai 152
Simonson, Lucanus J. 192
Sinha, Purnendu 279
Song, Hong 251
Sonntag, Sören 434
Stavrou, Kyriakos 364
Sung, Wonyong 314
Suresh, Dinesh C. 182

Taglietti, Leonardo 262
Takala, Jarmo 212
Tan, Yiyu 112
Teich, Jürgen 51
Temmerman, Marijn 445
Toledo, Andre 41
Trancoso, Pedro 364

van Royen, Ruben 232
van Someren, Han 232
Vandeputte, Frederik 202
Vassiliadis, Stamatis 2, 22, 93, 269
Vayá, Guillermo Payá 32
Virtanen, Seppo 132
von Sydow, T. 374

Westerlund, Tomi 122
Woods, R. 414

Yan, Guiying 344
Yang, Jun 182
Yau, Chihang 112
Ye, Hua 152
Yi, Jongsu 299

Zhang, Chunhui 334
Zhang, Dan 251
Zipf, P. 12
Zissulescu, Claudiu 82

s

	Frontmatter
	Keynote
	Platform Thinking in Embedded Systems

	Reconfigurable System Design and Implementations
	Interprocedural Optimization for Dynamic Hardware Configurations
	Reconfigurable Embedded Systems: An Application-Oriented Perspective on Architectures and Design Techniques
	Reconfigurable Multiple Operation Array
	RAPANUI: Rapid Prototyping for Media Processor Architecture Exploration
	Data-Driven Regular Reconfigurable Arrays: Design Space Exploration and Mapping
	Automatic FIR Filter Generation for FPGAs
	Two-Dimensional Fast Cosine Transform for Vector-STA Architectures
	Configurable Computing for High-Security/High-Performance Ambient Systems
	FPL-3E: Towards Language Support for Reconfigurable Packet Processing

	Processor Architectures, Design and Simulation
	Flux Caches: What Are They and Are They Useful?
	First-Level Instruction Cache Design for Reducing Dynamic Energy Consumption
	A Novel JAVA Processor for Embedded Devices
	Formal Specification of a Protocol Processor
	Tuning a Protocol Processor Architecture Towards DSP Operations
	Observations on Power-Efficiency Trends in Mobile Communication Devices
	CORDIC-Augmented Sandbridge Processor for Channel Equalization
	Power-Aware Branch Logic: A Hardware Based Technique for Filtering Access to Branch Logic
	Exploiting Intra-function Correlation with the Global History Stack
	Power Efficient Instruction Caches for Embedded Systems
	Micro-architecture Performance Estimation by Formula
	Offline Phase Analysis and Optimization for Multi-configuration Processors
	Hardware Cost Estimation for Application-Specific Processor Design
	Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures
	Generating Stream Based Code from Plain C
	Fast Real-Time Job Selection with Resource Constraints Under Earliest Deadline First
	A Programming Model for an Embedded Media Processing Architecture
	Automatic ADL-Based Assembler Generation for ASIP Programming Support
	Sandbridge Software Tools

	Architectures and Implementations
	A Hardware Accelerator for Controlling Access to Multiple-Unit Resources in Safety/Time-Critical Systems
	Pattern Matching Acceleration for Network Intrusion Detection Systems
	Real-Time Stereo Vision on a Reconfigurable System
	Application of Very Fast Simulated Reannealing (VFSR) to Low Power Design
	Compressed Swapping for NAND Flash Memory Based Embedded Systems
	A Radix-8 Multiplier Design and Its Extension for Efficient Implementation of Imaging Algorithms
	A Scalable Embedded JPEG2000 Architecture
	A Routing Paradigm with Novel Resources Estimation and Routability Models for X-Architecture Based Physical Design
	Benchmarking Mesh and Hierarchical Bus Networks in System-on-Chip Context
	DDM-CMP: Data-Driven Multithreading on a Chip Multiprocessor

	System Level Design, Modeling and Simulation
	Modeling NoC Architectures by Means of Deterministic and Stochastic Petri Nets
	High Abstraction Level Design and Implementation Framework for Wireless Sensor Networks
	The ODYSSEY Tool-Set for System-Level Synthesis of Object-Oriented Models
	Design and Implementation of a WLAN Terminal Using UML 2.0 Based Design Flow
	Rapid Implementation and Optimisation of DSP Systems on SoPC Heterogeneous Platforms
	DVB-DSNG Modem High Level Synthesis in an Optimized Latency Insensitive System Context
	SystemQ: A Queuing-Based Approach to Architecture Performance Evaluation with SystemC
	Moving Up to the Modeling Level for the Transformation of Data Structures in Embedded Multimedia Applications
	A Case for Visualization-Integrated System-Level Design Space Exploration
	Mixed Virtual/Real Prototypes for Incremental System Design -- A Proof of Concept

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

